(19)

(11)

EUROPEAN PATENT SPECIFICATION
(45) Date of publication and mention
of the grant of the patent:
25.12.2019 Bulletin 2019/52
(21) Application number: 15763713.3
(22) Date of filing: 31.08.2015
(51) Int CI.:

C12N 15/82 ${ }^{(2006.01)} \quad$ A01H 5/10 ${ }^{(2018.01)}$
(86) International application number:

PCT/US2015/047706
(87) International publication number: WO 2016/040030 (17.03.2016 Gazette 2016/11)
(54) GENERATION OF SITE-SPECIFIC-INTEGRATION SITES FOR COMPLEX TRAIT LOCI IN CORN AND SOYBEAN, AND METHODS OF USE

ERZEUGUNG VON STELLEN ZUR STELLENSPEZIFISCHEN INTEGRATION FÜR KOMPLEXE TRAIT-LOCI IN MAIS UND SOJABOHNEN SOWIE VERFAHREN ZUR VERWENDUNG

PRODUCTION DE SITES D'INTÉGRATION SPÉCIFIQUE DE SITE, POUR DES LOCI DE TRAITS COMPLEXES DANS LE MAÏS ET LE SOJA, ET PROCÉDÉS D'UTILISATION
84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
(30) Priority: 12.09.2014 US 201462049465 P
(43) Date of publication of application:
19.07.2017 Bulletin 2017/29
(60) Divisional application:
19206649.6
(73) Proprietors:

- E. I. du Pont de Nemours and Company Wilmington, DE 19805 (US)
- Pioneer Hi-Bred International, Inc. Johnston, lowa 50131 (US)
(72) Inventors:
- CIGAN, Andrew Mark

Johnston
lowa 50131 (US)

- GAO, Huirong Johnston lowa 50131 (US)
- LIU, Zhan-Bin

West Chester,

- MUTTI, Jasdeep

Johnston
lowa 50131 (US) paid. (Art. 99(1) European Patent Convention).

- PODLICH, Dean

Des Moines
lowa 50310 (US)

- SCELONGE, Christopher

Ankeny
lowa 50023 (US)
(74) Representative: J A Kemp LLP

14 South Square
Gray's Inn
London WC1R 5JJ (GB)
(56) References cited:

WO-A1-2010/077319
WO-A1-2014/093768
WO-A2-2012/129373
WO-A1-2013/112686
WO-A1-2015/026887
WO-A2-2013/066423
US-A1-2010 313293

- VESNA DJUKANOVIC ET AL: "Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-Cre I homing endonuclease", THE PLANT JOURNAL, vol. 76, no. 5, 5 November 2013 (2013-11-05), pages 888-899, XP55218454, GB ISSN: 0960-7412, DOI: 10.1111/tpj. 12335
- LIANG ZHEN ET AL: "Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System", JOURNAL OF GENETICS AND GENOMICS, ELSEVIER BV, NL, vol. 41, no. 2, 14 December 2013 (2013-12-14), pages 63-68, XP028661345, ISSN: 1673-8527, DOI: 10.1016/J.JGG.2013.12.001

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been

- WILLIAM M. AINLEY ET AL: "Trait stacking via targeted genome editing", PLANT BIOTECHNOLOGY JOURNAL, vol. 11, no. 9, 19 August 2013 (2013-08-19), pages 1126-1134, XP055218224, ISSN: 1467-7644, DOI:
10.1111/pbi. 12107
- QIUDENG QUE ET AL: "Maize transformation technology development for commercial event generation", FRONTIERS IN PLANT SCIENCE, vol. 5, 5 August 2014 (2014-08-05), XP55217826, DOI: 10.3389/fpls. 2014.00379
- VIPULA K SHUKLA ET AL: "Precise genome modification in the crop species Zea mays using zinc-finger nucleases", NATURE, NATURE PUBLISHING GROUP, UNITED KINGDOM, vol. 459, no. 7245, 29 April 2009 (2009-04-29), page 437, XP002626698, ISSN: 0028-0836, DOI: 10.1038/NATURE07992 [retrieved on 2009-04-29]
- GAJ THOMAS ET AL: "ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering", TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 31, no. 7, 9 May 2013 (2013-05-09), pages 397-405, XP028571313, ISSN: 0167-7799, DOI: 10.1016/J.TIBTECH.2013.04.004
- MARTIN W. GANAL ET AL: "A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome", PLOS ONE, vol. 6, no. 12, 8 December 2011 (2011-12-08), page e28334, XP055062057, DOI: 10.1371/journal.pone. 0028334 cited in the application
- SERGEI SVITASHEV ET AL: "Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA", PLANT PHYSIOLOGY, vol. 169, no. 2, 12 August 2015 (2015-08-12), pages 931-945, XP55217829, ISSN: 0032-0889, DOI: 10.1104/pp. 15.00793

Description

[0001] This application claims the benefit of U.S. Provisional Application No. 62/049465, filed September 12, 2014.

FIELD
[0002] The disclosure relates to the field of plant molecular biology. In particular, methods and compositions are disclosed for altering the genome of a plant.

REFERENCE TO A SEQUENCE LISTING SUBMITTED AS A TEXT FILE VIA EFS-WEB
[0003] The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named 20150811_BB2355PCT_ST25.txt, created August 11, 2015 and having a size of 879 KB and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification.

BACKGROUND

[0004] Recombinant DNA technology has made it possible to insert foreign DNA sequences into the genome of an organism, as well as altering endogenous genes of an organism, thus, altering the organism's phenotype. The most commonly used plant transformation methods are Agrobacterium infection and biolistic particle bombardment in which transgenes integrate into a plant genome in a random fashion and in an unpredictable copy number.
[0005] Site-specific integration techniques, which employ site-specific recombination systems, as well as, other types of recombination technologies, have been used to generate targeted insertions of genes of interest in a variety of organism. Other methods for inserting or modifying a DNA sequence involve homologous DNA recombination by introducing a transgenic DNA sequence flanked by sequences homologous to the genomic target. U.S. Patent No. 5,527,695 describes transforming eukaryotic cells with DNA sequences that are targeted to a predetermined sequence of the eukaryote's DNA. Transformed cells are identified through use of a selectable marker included as a part of the introduced DNA sequences. While such systems have provided useful techniques for targeted insertion of sequences of interest, there remains a need for methods and compositions which improve these systems and allow for targeting the insertion of a sequence of interest into a desirable genomic position, for stacking additional polynucleotides of interest near the desired integration site, and for producing a fertile plant, having an altered genome comprising one or more transgenic target sited for site specific integration located in a defined region of the genome of the plant.

BRIEF SUMMARY

[0006] Methods and compositions for introducing transgenic target sites for Site Specific Integration (SSI) into at least one target site of a double-strand-break inducing agent (referred to as double-strand break target site, or DSB target site) in a genomic window of a plant genome are disclosed. Composition and methods are also disclosed for introducing a polynucleotide of interest into a target site of a double-strand-break inducing agent (such as but not limited to a Cas9 endonuclease) in a genomic window of a plant. Also disclosed are methods and compositions for producing a complex trait locus in a genomic window of a plant, the plant comprising at least one transgenic target site for SSI integrated in at least one double-strand break target site. The double-strand break target site can be, but is not limited to a zinc finger endonuclease target site, an engineered endonuclease target site, a meganuclease target site, a TALENs target site and a Cas endonuclease target site. The genomic window of said plant can optionally comprise at least one genomic locus of interest such as a trait cassette, a transgene, a mutated gene, a native gene, an edited gene or a site-specific integration (SSI) target site.
[0007] The compositions provide a plant, plant part, plant cell, or seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double-strand break target site, wherein said genomic window is flanked by (genetically linked to) at least a first marker and at least a second marker. The compositions further provide a plant, plant part or seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration integrated into at least one double-strand break target site, wherein said at least one transgenic target site is genetically linked to at least a first genetic marker and a second genetic marker, wherein said first genetic marker is located between a first and a second location on a plant physical map. The compositions further provide a plant, plant part or seed having in its genome a genomic window comprising at least one double-strand break target site, wherein said genomic window is flanked by (genetically linked to) at least a first marker and at least a second marker, and wherein said genomic window comprises a transgene. The compositions further provide a plant, plant part or seed having in its genome a genomic window comprising at least one

EP 3191595 B1

altered double-strand break target site, wherein said genomic window is flanked by (genetically linked to) at least a first marker and at least a second marker, and wherein said altered double-strand break target site comprises a polynucleotide of interest.
[0008] Also disclosed are plants, plant part or seed having in its genome at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas endonuclease target site.
[0009] Further disclosed are methods for introducing into the genome of a plant cell a transgenic target site for sitespecific integration. In one example, the method comprising: (a) providing a plant cell comprising in its genome an endogenous target site for a Cas endonuclease; (b) providing a Cas endonuclease and guide polynucleotide, wherein the Cas endonuclease is capable of forming a complex with the guide polynucleotide, wherein said complex is capable of inducing a double-strand break in said endogenous target site, and wherein the endogenous target site is located between a first and a second genomic region that is capable of guiding the Cas endonuclease of (a) to said endogenous target site; (c) providing a donor DNA comprising the transgenic target site for site-specific integration located between a first region of homology to said first genomic region and a second region of homology to said second genomic region, wherein the transgenic target site comprises a first and a second recombination site, wherein the first and the second recombination sites are dissimilar with respect to one another; (d) contacting the plant cell with the guide polynucleotide, the donor DNA and the Cas endonuclease; and, (e) identifying at least one plant cell from (d) comprising in its genome the transgenic target site integrated at said endogenous target site.
[0010] In another example, the method comprises a method of integrating a polynucleotide of interest into a transgenic target site in the genome of a plant cell, the method comprising: (a) providing at least one plant cell comprising in its genome a transgenic target site for site-specific integration, wherein the transgenic target site is integrated into an endogenous target site for a Cas endonuclease, and wherein the transgenic target site is, (i) a target site comprising a first and a second recombination site; or (ii) the target site of (i) further comprising a third recombination site between the first recombination site and the second recombination site, wherein the first, the second, and the third recombination sites are dissimilar with respect to one another, (b) introducing into the plant cell of (a) a transfer cassette comprising, (iii) the first recombination site, a first polynucleotide of interest, and the second recombination site, (iv) the second recombination site, a second polynucleotide of interest, and the third recombination sites, or (v) the first recombination site, a third polynucleotide of interest, and the third recombination sites; (c) providing a recombinase that recognizes and implements recombination at the first and the second recombination sites, at the second and the third recombination sites, or at the first and third recombination sites; and (d) selecting at least one plant cell comprising integration of the transfer cassette at the target site.
[0011] The compositions further provide a nucleic acid molecule comprising an RNA sequence selected from the group consisting of SEQ ID NOs: 267-307, 441-480, and any one combination thereof. In one example the DSB target site is a Cas9 endonuclease target site selected from the group of consisting of SEQ ID NO: 3-5, 7-11, 13-19, 21-23, $25-28,30-34,36-39,43-47,49-52,54-58,60,63-66,68-72,74-78,80-83,87-90,92-93,95-98,100-104,317-320$, $323-324,327-328,331-332,334-337,342-343,346-347,350-351,354-355,358-359,365-366.370-371,376-377$, 380-381, 384-385, 388-389, 392-393 and 396-397.
[0012] Also disclosed are methods and compositions for producing a complex trait locus in a genomic window of a plant, the plant comprising at least one transgenic target site for site specific integration integrated in at least one double-strand-break target site. The double-strand-break target site can be, but is not limited to a zinc finger endonuclease target site, an engineered endonuclease target site, a meganuclease target site, a TALENs target site and a Cas endonuclease target site. The genomic window of said plant can optionally comprise at least one genomic locus of interest such as a trait cassette, a transgene, a mutated gene, a native gene, an edited gene or a site-specific integration (SSI) target site. Plant breeding techniques can be employed such that the transgenic target site for SSI and the genomic locus of interest can be bred together. In this way, multiple independent trait integrations can be generated within a genomic window to create a complex trait locus. The complex trait locus is designed such that its target sites comprising traits of interest and/or genomic loci of interest can segregate independently of each other, thus providing the benefit of altering a complex trait locus by breeding-in and breeding-away specific elements. Various methods can also be employed to modify the target sites such that they contain a variety of polynucleotides of interest. Also disclosed is a method of producing a complex trait locus in the genome of a plant comprising applying plant breeding techniques to a first plant having in its genome a genomic window of about 10 cM with at least a first transgenic target sites for Site Specific Integration (SSI) integrated into at least a first double-strand break target site (such as but not limited to a Cas9 endonuclease target site). The method comprises breeding to said first plant a second plant comprising a first genomic locus of interest (such as trait cassette, a transgene, a mutated gene, a native gene, an edited gene or a site-specific integration (SSI) target site) in the genomic window and selecting a progeny comprising said first transgenic target site for Site Specific Integration (SSI) integrated into said first double-strand break target site and said first genomic locus of interest, wherein said first transgenic target site and said first genomic locus have different genomic insertion sites in said progeny plant. Using such methods, various transgenic target sites and/or polynucleotides of interest can be introduced into double-strand break target sites of a genomic window. Also disclosed are methods of altering the complex trait locus by

EP 3191595 B1

utilizing various breeding techniques or by employing site-specific recombination techniques to add, remove, or replace double-strand break target sites, genomic loci of interest or polynucleotides of interest.
[0013] The invention is directed to a maize plant, maize plant part or maize seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double- strand-break target site, wherein said genomic window is
flanked by:
a) at least a first marker comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and,
b) at least a second marker comprising SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and
wherein said double-strand-break target site is a Cas9 endonuclease target site selected from the group consisting of SEQ ID NO: 3-5 or 7-11 or an active variant, capable of being recognized and cleaved by a double strand break-inducing agent, with at least 95% sequence identity to said Cas9 endonuclease target site.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014]

Figure 1. Schematic of a genomic window for producing a Complex Trait Locus (CTL). The genomic window can be about 10 cM in length (genomic distance) and comprises at least one double-strand break target site. The doublestrand break target site can be, but is not limited to, Cas endonuclease target site, a zinc finger endonuclease target site, an engineered endonuclease target site, a meganuclease target site and a TALENs target site. The genomic window of said plant can optionally comprise at least one genomic locus of interest such as trait cassette, a transgene, a mutated gene, a native gene, an edited gene or a site-specific integration (SSI) target site.
Figure 2A-2D. Schematic of the insertion of a transgenic target site for site specific integration (SSI) into a doublestrand break- target site located in a genomic window. Figure 2A show the genomic window for producing a Complex Trait Locus (CTL) of about 10 cM in length, the genomic window comprises at least one double-strand break target site (DSB target site) flanked by a DNA1 and DNA2 endogenous DNA sequence. Figure 2B shows a donor (repair) DNA for integration of a transgenic target site for SSI. Figure 2C shows a schematic of a guide RNA and Cas9 endonuclease expression cassette, either located on one molecule of located on separate molecules. Figure 2D shows a schematic of the transgenic target site for SSI integrated in the genomic window. This integration results in the alteration of the DSB target site (referred to as aDSB). FRT1 and FRT87 (or FRT6) are shown as non-limiting examples of recombination sites flanking the transgenic target site for SSI. Other recombination sites can be used. Figure 3A-3C shows a schematic of the insertion of a trait cassette into a DSB target site located in a genomic window. Figure $3 A$ shows the genomic window for producing a CTL. Figure $3 B$ shows a schematic of a donor (repair) DNA for integration of a trait cassette. Figure 3C shows a schematic of the trait cassette integrated in the genomic window.
Figure 4 shows a schematic of the maize genomic window (CTL1) on chromosome 1. The genomic window is about 5 cM in length and contains 31 Cas endonuclease target sites (listed above the bar diagram representing the genomic window, such as 49-CR1) located near trait A (represented by an oval). The genetic location (cM) of each of the Cas endonuclease target sites is shows below the bar diagram (for example target site 49-CR2 is located at 50.87 cM on chromosome 1).
Figure 5 shows a schematic of the maize genomic window (CTL2) on chromosome 1. The genomic window is about 4 cM in length and contains 15 Cas endonuclease target sites (listed above the bar diagram representing the genomic window, such as 62-CR1) located near trait B (represented by an oval). The genetic location (cM) of each of the Cas endonuclease target sites is shown below the bar diagram (for example target site 62-CR1 is located at 230.55 cM on chromosome 1).
Figure 6 shows a schematic of the maize genomic window (CTL3) on chromosome 3. The genomic window is about 3 cM in length and contains 15 Cas endonuclease target sites (listed above the bar diagram representing the genomic window, such as TS1). The genetic location (cM) of each of the Cas endonuclease target sites is shown below the bar diagram (for example target site TS1 is located at 4.04 cM on chromosome 3).
Figure 7 shows a schematic of the maize genomic window (CTL4) on chromosome 10. The genomic window is about 4 cM in length and contains 15 Cas endonuclease target sites (listed above the bar diagram representing the genomic window, such as TS1). The genetic location (cM) of each of the Cas endonuclease target sites is shown below the bar diagram (for example target site TS1 is located at 120.09 cM on chromosome 10).
Figure 8 shows a junction PCR screen for identification of insertion events at one locus on chromosome 1 of maize. A gel picture indicates the presence of insertion events at the Cas endonuclease 41-CR target site (see white bands in lanes D1 and D10). PCR reactions of HR1 and HR2 junction were loaded next to each other (white label and lane

EP 3191595 B1

gray label), with white label representing HR1 junction PCR, gray label representing HR2 junction PCR.
Figure 9 shows a schematic of a soybean genomic window (CTL-D) on chromosome 4. The genomic window is about 4 cM in length and shows 14 Cas endonuclease target sites (represented by grey boxes). Genomic locations are indicated as cM.

Figure 10 shows a schematic of a soybean genomic window (CTL-X) on chromosome 6. The genomic window is about 5 cM in length and shows 10 Cas endonuclease target sites (represented by grey boxes). Genomic locations are indicated as cM .
Figure 11 shows a schematic of a soybean genomic window (CTL-R) on chromosome 6. The genomic window is about 4 cM in length and shows 16 Cas endonuclease target sites (represented by grey boxes). Genomic locations are indicated as cM .

Sequences

[0015]
SEQ ID NOs: 1-41 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL1) on chromosome 1 of maize (see also Table 1).
SEQ ID NOs: 42-61 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL2) on chromosome 1 of maize (see also Table 2).
SEQ ID NOs: 62-84 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL3) on chromosome 3 of maize (see also Table 3).
SEQ ID NOs: 85-105 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL4) on chromosome 10 of maize (see also Table 4).
SEQ ID NOs: 106-135 and 136-146 are the nucleotide sequences of guide RNA/Cas9 DNA's used in maize.
SEQ ID NOs: 267-296 and 297-307 are the nucleotide sequences of guide RNAs used in maize.
SEQ ID NOs: 147-266 are the nucleotide sequences of Primers/Probes.
SEQ ID NO: 308 is the nucleotide sequence of the Cas9 gene from Streptococcus pyogenes M1 GAS (SF370).
SEQ ID NO: 309 is the amino acid sequence of SV40 amino N-terminal.
SEQ ID NO: 310 is the amino acid sequence of Agrobacterium tumefaciens bipartite VirD2 T-DNA border endonuclease carboxyl terminal.
SEQ ID NO: 311 is the nucleotide sequence of a maize optimized Cas9 expression cassette.
SEQ ID NO: 312 is the nucleotide sequence of a maize U6 polymerase III promoter.
SEQ ID NO: 313 is the nucleotide sequence of a soybean codon optimized Cas9 gene.
SEQ ID NO: 314 is the amino acid sequence of SV40 amino N-terminal with a SRAD linker.
SEQ ID NO: 315 is the nucleotide sequence of GM-U6-13.1 promoter.
SEQ ID NOs: 316-339 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL-D) on chromosome 4 of soybean (see also Table 12).
SEQ ID NOs: 340-362 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL-X) on chromosome 6 of soybean (see also Table 13).
SEQ ID NOs: 363-399 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL-R) on chromosome 1 of soybean (see also Table 14).
SEQ ID NOs: 400-413, 415-424 and 425-440 are the nucleotide sequences of guide RNA/Cas 9 DNA's used in soybean.
SEQ ID NO: 414 is the nucleotide sequence the soybean U6 small nuclear RNA promoters GM -U6-9.1.
SEQ ID NOs: 441-480 are the nucleotide sequences of guide RNAs used in soybean.
SEQ ID NOs: 481-570 are the nucleotide sequences of Primers/Probes.
SEQ ID NO: 571 is the nucleotide sequence of a Cas9 endonuclease (genbank CS571758.1) from S. thermophilus.
SEQ ID NO: 572 is the nucleotide sequence of a Cas9 endonuclease, (genbank CS571770.1) from S. thermophilus.
SEQ ID NO: 573 is the nucleotide sequence of a Cas9 endonuclease, (genbank CS571785.1) from S. agalactiae.
SEQ ID NO: 574 is the nucleotide sequence of a Cas9 endonuclease, (genbank CS571790.1) from S. agalactiae.
SEQ ID NO: 575 is the nucleotide sequence a Cas9 endonuclease (genbank CS571790.1) from S. mutans.
SEQ ID NO: 576 is the nucleotide sequence of the FRT1 recombination site.
SEQ ID NO: 577 is the nucleotide sequence of the FRT5 recombination site.
SEQ ID NO: 578 is the nucleotide sequence of the FRT6 recombination site.
SEQ ID NO: 579 is the nucleotide sequence of the FRT12 recombination site.
SEQ ID NO: 580 is the nucleotide sequence of the FRT87 recombination site.

DETAILED DESCRIPTION

[0016] Many modifications and other embodiments of the disclosures set forth herein will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included providing they fall within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
[0017] Disclosed herein are plants, plant parts, plant cells or seeds having in its genome a genomic window. The invention is concerned with maize plants. A genomic window can refers to a segment of a chromosome in the genome of a plant that is desirable for producing a complex trait locus or the segment of a chromosome comprising a complex trait locus that was produced by the methods disclosed herein. The genomic window can include, for example, one or more traits prior to producing a complex transgenic trait locus therein (see for example Figure 1). As used herein, a "trait" refers to the phenotype conferred from a particular gene or grouping of genes.
[0018] The genomic window can be about $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15$ or more centimorgans (cM) in length. Alternatively, the genomic window can be about $1-10 \mathrm{cM}$, about 2-8 cM , about $2-5 \mathrm{cM}$, about $3-10 \mathrm{cM}$, about 3-6 cM, about 4-10 cM, about 4-7 cM, about 5-10 cM, about 5-8 cM, about 6-10 cM, about 6-9 cM, about 7-10 cM, about $8-10 \mathrm{cM}$ or about $9-10 \mathrm{cM}$ in length. In one example, the genomic window is about 3 centimorgans (cM) in length or about 4 cM in length, or about 5 cM in length, or about 6 cM in length, or about 10 cM in length. A "centimorgan" (cM) or "map unit" is the distance between two linked genes, markers, target sites, genomic loci of interest, loci, or any pair thereof, wherein 1% of the products of meiosis are recombinant. Thus, a centimorgan is equivalent to a distance equal to a 1% average recombination frequency between the two linked genes, markers, target sites, loci, genomic loci of interest or any pair thereof.
[0019] The genomic window can comprise various components. Such components can include, for example, but not limited to, double-strand break target sites, genomic loci of interest, native genes, transgenic target sites for SSI (sitespecific integration recombination sites), mutated genes, edited genes, trait cassettes and polynucleotides of interest. The genomic window can comprise at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,19,20,21,22,23$, $24,25,26,27,28,29,30,31$ or more double-strand break target sites such that each double-strand break target site has a different genomic insertion site within the genomic window. In addition, the genomic window can comprise at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,19,20,21,22,23,24,25,26,27,28,29,30,31$ or more genomic loci of interest each having a different genomic insertion site. By a "different genomic insertion site" is meant that each component of the genomic window (such as for example double-strand break target sites and genomic loci of interest) is inserted into the genome at a different location and as such each component can segregate independently from one another. For example, the genomic window can comprise a combination of double-strand break target sites and/or genomic loci of interest such that each target site or genomic loci of interest has a different genomic insertion site within the genomic window.
[0020] The components of the genomic windows disclosed herein have different genomic insertion sites and as such can segregate independently from one another. As used herein, "segregate independently", is used to refer to the genetic separation of any two or more genes, transgenes, native genes, mutated genes, target sites, genomic loci of interest, markers and the like from one another during meiosis. Assays to measure whether two genetic elements segregate independently are known in the art. As such, any two or more genes, transgenes, native genes, mutated genes, target sites, genomic loci of interest, markers and the like within a genomic window disclosed herein, have genomic insertion sites located at an appropriate distance from one another so that they generally segregate independently at a rate of about 10% or less. Thus, the components of the genomic windows disclosed herein can segregate independently from one another at a rate of about $10 \%, 9 \%, 8 \%, 7 \%, 6 \%, 5 \%, 4 \%, 3 \%, 2 \%, 1 \%, 0.9 \%, 0.8 \%, 0.7 \%, 0.6 \%, 0.5 \%, 0.4 \%$, $0.3 \%, 0.2 \%$ or 0.1%. Alternatively, the components of the genomic windows disclosed herein can segregate independently from one another at a rate of about 10-0.1\%, about 10-0.5\%, about 10-1\%, about 10-5\%, about 9-0.1\%, about 9-0.5\%, about 9-1 \%, about 9-5\%, about 8-0.1\%, about 8-0.5\%, about 8-1 \%, about 8-4\%, about 7-0.1\%, about 7-0.5\%, about $7-1 \%$, about $7-4 \%$, about $6-0.1 \%$, about $6-1 \%$, about $6-0.5 \%$, about $6-3 \%$, about $5-0.1 \%$, about $5-1 \%$, about $5-0.5 \%$, about $4-0.1 \%$, about $4-1 \%$, about $4-0.5 \%$, about 3-0.1\%, about 3-1 \%, about 3-0.5\%, about 2-0.1 $\%$, about $2-0.5 \%$, about $1-0.1 \%$ or about $1-0.5 \%$. For example, if the genomic window comprises a double-strand break target site and a genomic locus of interest that are about 5 cM from each other, the double-strand break target site and the genomic locus of interest would segregate independently at a rate of about 5%.
[0021] In one example, the genomic window comprises at least five different double-strand break target sites (such as at least five Cas9 endonuclease target sites) and at least one transgenic target site for site specific integration (also referred to as transgenic SSI target site) wherein each of the Cas endonuclease target sites and the transgenic SSI target site have a different genomic insertion site and segregate independently from one another at a rate of about 10% to about 0.1%.
[0022] In some examples, the genomic window is flanked by at least a first marker and a second marker. Non-limiting examples of such markers on chromosome 1 of maize include, for example, SYN12545, SYN12536, SYN14645, PZE101023852, PZE-101024424, SYN25022, SYN31156, SYN31166, SYN22238 or SYN20196, and PZE-101205031, PUT-163A-148951459-517, PZE-101205904, PZE-101206569 or SYN24492. Other non-limiting examples of such markers on chromosome 3 of maize include, for example, PZE-103000166, PZE-103000238, PZE-103000307, SYN6355 or PZE-103001421, and on chromosome 10 of maize, for example, PZE-110099037, PZE-110099048, PZE-110100195, PZE-110100685 or PZE-110101412. Non-limiting examples of such markers on chromosome 4 of soybean include, for example, BARC_1.01_Gm04_45591011_C_T, BARC_1.01_Gm04_45613405_T_C, BARC_1.01_Gm04_45697256_G_A, BARC_1.01_Gm04_45739051_A_C, BARC_1.01_Gm04_45800267_T_C, BARC_1.01_Gm04_45857325_T_C, BARC_1.01_Gm04_45857325_T_C, BARC_1.01_Gm04_45883080_A_G, BARC_1.01_Gm04_45903617_T_C, BARC_1.01_Gm04_46000185_C_A or BARC_1.01_Gm04_46113406_T_G. Non-limiting examples of such markers on chromosome 6 of soybean include, for example, BARC_1.01_Gm06_46915875_T_C, BARC_1.01_Gm06_47524452_G_T, BARC_1.01_Gm06_47561262_C_T, BARC_1.01_Gm06_47625670_C_T, BARC_1.01_Gm06_47631544_T_C, BARC_1.01_Gm06_47789229_C_T, BARC_1.01_Gm06_47821576_T_G, BARC_1.01_Gm06_47829363_A_C, BARC_1.01_Gm06_47833095_A_G, BARC_1.01_Gm06_47847021_G_T, BARC_1.01_Gm06_47895876_G_A, BARC_1.01_Gm06_48221293_T_C or BARC_1.01_Gm06_48528885_G_T.
[0023] Non-limiting examples of such markers on chromosome 1 of soybean include, for example, BARC_1.01_Gm01_6984873_T_C, BARC_1.01_Gm01_7775299_G_A, BARC_1.01_Gm01_7856395_A_C, BARC_1.01_Gm01_8569887_A_G, BARC_1.01_Gm01_8601858_C_T, BARC_1.01_Gm01_8641430_C_T, BARC_1.01_Gm01_8674202_A_C, BARC_1.01_Gm01_8933345_C_T, BARC_1.01_Gm01_8964201_T_C, BARC_1.01_Gm01_9014216_T_G, BARC_1.01_Gm01_28179606_A_G, BARC_1.01_Gm01_28364595_A_G, BARC_1.01_Gm01_28536363_G_A, BARC_1.01_Gm01_28599526_G_A, BARC_1.01_Gm01_28913996_A_G, BARC_1.01_Gm01_29284158_A_G, BARC_1.01_Gm01_31202345_C_T, BARC_1.01_Gm01_31770743_C_T, BARC_1.01_Gm01_32683433_G_A, BARC_1.01_Gm01_34327255_C_T or BARC_1.01_Gm01_36994849_A_G.
[0024] In the present invention the genomic window is flanked by a) at least a first marker comprising SEQ ID NO:1 (SYN12545), SEQ ID NO:2 (SYN12536), SEQ ID NO:6 (SYN14645) or SEQ ID NO:12 (PZE-101023852); and, b) at least a second marker comprising SEQ ID NO:2 (SYN12536), SEQ ID NO:6 (SYN14645) or SEQ ID NO:12 (PZE101023852).
[0025] As used herein, a "genomic locus of interest" (plural genomic loci of interest) comprises a collection of specific polymorphisms that are inherited together. A given genomic locus can comprise, but is not limited to, a modified or edited native gene, a transgene, an altered double-strand-break target site, a native gene, or a transgenic SSI target site that can comprise dissimilar pairs of recombination sites or pairs of recombination sites that are dissimilar and have a decreased compatibility with respect to one another.
[0026] The genomic locus of interest can be, for example, any modification that confers a trait, such as a transgene or a native trait. In one example, the genomic locus of interest comprises a native trait. As used herein, a "native trait" refers to a trait found in nature. In another example, the genomic locus of interest comprises a transgene.
[0027] The number of genomic loci of interest that could be crossed into a genomic window of a plant is at least 1,2 , $3,4,5,6,7,8,9,10,11,12,13$ or more. Any desired trait can be introduced into the genome at a given genomic locus of interest. Such traits include, but are not limited to, traits conferring insect resistance, disease resistance, herbicide tolerance, male sterility, abiotic stress tolerance, altered phosphorus, altered antioxidants, altered fatty acids, altered essential amino acids, altered carbohydrates, or sequences involved in site-specific recombination.
[0028] In specific examples, a given genomic locus of interest is associated with a desirable and/or favorable phenotype in a plant. For example, traits that confer insect resistance, disease resistance or herbicide tolerance would be desirable in a plant. In other examples, the genomic locus is not associated with traits that affect the agronomic characteristics of the plant.
[0029] A given genomic locus of interest has its own genomic insertion site within the genomic window. For example, a genomic locus of interest and a double-strand-break target site within the genomic window will have different genomic insertion sites within the genome. A given double-strand-break target site can be found within about $10 \mathrm{cM}, 9 \mathrm{cM}, 8 \mathrm{cM}$, $7 \mathrm{cM}, 6 \mathrm{cM}, 5 \mathrm{cM}, 4 \mathrm{cM}, 3 \mathrm{cM}, 2 \mathrm{cM}, 1 \mathrm{cM}, 0.9 \mathrm{cM}, 0.8 \mathrm{cM}, 0.7 \mathrm{cM}, 0.6 \mathrm{cM}, 0.5 \mathrm{cM}, 0.4 \mathrm{cM}, 0.3 \mathrm{cM}, 0.2 \mathrm{cM}, 0.1 \mathrm{cM}$ or 0.05 cM from the genomic locus of interest such that the double-strand-break target site and genomic locus of interest have different genomic insertion sites. Alternatively, a given double-strand-break target site can be found within about $0.5-10 \mathrm{cM}$, about 1-10 cM, about 2-10 cM, about 2-5 cM, about 3-10 cM, about 3-6 cM, about 4-10 cM, about 4-7 cM, about 5-10 cM, about 5-8 cM, about 6-10 cM, about $6-9 \mathrm{cM}$, about $7-10 \mathrm{cM}$, about 8-10 cM , about $9-10 \mathrm{cM}$, about 0.1-0.5 cM , about $0.1-1 \mathrm{cM}$, about $0.1-2 \mathrm{cM}$, about $0.1-3 \mathrm{cM}$, about $0.1-4 \mathrm{cM}$, about $0.1-5 \mathrm{cM}$, about $0.1-6 \mathrm{cM}$, about 0.1-7 cM about 0.1-8 cM, about 0.1-9 cM or about 0.1-10 cM from the genomic locus of interest such that the double-strand-break target site and genomic locus of interest have different genomic insertion sites.
[0030] As used herein, the terms "double-strand-break target site", "DSB target site", "DSB target sequence", and

EP 3191595 B1

"target site for a double-strand-break-inducing-agent" are used interchangeably and refer to a polynucleotide sequence in the genome of a plant cell (including choloroplastic and mitochondrial DNA) that comprises a recognition sequence for a double-strand-break-inducing agent at which a double-strand-break is induced in the cell genome by a double-strand-break-inducing-agent.
[0031] As used herein, the terms "altered double-strand-break target site", "altered DSB target site", "aDSB target site", and "altered target site for a double-strand-break-inducing-agent" are used interchangeably and refer to a DSB target sequence comprising at least one alteration when compared to a non-altered DSB target sequence. "Alterations" can include, for example: (i) replacement of at least one nucleotide, (ii) a deletion of at least one nucleotide, (iii) an insertion of at least one nucleotide, or (iv) any combination of (i)-(iii).
[0032] The DSB target site can be an endogenous site in the plant genome, or alternatively, the DSB target site can be heterologous to the plant and thereby not be naturally occurring in the genome, or the DSB target site can be found in a heterologous genomic location compared to where it occurs in nature. As used herein, the term "endogenous DSB target site" refers to an DSB target site that is endogenous or native to the genome of a plant and is located at the endogenous or native position of that DSB target site in the genome of the plant.
[0033] The length of the DSB target site can vary, and includes, for example, DSB target sites that are at least 4, 6, $8,10,12,14,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44$, $45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70$ or more nucleotides in length. It is further possible that the DSB target site could be palindromic, that is, the sequence on one strand reads the same in the opposite direction on the complementary strand. The nick/cleavage site could be within the recognition sequence or the nick/cleavage site could be outside of the recognition sequence. In another variation, the cleavage could occur at nucleotide positions immediately opposite each other to produce a blunt end cut or, in other cases, the incisions could be staggered to produce single-stranded overhangs, also called "sticky ends", which can be either 5' overhangs, or 3' overhangs.
[0034] A "double-strand-break-inducing agent" (also referred to as "DSB-inducing-agent") refers to any nuclease which produces a double-strand break in the target sequence. The double-strand break target site can be, but is not limited to a zinc finger endonuclease target site, an engineered endonuclease target site, a meganuclease target site, a TALENs target site and a Cas endonuclease target site.
[0035] Any nuclease that induces a double-strand break into a desired DSB target site can be used in the methods and compositions disclosed herein. A naturally-occurring or native endonuclease can be employed so long as the endonuclease induces a double-strand break in a desired DSB target site. Alternatively, a modified or engineered endonuclease can be employed. An "engineered endonuclease" refers to an endonuclease that is engineered (modified or derived) from its native form to specifically recognize and induce a double-strand break in the desired DSB target site. Thus, an engineered endonuclease can be derived from a native, naturally-occurring endonuclease or it could be artificially created or synthesized. The modification of the endonuclease can be as little as one nucleotide. Producing a double-strand break in a DSB target site or other DNA can be referred to herein as "cutting" or "cleaving" the DSB target site or other DNA.
[0036] Active variants and fragments of the DSB target sites (i.e. SEQ ID NO: 3-5, 7-11, 13-19, 21-23, 25-28, 30-34, 36-39, 43-47, 49-52, 54-58, 60, 63-66, 68-72, 74-78, 80-83, 87-90, 92-93, 95-98, 100-104, 317-320, 323-324, 327-328, 331-332, 334-337, 342-343, 346-347, 350-351, 354-355, 358-359, 365-366. 370-371, 376-377, 380-381, 384-385, 388-389, 392-393 and 396-397) can comprise at least $65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%$, $96 \%, 97 \%, 98 \%, 99 \%$ or more sequence identity to the given DSB target site, wherein the active variants retain biological activity and hence are capable of being recognized and cleaved by an DSB-inducing-agent. Assays to measure the double-strand break of a DSB target site by an endonuclease are known in the art and generally measure the ability of an endonuclease to cut the DSB target site.
[0037] Endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain, and include restriction endonucleases that cleave DNA at specific sites without damaging the bases. Restriction endonucleases include Type I, Type II, Type III, and Type IV endonucleases, which further include subtypes. In the Type I and Type III systems, both the methylase and restriction activities are contained in a single complex. Restriction enzymes are further described and classified, for example in the REBASE database (webpage at rebase.neb.com; Roberts et al., (2003) Nucleic Acids Res 31:418-20), Roberts et al., (2003) Nucleic Acids Res 31:1805-12, and Belfort et al., (2002) in Mobile DNA II, pp. 761-783, Eds. Craigie et al., (ASM Press, Washington, DC).
[0038] Endonucleases also include meganucleases, also known as homing endonucleases (HEases), which like restriction endonucleases, bind and cut at a specific DSB target site, however the DSB target sites for meganucleases are typically longer, about 18 bp or more. Meganuclease domains, structure and function are known, see for example, Guhan and Muniyappa (2003) Crit Rev Biochem Mol Biol 38:199-248; Lucas et al., (2001) Nucleic Acids Res 29:960-9; Jurica and Stoddard, (1999) Cell Mol Life Sci 55:1304-26; Stoddard, (2006) Q Rev Biophys 38:49-95; and Moure et al., (2002) Nat Struct Biol 9:764. In some examples a naturally occurring variant, and/or engineered derivative meganuclease is used. Any meganuclease can be used herein, including, but not limited to, I-Scel, I-Scell, I-ScellI, I-SceIV, I-SceV, I-

EP 3191595 B1

SceVI, I-SceVII, I-Ceul, I-CeuAIIP, I-Crel, I-CrepsbIP, I-CrepsbIIP, I-CrepsbIIIP, I-CrepsbIVP, I-Tlil, I-Ppol, PI-PspI, FScel, F-Scell, F-Suvl, F-Tevl, F-Tevll, I-Amal, I-Anil, I-Chul, I-Cmoel, I-Cpal, I-Cpall, I-Csml, I-Cvul, I-CvuAIP, I-Ddil, IDdill, I-Dirl, I-Dmol, I-Hmul, I-Hmull, I-HsNIP, I-Llal, I-Msol, I-Naal, I-Nanl, I-NcIIP, I-NgrIP, I-Nitl, I-Njal, I-Nsp236IP, IPakl, I-PboIP, I-PculP, I-PcuAI, I-PcuVI, I-PgrIP, I-PobIP, I-Porl, I-PorIIP, I-PbpIP, I-SpBetaIP, I-Scal, I-SexIP, I-SneIP, I-SpomI, I-SpomCP, I-SpomIP, I-SpomIIP, I-SquIP, I-Ssp6803I, I-SthPhiJP, I-SthPhiST3P, I-SthPhiSTe3bP, I-TdeIP, ITevl, I-Tevll, I-TevIII, I-UarAP, I-UarHGPAIP, I-UarHGPA13P, I-VinIP, I-ZbilP, PI-Mtul, PI-MtuHIP PI-MtuHIIP, PI-Pful, PI-Pfull, PI-Pkol, PI-Pkoll, PI-Rma43812IP, PI-SpBetaIP, PI-Scel, PI-Tful, PI-Tfull, PI-Thyl, PI-Tlil, PI-Tlill, or any active variants or fragments thereof.
[0039] TAL effector nucleases can be used to make double-strand breaks at specific target sequences in the genome of a plant or other organism. TAL effector nucleases can be created by fusing a native or engineered transcription activator-like (TAL) effector, or functional part thereof, to the catalytic domain of an endonuclease, such as, for example, Fokl. The unique, modular TAL effector DNA binding domain allows for the design of proteins with potentially any given DNA recognition specificity. Thus, the DNA binding domains of the TAL effector nucleases can be engineered to recognize specific DNA target sites and thus, used to make double-strand breaks at desired target sequences. See, WO 2010/079430; Morbitzer et al. (2010) PNAS 10.1073/pnas.1013133107; Scholze \& Boch (2010) Virulence 1:428-432; Christian et al. Genetics (2010) 186:757-761; Li et al. (2010) Nuc. Acids Res. (2010) doi:10.1093/nar/gkq704; and Miller et al. (2011) Nature Biotechnology 29:143-148.
[0040] CRISPR loci (Clustered Regularly Interspaced Short Palindromic Repeats) (also known as SPIDRs--SPacer Interspersed Direct Repeats) constitute a family of recently described DNA loci. CRISPR loci consist of short and highly conserved DNA repeats (typically 24 to 40 bp, repeated from 1 to 140 times-also referred to as CRISPR-repeats) which are partially palindromic. The repeated sequences (usually specific to a species) are interspaced by variable sequences of constant length (typically 20 to 58 by depending on the CRISPR locus (WO2007/025097 published March 1, 2007). CRISPR loci were first recognized in E. coli (Ishino et al. (1987) J. Bacterial. 169:5429-5433; Nakata et al. (1989) J. Bacterial. 171:3553-3556). Similar interspersed short sequence repeats have been identified in Haloferax mediterranei, Streptococcus pyogenes, Anabaena, and Mycobacterium tuberculosis (Groenen et al. (1993) Mol. Microbiol. 10:1057-1065; Hoe et al. (1999) Emerg. Infect. Dis. 5:254-263; Masepohl et al. (1996) Biochim. Biophys. Acta 1307:26-30; Mojica et al. (1995) Mol. Microbiol. 17:85-93). The CRISPR loci differ from other SSRs by the structure of the repeats, which have been termed short regularly spaced repeats (SRSRs) (Janssen et al. (2002) OMICS J. Integ. Biol. 6:23-33; Mojica et al. (2000) Mol. Microbiol. 36:244-246). The repeats are short elements that occur in clusters, that are always regularly spaced by variable sequences of constant length (Mojica et al. (2000) Mol. Microbiol. 36:244-246).
[0041] Cas gene relates to a gene that is generally coupled, associated or close to or in the vicinity of flanking CRISPR loci. The terms "Cas gene", "CRISPR-associated (Cas) gene" are used interchangeably herein. A comprehensive review of the Cas protein family is presented in Haft et al. (2005) Computational Biology, PLoS Comput Biol 1(6): e60. doi:10.1371/journal.pcbi.0010060. As described therein, 41 CRISPR-associated (Cas) gene families are described, in addition to the four previously known gene families. It shows that CRISPR systems belong to different classes, with different repeat patterns, sets of genes, and species ranges. The number of Cas genes at a given CRISPR locus can vary between species.
[0042] Cas endonuclease relates to a Cas protein encoded by a Cas gene, wherein said Cas protein is capable of introducing a double strand break into a DNA target sequence. The Cas endonuclease is guided by a guide polynucleotide to recognize and optionally introduce a double strand break at a specific target site into the genome of a cell (U.S. Provisional Application No. 62/023239, filed July 11, 2014). The guide polynucleotide/Cas endonuclease system includes a complex of a Cas endonuclease and a guide polynucleotide that is capable of introducing a double strand break into a DNA target sequence. The Cas endonuclease unwinds the DNA duplex in close proximity of the genomic target site and cleaves both DNA strands upon recognition of a target sequence by a guide RNA if a correct protospacer-adjacent motif (PAM) is approximately oriented at the 3 ' end of the target sequence.
[0043] The Cas endonuclease gene can be Cas9 endonuclease, or a functional fragment thereof, such as but not limited to, Cas9 genes listed in SEQ ID NOs: 462, 474, 489, 494, 499, 505, and 518 of WO2007/025097 published March 1, 2007. The Cas endonuclease gene can be any Cas9 endonuclease of a Streptococcus pyogenes, a Streptococcus thermophilus, an Streptococcus agalactiae or a Streptococcus mutans, such as but not limited to SEQ ID Nos: 571-575. The Cas endonuclease gene can be a plant, maize or soybean optimized Cas9 endonuclease, such as but not limited to a plant codon optimized streptococcus pyogenes Cas9 gene that can recognize any genomic sequence of the form $\mathrm{N}(12-30)$ NGG. The Cas endonuclease can be introduced directly into a cell by any method known in the art, for example, but not limited to transient introduction methods, transfection and/or topical application.
[0044] In one example, the DSB target site is a Cas9 endonuclease target site selected from the group consisting of SEQ ID NOs: $3-5,7-11,13-19,21-23,25-28,30-34,36-39,43-47,49-52,54-58,60,63-66,68-72,74-78,80-83,87-90$, 92-93, 95-98, 100-104, 317-320, 323-324, 327-328, 331-332, 334-337, 342-343, 346-347, 350-351, 354-355, 358-359, 365-366. 370-371, 376-377, 380-381, 384-385, 388-389, 392-393 and 396-397.
[0045] In one example, the composition is plant, plant part or seed having in its genome a genomic window comprising
at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas9 endonuclease target site, wherein said genomic window is flanked by at least a first and a second marker. The plant can be, but is not limited to, a soybean or maize plant having any genomic window described herein.
[0046] In one example, the plant is a soybean plant, soybean plant part or soybean seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration integrated into at least one Cas9 endonuclease target site, wherein said at least one transgenic target site is genetically linked to at least a first genetic marker and a second genetic marker, wherein said first genetic marker is selected from the group consisting of BARC_1.01_Gm01_6984873_T_C, BARC_1.01_Gm01_7775299_G_A, BARC_1.01_Gm01_7856395_A_C, BARC_1.01_Gm01_8569887_A_G, BARC_1.01_Gm01_8601858_C_T, BARC_1.01_Gm01_8641430_C_T, BARC_1.01_Gm01_8674202_A_C, BARC_1.01_Gm01_8933345_C_T, BARC_1.01_Gm01_9014216_T_G, BARC_1.01_Ğm01_28179606_A_G, BARC_1.01_Gm01_28536363_G_A, BARC_1.01_Gm01_28599526_G_A, BARC_1.01_Gm01_8964201_T_C, BARC_1.01_Gm01_28364595_A_G, BARC_1.01_Gm01_28913996_A_G, BARC_1.01_Gm01_29284158_A_G, BARC_1.01_Gm01_31202345_C_T, BARC_1.01_Gm01_31770743_C_T, BARC_1.01_Gm01_32683433_G_A, or BARC_1.01_Gm01_34327255_C_T; and said second genetic marker is selected from the group consisting of BARC_1.01_Gm01_7775299_G_A, BARC_1.01_Gm01_7856395_A_C, BARC_1.01_Gm01_8569887_A_G, BARC_1.01_Gm01_8601858_C_T, BARC_1.01_Gm01_8641430_C_T, BARC_1.01_Gm01_8674202_A_C, BARC_1.01_Gm01_8933345_C_T, BARC_1.01_Gm01_8964201_T_C, BARC_1.01_Gm01_9014216_T_G, BARC_1.01_Gm01_28179606_A_G, BARC_1.01_Gm01_28364595_A_G, BARC_1.01_Gm01_28536363_G_A, BARC_1.01_Gm01_28599526_G_A, BARC_1.01_Gm01_28913996_A_G, BARC_1.01_Gm01_29284158_A_G, BARC_1.01_Gm01_31202345_C_T, BARC_1.01_Gm01_31770743_C_T, BARC_1.01_Gm01_32683433_G_A, BARC_1.01_Gm01_34327255_C_T, or BARC_1.01_Gm01_36994849_A_G.
[0047] In one example, the plant is a soybean plant, soybean plant part or soybean seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration integrated into at least one Cas9 endonuclease target site, wherein said at least one transgenic target site is genetically linked to at least a first genetic marker and a second genetic marker, wherein said first genetic marker is located between Gm01:6984873 and Gm01:34327255 on the soybean physical map, wherein said second genetic marker is located between Gm01:7775299 and $\mathrm{Gm} 01: 36994849$ on the soybean physical map.
[0048] In one example, the plant is a maize plant, maize plant part or maize seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas9 endonuclease target site, wherein said genomic window is flanked by at least a first and a second marker selected from the group consisting of: SYN12545, SYN12536, SYN14645, PZE-101023852, PZE-101024424, SYN25022, SYN31156, SYN31166, SYN22238 or SYN20196, PZE-101205031, PUT-163A-148951459-517, PZE-101205904, PZE-101206569 or SYN24492, PZE-103000166, PZE-103000238, PZE-103000307, SYN6355 or PZE-103001421, PZE-110099037, PZE-110099048, PZE-110100195, PZE-110100685 and PZE-110101412.
[0049] The present invention is directed to a maize plant, maize plant part or maize seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double-strand-break target site, wherein said genomic window is flanked by:
a) at least a first marker comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and,
b) at least a second marker comprising SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and
wherein said double-strand-break target site is a Cas9 endonuclease target site selected from the group consisting of SEQ ID NO: 3-5 or 7-11 or an active variant, capable of being recognized and cleaved by a double strand break-inducing agent, with at least 95% sequence identity to said Cas9 endonuclease target site.
[0050] In another example, the plant is a soybean plant, soybean plant part or soybean seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas9 endonuclease target site, wherein said genomic window is flanked by at least a first and a second marker selected from the group consisting of:, BARC_1.01_Gm04_45591011_C_T, BARC_1.01_Gm04_45613405_T_C, BARC_1.01_Gm04_45697256_G_A, BARC_1.01_Gm04_45739051_A_C, BARC_1.01_Gm04_45800267_T_C, BARC_1.01_Gm04_45857325_T_C, BARC_1.01_Gm04_45857325_T_C, BARC_1.01_Gm04_45883080_A_G, BARC_1.01_Gm04_45903617_T_C, BARC_1.01_Gm04_46000185_C_A or BARC_1.01_Gm04_46113406_T_G, BARC_1.01_Gm06_46915875_T_C, BARC_1.01_Gm06_47524452_G_T, BARC_1.01_Gm06_47561262_C_T, BARC_1.01_Gm06_47625670_C_T, BARC_1.01_Gm06_47631544_T_C, BARC_1.01_Gm06_47789229_C_T, BARC_1.01_Gm06_47821576_T_G, BARC_1.01_Gm06_47829363_A_C, BARC_1.01_Gm06_47833095_A_G, BARC_1.01_Gm06_47847021_G_T, BARC_1.01_Gm06_47895876_G_A, BARC_1.01_Gm06_48221293_T_C or BARC_1.01_Gm06_48528885_G_T, BARC_1.01_Gm01_6984873_T_C, BARC_1.01_Gm01_7775299_G_A, BARC_1.01_Gm01_7856395_A_C, BARC_1.01_Gm01_8569887_A_G, BARC_1.01_Gm01_8601858_C_T, BARC_1.01_Gm01_8641430_C_T, BARC_1.01_Gm01_8674202_A_C, BARC_1.01_Gm01_8933345_C_T,

BARC_1.01_Gm01_8964201_T_C, BARC_1.01_Gm01_9014216_T_G, BARC_1.01_Gm01_28179606_A_G, BARC_1.01_Gm01_28364595_A_G, BARC_1.01_Gm01_28536363_G_A, BARC_1.01_Gm01_28599526_G_A, BARC_1.01_Gm01_28913996_A_G, BARC_1.01_Gm01_29284158_A_G, BARC_1.01_Gm01_31202345_C_T, BARC_1.01_Gm01_31770743_C_T, BARC_1.01_Gm01_32683433_G_A, BARC_1.01_Gm01_34327255_C_T and

BARC_1.01_Gm01_36994849_A_G.
[0051] In one example, the plant is a soybean or maize plant, wherein the genomic window described herein is not more than $0.1,0.2,0.3,0.4,0.5,1,2,5,10 \mathrm{cM}$ in length. In the maize plant, maize plant part or maize seed of the invention the genomic window is not more than $0.1,0.2,0.3,0.4,0.5,1$ or 2 cM in length.
[0052] In one example, the plant is a soybean or maize plant, wherein the genomic window comprises a transgene, wherein the transgene confers a trait selected from the group consisting of herbicide tolerance, insect resistance, disease resistance, male sterility, site-specific recombination, abiotic stress tolerance, altered phosphorus, altered antioxidants, altered fatty acids, altered essential amino acids, altered carbohydrates, herbicide tolerance, insect resistance and disease resistance. Such maize plants are according to the invention.
[0053] In one example, the plant is a soybean or maize plant, wherein the genomic window comprises further comprises at least a second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, thirteenth, fourteenth, fifteenth, or sixteenth transgenic target site for site specific integration integrated into at least a second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, thirteenth, fourteenth, fifteenth, or sixteenth double-strand-break target site.
[0054] In one example which includes embodiments of the invention, the plant is a soybean or maize plant, wherein the genomic window comprises at least one transgenic SSI target site integrated in a Cas9 endonuclease site, wherein said at least one transgenic target site for site specific integration comprises a first recombination site and a second recombination site, wherein said first and said second recombination site are dissimilar with respect to one another.
[0055] In one example which includes embodiments of the invention, the plant is a soybean or maize plant, wherein the genomic window comprises at least one transgenic SSI target site integrated in a Cas9 endonuclease site, wherein said at least one transgenic target site for site specific integration further comprises a polynucleotide of interest flanked by said first recombination site and said second recombination site.
[0056] As used herein, the term "guide polynucleotide", relates to a polynucleotide sequence that can form a complex with a Cas endonuclease (such as but not limited to a Cas9 endonuclease) and enables the Cas endonuclease to recognize and optionally cleave a DNA target site (U.S. Provisional Application No. 62/023239, filed July 11, 2014). The guide polynucleotide can be a single molecule or a double molecule. The guide polynucleotide sequence can be a RNA sequence, a DNA sequence, or a combination thereof (a RNA-DNA combination sequence). Optionally, the guide polynucleotide can comprise at least one nucleotide, phosphodiester bond or linkage modification such as, but not limited, to Locked Nucleic Acid (LNA), 5-methyl dC, 2,6-Diaminopurine, 2'-Fluoro A, 2'-Fluoro U, 2'-O-Methyl RNA, phosphorothioate bond, linkage to a cholesterol molecule, linkage to a polyethylene glycol molecule, linkage to a spacer 18 (hexaethylene glycol chain) molecule, or 5' to 3' covalent linkage resulting in circularization. A guide polynucleotide that solely comprises of ribonucleic acids is also referred to as a "guide RNA". A guide RNA can include a fusion of two RNA molecules, a crRNA (CRISPR RNA) comprising a variable targeting domain, and a tracrRNA. In one example, the guide RNA comprises a variable targeting domain of 12 to 30 nucleotide sequences and a RNA fragment that can interact with a Cas endonuclease.
[0057] The guide polynucleotide can be a double molecule (also referred to as duplex guide polynucleotide) comprising a first nucleotide sequence domain (referred to as Variable Targeting domain or VT domain) that is complementary to a nucleotide sequence in a target DNA and a second nucleotide sequence domain (referred to as Cas endonuclease recognition domain or CER domain) that interacts with a Cas endonuclease polypeptide. The CER domain of the double molecule guide polynucleotide comprises two separate molecules that are hybridized along a region of complementarity. The two separate molecules can be RNA, DNA, and/or RNA-DNA- combination sequences. In some examples, the first molecule of the duplex guide polynucleotide comprising a VT domain linked to a CER domain is referred to as "crDNA" (when composed of a contiguous stretch of DNA nucleotides) or "crRNA" (when composed of a contiguous stretch of RNA nucleotides), or "crDNA-RNA" (when composed of a combination of DNA and RNA nucleotides). The crNucleotide can comprise a fragment of the cRNA naturally occurring in Bacteria and Archaea. In one example, the size of the fragment of the cRNA naturally occurring in Bacteria and Archaea that is present in a crNucleotide disclosed herein can range from, but is not limited to, $2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20$ or more nucleotides. In some examples the second molecule of the duplex guide polynucleotide comprising a CER domain is referred to as "tracrRNA" (when composed of a contiguous stretch of RNA nucleotides) or "tracrDNA" (when composed of a contiguous stretch of DNA nucleotides) or "tracrDNA-RNA" (when composed of a combination of DNA and RNA nucleotides In one example, the RNA that guides the RNA/ Cas9 endonuclease complex, is a duplexed RNA comprising a duplex crRNAtracrRNA.
[0058] The guide polynucleotide can also be a single molecule comprising a first nucleotide sequence domain (referred to as Variable Targeting domain or VT domain) that is complementary to a nucleotide sequence in a target DNA and a
second nucleotide domain (referred to as Cas endonuclease recognition domain or CER domain) that interacts with a Cas endonuclease polypeptide. By "domain" it is meant a contiguous stretch of nucleotides that can be RNA, DNA, and/or RNA-DNA-combination sequence. The VT domain and / or the CER domain of a single guide polynucleotide can comprise a RNA sequence, a DNA sequence, or a RNA-DNA-combination sequence. In some examples the single guide polynucleotide comprises a crNucleotide (comprising a VT domain linked to a CER domain) linked to a tracrNucleotide (comprising a CER domain), wherein the linkage is a nucleotide sequence comprising a RNA sequence, a DNA sequence, or a RNA-DNA combination sequence. The single guide polynucleotide being comprised of sequences from the crNucleotide and tracrNucleotide may be referred to as "single guide RNA" (when composed of a contiguous stretch of RNA nucleotides) or "single guide DNA" (when composed of a contiguous stretch of DNA nucleotides) or "single guide RNA-DNA" (when composed of a combination of RNA and DNA nucleotides). In one example of the disclosure, the single guide RNA comprises a cRNA or cRNA fragment and a tracrRNA or tracrRNA fragment of the type II CRISPR/Cas system that can form a complex with a type II Cas endonuclease, wherein said guide RNA/Cas endonuclease complex can direct the Cas endonuclease to a plant genomic target site, enabling the Cas endonuclease to introduce a double strand break into the genomic target site. One aspect of using a single guide polynucleotide versus a duplex guide polynucleotide is that only one expression cassette needs to be made to express the single guide polynucleotide.
[0059] The term "variable targeting domain" or "VT domain" is used interchangeably herein and includes a nucleotide sequence that is complementary to one strand (nucleotide sequence) of a double strand DNA target site. The \% complementation between the first nucleotide sequence domain (VT domain) and the target sequence can be at least 50%, $51 \%, 52 \%, 53 \%, 54 \%, 55 \%, 56 \%, 57 \%, 58 \%, 59 \%, 60 \%, 61 \%, 62 \%, 63 \%, 63 \%, 65 \%, 66 \%, 67 \%, 68 \%, 69 \%, 70 \%$, $71 \%, 72 \%, 73 \%, 74 \%, 75 \%, 76 \%, 77 \%, 78 \%, 79 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%$, $91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ or 100%. The variable target domain can be at least $12,13,14,15$, $16,17,18,19,20,21,22,23,24,25,26,27,28,29$ or 30 nucleotides in length. In some examples, the variable targeting domain comprises a contiguous stretch of 12 to 30 nucleotides. The variable targeting domain can be composed of a DNA sequence, a RNA sequence, a modified DNA sequence, a modified RNA sequence, or any combination thereof.
[0060] The term "Cas endonuclease recognition domain" or "CER domain" of a guide polynucleotide is used interchangeably herein and includes a nucleotide sequence (such as a second nucleotide sequence domain of a guide polynucleotide), that interacts with a Cas endonuclease polypeptide. The CER domain can be composed of a DNA sequence, a RNA sequence, a modified DNA sequence, a modified RNA sequence (see for example modifications described herein), or any combination thereof.
[0061] The nucleotide sequence linking the crNucleotide and the tracrNucleotide of a single guide polynucleotide can comprise a RNA sequence, a DNA sequence, or a RNA-DNA combination sequence. In one example, the nucleotide sequence linking the crNucleotide and the tracrNucleotide of a single guide polynucleotide can be at least $3,4,5,6,7$, $8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39$, $40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70$, $71,72,73,74,75,76,77,78,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99$ or 100 nucleotides in length. In another example, the nucleotide sequence linking the crNucleotide and the tracrNucleotide of a single guide polynucleotide can comprise a tetraloop sequence, such as, but not limiting to a GAAA tetraloop sequence.
[0062] Nucleotide sequence modification of the guide polynucleotide, VT domain and/or CER domain can be selected from, but not limited to, the group consisting of a 5' cap, a 3' polyadenylated tail, a riboswitch sequence, a stability control sequence, a sequence that forms a dsRNA duplex, a modification or sequence that targets the guide poly nucleotide to a subcellular location, a modification or sequence that provides for tracking, a modification or sequence that provides a binding site for proteins, a Locked Nucleic Acid (LNA), a 5-methyl dC nucleotide, a 2,6-Diaminopurine nucleotide, a 2'Fluoro A nucleotide, a 2'-Fluoro U nucleotide; a 2'-O-Methyl RNA nucleotide, a phosphorothioate bond, linkage to a cholesterol molecule, linkage to a polyethylene glycol molecule, linkage to a spacer 18 molecule, a 5^{\prime} to 3^{\prime} covalent linkage, or any combination thereof. These modifications can result in at least one additional beneficial feature, wherein the additional beneficial feature is selected from the group of a modified or regulated stability, a subcellular targeting, tracking, a fluorescent label, a binding site for a protein or protein complex, modified binding affinity to complementary target sequence, modified resistance to cellular degradation, and increased cellular permeability.
[0063] The DSB-inducing agent can be provided via a polynucleotide encoding the nuclease. Such a polynucleotide encoding a nuclease can be modified to substitute codons having a higher frequency of usage in a plant, as compared to the naturally occurring polynucleotide sequence. For example the polynucleotide encoding the DSB-inducing agent can be modified to substitute codons having a higher frequency of usage in a maize or soybean plant, as compared to the naturally occurring polynucleotide sequence.
[0064] Active variants and fragments of DSB-inducing agent i.e. an engineered endonuclease) can comprise at least $65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ or more sequence identity to the native endonuclease, wherein the active variants retain the ability to cut at a desired DSB target site and hence retain double-strand-break-inducing activity. Assays for double-strand-break-inducing activity are known and generally measure the overall activity and specificity of the endonuclease on DNA substrates containing the DSB target site.

EP 3191595 B1

[0065] The DSB-inducing agent may be introduced by any means known in the art. For example, a plant having the DSB target site in its genome is disclosed. The DSB-inducing agent may be transiently expressed or the polypeptide itself can be directly provided to the cell. Alternatively, a nucleotide sequence capable of expressing the DSB-inducing agent may be stably integrated into the genome of the plant. In the presence of the corresponding DSB target site and the DSB-inducing agent, the donor DNA is inserted into the transformed plant's genome. Alternatively, the components of the system may be brought together by sexually crossing transformed plants. Thus a sequence encoding the DSBinducing agent and/or target site can be sexually crossed to one another to allow each component of the system to be present in a single plant. The DSB-inducing agent may be under the control of a constitutive or inducible promoter. Such promoters of interest are discussed in further detail elsewhere herein.
[0066] Methods and compositions are disclosed herein which establish and use plants, plant parts, plant cells and seeds having stably incorporated into their genome a transgenic target site for site-specific integration (also referred to as transgenic SSI target site) where the transgenic SSI target site is integrated into the target site of a DSB-inducing agent. As used herein, a transgenic SSI target site is "integrated" into a DSB target site when a DSB-inducing agent induces a double-strand break in the DSB target site and a homologous recombination event thereby inserts the transgenic SSI target site within the boundaries of the original DSB target site (see for example Figure 2A-2D). It is recognized that the position within a given DSB target site in which the transgenic SSI target integrates will vary depending on where the double strand break is induced by the DSB-inducing agent. The sequence of the DSB target site need not immediately flank the boundaries of the transgenic SSI target. For example, sequences 5' and 3' to the transgenic SSI target found on the donor DNA may also be integrated into the DSB target site.
[0067] As outlined above, plants, plant cells and seeds having a transgenic SSI target site integrated at a DSB target site are disclosed herein.
[0068] In one example, the composition is a plant, plant part or seed having in its genome at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas endonuclease target site. In one example, the Cas endonuclease target site is a Cas9 endonuclease target site. In one example, the plant is a monocot or a dicot. The invention provides a maize plant, maize plant part or maize seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double-strand-break target site, wherein said genomic window is flanked by:
a) at least a first marker comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and,
b) at least a second marker comprising SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and
wherein said double-strand-break target site is a Cas9 endonuclease target site selected from the group consisting of SEQ ID NO: 3-5 or 7-11 or an active variant, capable of being recognized and cleaved by a double strand break-inducing agent, with at least 95% sequence identity to said Cas9 endonuclease target site.
[0069] Various methods can be used to integrate the transgenic SSI target site at the DSB target site. Such methods employ homologous recombination to provide integration of the transgenic SSI target site at the endonuclease DSB target site. In the methods disclosed herein, the transgenic SSI target site is provided to the plant cell in a donor DNA construct. A "donor DNA" (also referred to as Repair DNA) can include a DNA construct that comprises a transgenic SSI target site for site-specific integration. The donor DNA construct can further comprise a first and a second region of homology that flank the transgenic SSI target site sequence (see for example Figure 2B). The first and second regions of homology of the donor DNA share homology to a first and a second genomic region, respectively, present in or flanking the DSB target site of the plant genome. By "homology" is meant DNA sequences that are similar. For example, a "region of homology to a genomic region" that is found on the donor DNA is a region of DNA that has a similar sequence to a given "genomic region" in the plant genome. A region of homology can be of any length that is sufficient to promote homologous recombination at the cleaved DSB target site. For example, the region of homology can comprise at least $5-10,5-15,5-20,5-25,5-30,5-35,5-40,5-45,5-50,5-55,5-60,5-65,5-70,5-75,5-80,5-85,5-90,5-95,5-100,5-200$, $5-300,5-400,5-500,5-600,5-700,5-800,5-900,5-1000,5-1100,5-1200,5-1300,5-1400,5-1500,5-1600,5-1700$, $5-1800,5-1900,5-2000,5-2100,5-2200,5-2300,5-2400,5-2500,5-2600,5-2700,5-2800.5-2900,5-3000,5-3100$ or more bases in length such that the region of homology has sufficient homology to undergo homologous recombination with the corresponding genomic region. "Sufficient homology" indicates that two polynucleotide sequences have sufficient structural similarity to act as substrates for a homologous recombination reaction.
[0070] As used herein, a "genomic region" is a segment of a chromosome in the genome of a plant cell that is present on either side of the DSB target site or, alternatively, also comprises a portion of the DSB target site. The genomic region can comprise at least $5-10,5-15,5-20,5-25,5-30,5-35,5-40,5-45,5-50,5-55,5-60,5-65,5-70,5-75,5-80,5-85$, $5-90,5-95,5-100,5-200,5-300,5-400,5-500,5-600,5-700,5-800,5-900,5-1000,5-1100,5-1200,5-1300,5-1400$, $5-1500,5-1600,5-1700,5-1800,5-1900,5-2000,5-2100,5-2200,5-2300,5-2400,5-2500,5-2600,5-2700,5-2800$. $5-2900,5-3000,5-3100$ or more bases such that the genomic region has sufficient homology to undergo homologous recombination with the corresponding region of homology.
[0071] The structural similarity between a given genomic region and the corresponding region of homology found on the donor DNA can be any degree of sequence identity that allows for homologous recombination to occur. For example, the amount of homology or sequence identity shared by the "region of homology" of the donor DNA and the "genomic region" of the plant genome can be at least $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 86 \%$, $87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ or 100% sequence identity, such that the sequences undergo homologous recombination.
[0072] The region of homology on the donor DNA can have homology to any sequence flanking the DSB target site. While in some examples the regions of homology share significant sequence homology to the genomic sequence immediately flanking the target site, it is recognized that the regions of homology can be designed to have sufficient homology to regions that may be further 5' or 3^{\prime} to the DSB target site. In still other examples, the regions of homology can also have homology with a fragment of the DSB target site along with downstream genomic regions. In one example, the first region of homology further comprises a first fragment of the DSB target site and the second region of homology comprises a second fragment of the DSB target site, wherein the first and second fragments are dissimilar.
[0073] Homologous recombination includes the exchange of DNA fragments between two DNA molecules at the sites of homology. The frequency of homologous recombination is influenced by a number of factors. Different organisms vary with respect to the amount of homologous recombination and the relative proportion of homologous to non-homologous recombination. Generally, the length of the region of homology affects the frequency of homologous recombination events, the longer the region of homology, the greater the frequency. The length of the homology region needed to observe homologous recombination is also species-variable. In many cases, at least 5 kb of homology has been utilized, but homologous recombination has been observed with as little as $25-50 \mathrm{bp}$ of homology. See, for example, Singer et al., (1982) Cell 31:25-33; Shen and Huang, (1986) Genetics 112:441-57; Watt et al., (1985) Proc. Natl. Acad. Sci. USA 82:4768-72, Sugawara and Haber, (1992) Mol Cell Biol 12:563-75, Rubnitz and Subramani, (1984) Mol Cell Biol 4:2253-8; Ayares et al., (1986) Proc. Natl. Acad. Sci. USA 83:5199-203; Liskay et al., (1987) Genetics 115:161-7.
[0074] Once a double-strand break is induced in the DNA, the cell's DNA repair mechanism is activated to repair the break. Error-prone DNA repair mechanisms can produce mutations at double-strand break sites. The most common repair mechanism to bring the broken ends together is the nonhomologous end-joining (NHEJ) pathway (Bleuyard et al., (2006) DNA Repair 5:1-12). The structural integrity of chromosomes is typically preserved by the repair, but deletions, insertions, or other rearrangements are possible (Siebert and Puchta, (2002) Plant Cell 14:1121-31; Pacher et al., (2007) Genetics 175:21-9).
[0075] Alternatively, the double-strand break can be repaired by homologous recombination between homologous DNA sequences. Once the sequence around the double-strand break is altered, for example, by exonuclease activities involved in the maturation of double-strand breaks, gene conversion pathways can restore the original structure if a homologous sequence is available, such as a homologous chromosome in non-dividing somatic cells, or a sister chromatid after DNA replication (Molinier et al., (2004) Plant Cell 16:342-52). Ectopic and/or epigenic DNA sequences may also serve as a DNA repair template for homologous recombination (Puchta, (1999) Genetics 152:1173-81).
[0076] DNA double-strand breaks appear to be an effective factor to stimulate homologous recombination pathways (Puchta et al., (1995) Plant Mol Biol 28:281-92; Tzfira and White, (2005) Trends Biotechnol 23:567-9; Puchta, (2005) J Exp Bot 56:1-14). Using DNA-breaking agents, a two- to nine-fold increase of homologous recombination was observed between artificially constructed homologous DNA repeats in plants (Puchta et al., (1995) Plant Mol Biol 28:281-92). In maize protoplasts, experiments with linear DNA molecules demonstrated enhanced homologous recombination between plasmids (Lyznik et al., (1991) Mol Gen Genet 230:209-18).
[0077] Once a double-strand break is introduced in the DSB target site by the DSB inducing agent (such as a Cas9 endonuclease), the first and second regions of homology of the donor DNA can undergo homologous recombination with their corresponding genomic regions of homology resulting in exchange of DNA between the donor and the genome. As such, the disclosed method results in the integration of the target site of the donor DNA into the double-strand break in the DSB target site in the plant genome (see for example Figure 2 D).
[0078] The donor DNA may be introduced by any means known in the art. For example, a plant having a DSB target site is disclosed. The donor DNA may be provided by any transformation method known in the art including, for example, Agrobacterium-mediated transformation or biolistic particle bombardment. The donor DNA may be present transiently in the cell or it could be introduced via a viral replicon. In the presence of the DBS inducing agent and the DSB target site, the donor DNA is inserted into the transformed plant's genome.
[0079] In one example, the method is a method for introducing into the genome of a plant cell a transgenic target site for site-specific integration, the method comprising: (a) providing a plant cell comprising in its genome an endogenous target site for a Cas endonuclease; (b) providing a Cas endonuclease and a guide polynucleotide, wherein the Cas endonuclease is capable of forming a complex with said guide polynucleotide, wherein said complex is capable of inducing a double-strand break in said endogenous target site, and wherein the endogenous target site is located between a first and a second genomic region; (c) providing a donor DNA comprising the transgenic target site for site-specific integration located between a first region of homology to said first genomic region and a second region of homology to

EP 3191595 B1

said second genomic region, wherein the transgenic target site comprises a first and a second recombination site, wherein the first and the second recombination sites are dissimilar with respect to one another; (d) contacting the plant cell with the guide polynucleotide, the donor DNA and the Cas endonuclease; and, (e) identifying at least one plant cell from (d) comprising in its genome the transgenic target site integrated at said endogenous target site.
[0080] In one example, the endogenous target site for a Cas endonuclease is selected from the group consisting of SEQ ID NO: 3-5, 7-11, 13-19, 21-23, 25-28, 30-34, 36-39, 43-47, 49-52, 54-58, 60, 63-66, 68-72, 74-78, 80-83, 87-90, 92-93, 95-98, 100-104, 436-439, 442-443, 446-447, 450-451, 453-456, 461-462, 465-466, 469-470, 473-474, 477-478, 484-485, 489-490, 495-496, 499-500, 503-504, 507-508, 511-512 and 515-516 or a functional fragment thereof.
[0081] As described in the previous section, the transgenic SSI target site can be provided in a donor DNA which undergoes homologous recombination with the genomic DNA at the cleaved DSB target site resulting in integration of the transgenic SSI target site into the genome of the plant cell.
[0082] The transgenic SSI target site can comprise various components. The terms "transgenic SSI target site", "transgenic target site for site specific integration (SSI)", and "transgenic target site for SSI" are used interchangeably herein and refer to a polynucleotide comprising a nucleotide sequence flanked by at least two recombination sites. In some embodiments, the recombination sites of the transgenic SSI target site are dissimilar and non-recombinogenic with respect to one another. One or more intervening sequences may be present between the recombination sites of the transgenic SSI target site. Intervening sequences of particular interest would include linkers, adapters, selectable markers, polynucleotides of interest, promoters and/or other sites that aid in vector construction or analysis. In addition, the recombination sites of the transgenic SSI target site can be located in various positions, including, for example, within intronic sequences, coding sequences, or untranslated regions.
[0083] The transgenic SSI target site can comprise 1, 2, 3, 4, 5, 6 or more recombination sites. In one embodiment, the transgenic SSI target site comprises a first recombination site and a second recombination site wherein the first and the second recombination site are dissimilar and non-recombinogenic to each other (see for example the transgenic SSI target site depicted in Figure 2B). In a further embodiment, the transgenic SSI target site comprises a third recombination site between the first recombination site and the second recombination site. In such embodiments, the first, second and third recombination sites may be dissimilar and non-recombinogenic with respect to one another. Such first, second and third recombination sites are able to recombine with their corresponding or identical recombination site when provided with the appropriate recombinase. The various recombination sites and recombinases encompassed by the methods and compositions are described in detail elsewhere herein.
[0084] The recombination sites employed in the methods and compositions disclosed herein can be "corresponding" sites or "dissimilar" sites. By "corresponding recombination sites" or a "set of corresponding recombination sites" is intended that the recombination sites have the same or corresponding nucleotide sequence. A set of corresponding recombination sites, in the presence of the appropriate recombinase, will efficiently recombine with one another (i.e., the corresponding recombination sites are recombinogenic).
[0085] In other embodiments, the recombination sites are dissimilar. By "dissimilar recombination sites" or a "set of dissimilar recombination sites" is intended that the recombination sites are distinct (i.e., have at least one nucleotide difference).
[0086] The recombination sites within "a set of dissimilar recombination sites" can be either recombinogenic or nonrecombinogenic with respect to one other. By "recombinogenic" is intended that the set of recombination sites are capable of recombining with one another. Thus, suitable sets of "recombinogenic" recombination sites for use in the methods and compositions disclosed herein include those sites where the relative excision efficiency of recombination between the recombinogenic sites is above the detectable limit under standard conditions in an excision assay, typically, greater than $2 \%, 5 \%, 10 \%, 20 \%, 50 \%, 100 \%$, or greater.
[0087] By "non-recombinogenic" is intended the set of recombination sites, in the presence of the appropriate recombinase, will not recombine with one another or recombination between the sites is minimal. Thus, suitable "non-recombinogenic" recombination sites for use in the methods and compositions disclosed herein include those sites that recombine (or excise) with one another at a frequency lower than the detectable limit under standard conditions in an excision assay, typically, lower than $2 \%, 1.5 \%, 1 \%, 0.75 \%, 0.5 \%, 0.25 \%, 0.1 \%, 0.075,0.005 \%, 0.001 \%$.
[0088] Each recombination site within the "set of non-recombinogenic sites" is biologically active and therefore can recombine with an identical site. Accordingly, it is recognized that any suitable non-recombinogenic recombination sites may be utilized, including a FRT site or an active variant thereof, a LOX site or active variant thereof, any combination thereof, or any other combination of non-recombinogenic recombination sites known in the art. FRT sites that can be employed in the methods and compositions disclosed herein can be found, for example, in US Publication No. 2011-0047655.
[0089] In a specific embodiment, at least one of the first, the second and the third recombination site comprises FRT1 (SEQ ID NO: 576), FRT5 (SEQ ID NO: 577), FRT6 (SEQ ID NO: 578), FRT12 (SEQ ID NO: 579) or FRT87 (SEQ ID NO: 580). In a specific embodiment, the first recombination site is FRT1, the second recombination site is FRT12 and the third recombination site is FRT87.

EP 3191595 B1

[0090] The methods also comprise introducing into the plant cell comprising the integrated transgenic SSI target site a transfer cassette. The transfer cassette comprises various components for the incorporation of polynucleotides of interest into the plant genome. As defined herein, the "transfer cassette" comprises at least a first recombination site, a polynucleotide of interest, and a second recombination site, wherein the first and second recombination sites are dissimilar and non-recombinogenic and correspond to the recombination sites in the transgenic SSI target site. The transfer cassette is also immediately flanked by the recombination sites. It is recognized that any combination of restriction sites can be employed in the transfer cassettes to provide a polynucleotide of interest.
[0091] In one example, the transfer cassette comprises the first recombination site, a first polynucleotide of interest, and the second recombination site. In such methods, the first and second recombination sites of the transfer cassette are recombinogenic (i.e. identical or corresponding) with the first and second recombination sites of the transgenic SSI target site, respectively.
[0092] The recombination sites of the transfer cassette may be directly contiguous with the polynucleotide of interest or there may be one or more intervening sequences present between one or both ends of the polynucleotide of interest and the recombination sites. Intervening sequences of particular interest would include linkers, adapters, additional polynucleotides of interest, markers, promoters and/or other sites that aid in vector construction or analysis. It is further recognized that the recombination sites can be contained within the polynucleotide of interest (i.e., such as within introns, coding sequence, or untranslated regions).
[0093] In a specific example, the transfer cassette further comprises at least one coding region operably linked to a promoter that drives expression in the plant cell. As discussed elsewhere herein, a recombinase is disclosed that recognizes and implements recombination at the recombination sites of the transgenic SSI target site and the transfer cassette. The recombinase can be provided by any means known in the art and is described in detail elsewhere herein. In a specific example, the coding region of the transfer cassette encodes a recombinase that facilitates recombination between the first and the second recombination sites of the transfer cassette and the transgenic SSI target site, the second and the third recombination sites of the transfer cassette and the transgenic SSI target site, or the first and the third recombination sites of the transfer cassette and the transgenic SSI target site.
[0094] Methods for selecting plant cells with integration at the transgenic SSI target site, such as selecting for cells expressing a selectable marker, are known in the art. As such, the methods further comprise recovering a fertile plant from the plant cell comprising in its genome the transfer cassette at the transgenic SSI target site.
[0095] Any polynucleotide of interest (i.e., the "polypeptide of interest") may be provided to the plant cells in the transfer cassettes, transgenic SSI target sites or directly in the DSB target sites of the methods disclosed herein. It is recognized that any polynucleotide of interest can be provided, integrated into the plant genome at the transgenic SSI target site by site-specific integration or directly into a DSB target site as described herein, and expressed in a plant. The methods disclosed herein, provide for at least $1,2,3,4,5,6$ or more polynucleotides of interest to be integrated into a specific site in the plant genome.
[0096] In one example, the method is a method of integrating a polynucleotide of interest into a transgenic target site in the genome of a plant cell, the method comprising: (a) providing at least one plant cell comprising in its genome a transgenic target site for site-specific integration, wherein the transgenic target site is integrated into an endogenous target site for a Cas endonuclease, and wherein the transgenic target site is, (i) a target site comprising a first and a second recombination site; or (ii) the target site of (i) further comprising a third recombination site between the first recombination site and the second recombination site, wherein the Cas endonuclease is capable of inducing a doublestrand break in the endogenous target site, wherein the first, the second, and the third recombination sites are dissimilar with respect to one another, (b) introducing into the plant cell of (a) a transfer cassette comprising, (iii) the first recombination site, a first polynucleotide of interest, and the second recombination site, (iv) the second recombination site, a second polynucleotide of interest, and the third recombination sites, or (v) the first recombination site, a third polynucleotide of interest, and the third recombination sites; (c) providing a recombinase that recognizes and implements recombination at the first and the second recombination sites, at the second and the third recombination sites, or at the first and third recombination sites; and (d) selecting at least one plant cell comprising integration of the transfer cassette at the target site.
[0097] In one example, the method is a method of integrating a polynucleotide of interest into a plant having in its genome a genomic window comprising at least one Cas9 endonuclease target site, the method comprising: (a) providing at least one plant cell comprising a target site for a Cas endonuclease located in said genomic window, (b) providing a Cas endonuclease and a guide polynucleotide, wherein the Cas endonuclease is capable of forming a complex with said guide polynucleotide, wherein said complex is capable of inducing a double-strand break in said Cas9 endonuclease target site, and wherein the Cas9 endonuclease target site is located between a first and a second genomic region; (c) providing a donor DNA comprising a polynucleotide of interest located between a first region of homology to said first genomic region and a second region of homology to said second genomic region; (d) contacting the plant cell with the guide polynucleotide, the donor DNA and the Cas endonuclease; and, (e) identifying at least one plant cell from (d) comprising in its genome polynucleotide of interest integrated at said Cas9 endogenous target site.

EP 3191595 B1

[0098] Various changes in phenotype are of interest, including modifying the fatty acid (oil) composition in a plant, altering the amino acid content of a plant, altering a plant's pathogen defense mechanism, and the like. These results can be achieved by providing expression of heterologous products (i.e. polynucleotides of interest) or increased expression of endogenous products in plants. Alternatively, the results can be achieved by providing for a reduction of expression of one or more endogenous products, particularly enzymes or cofactors in the plant. These changes result in a change in phenotype of the transformed plant.
[0099] In one example, at least one of the first, the second, and the third polynucleotides of interest comprises a nucleotide sequence for gene silencing, a nucleotide sequence encoding a phenotypic marker, or a nucleotide sequence encoding a protein providing an agronomic advantage.
[0100] Polynucleotides of interest are reflective of the commercial markets and interests of those involved in the development of the crop. Crops and markets of interest change, and as developing nations open up world markets, new crops and technologies will emerge also. In addition, as our understanding of agronomic traits and characteristics such as yield and heterosis increase, the choice of genes for transformation will change accordingly. Polynucleotides/polypeptides of interest include, but are not limited to, herbicide-tolerance coding sequences, insecticidal coding sequences, nematicidal coding sequences, antimicrobial coding sequences, antifungal coding sequences, antiviral coding sequences, abiotic and biotic stress tolerance coding sequences, or sequences modifying plant traits such as yield, grain quality, nutrient content, starch quality and quantity, nitrogen fixation and/or utilization, and oil content and/or composition. More specific polynucleotides of interest include, but are not limited to, genes that improve crop yield, polypeptides that improve desirability of crops, genes encoding proteins conferring resistance to abiotic stress, such as drought, nitrogen, temperature, salinity, toxic metals or trace elements, or those conferring resistance to toxins such as pesticides and herbicides, or to biotic stress, such as attacks by fungi, viruses, bacteria, insects, and nematodes, and development of diseases associated with these organisms.
[0101] An "herbicide resistance protein" or a protein resulting from expression of an "herbicide resistance-encoding nucleic acid molecule" includes proteins that confer upon a cell the ability to tolerate a higher concentration of an herbicide than cells that do not express the protein, or to tolerate a certain concentration of an herbicide for a longer period of time than cells that do not express the protein. Herbicide resistance traits may be introduced into plants by genes coding for resistance to herbicides that act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea-type herbicides, genes coding for resistance to herbicides that act to inhibit the action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene), glyphosate (e.g., the EPSP synthase gene and the GAT gene), HPPD inhibitors (e.g, the HPPD gene) or other such genes known in the art. See, for example, US Patent Nos. 7,626,077, 5,310,667, $5,866,775,6,225,114,6,248,876,7,169,970,6,867,293$, and US Provisional Application No. 61/401,456.
[0102] Agronomically important traits such as oil, starch, and protein content can be genetically altered in addition to using traditional breeding methods. Modifications include increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and also modification of starch. Hordothionin protein modifications are described in U.S. Patent Nos. $5,703,049,5,885,801,5,885,802$, and $5,990,389$. Another example is lysine and/or sulfur rich seed protein encoded by the soybean 2 S albumin described in U.S. Patent No. $5,850,016$, and the chymotrypsin inhibitor from barley, described in Williamson et al. (1987) Eur. J. Biochem. 165:99-106.
[0103] Commercial traits can also be encoded on a polynucleotide of interest that could increase for example, starch for ethanol production, or provide expression of proteins. Another important commercial use of transformed plants is the production of polymers and bioplastics such as described in U.S. Patent No. $5,602,321$. Genes such as β-Ketothiolase, PHBase (polyhydroxyburyrate synthase), and acetoacetyl-CoA reductase (see Schubert et al. (1988) J. Bacteriol. 170:5837-5847) facilitate expression of polyhyroxyalkanoates (PHAs).
[0104] Derivatives of the coding sequences can be made by site-directed mutagenesis to increase the level of preselected amino acids in the encoded polypeptide. For example, the gene encoding the barley high lysine polypeptide (BHL) is derived from barley chymotrypsin inhibitor, U.S. Application Serial No. 08/740,682, filed November 1, 1996, and WO 98/20133. Other proteins include methionine-rich plant proteins such as from sunflower seed (Lilley et al. (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs, ed. Applewhite (American Oil Chemists Society, Champaign, Illinois), pp. 497-502; herein incorporated by reference); corn (Pedersen et al. (1986) J. Biol. Chem. 261:6279; Kirihara et al. (1988) Gene 71:359); and rice (Musumura et al. (1989) Plant Mol. Biol. 12:123). Other agronomically important genes encode latex, Floury 2 , growth factors, seed storage factors, and transcription factors. Polynucleotides that improve crop yield include dwarfing genes, such as Rht1 and Rht2 (Peng et al. (1999) Nature 400:256-261), and those that increase plant growth, such as ammonium-inducible glutamate dehydrogenase. Polynucleotides that improve desirability of crops include, for example, those that allow plants to have reduced saturated fat content, those that boost the nutritional value of plants, and those that increase grain protein. Polynucleotides that improve salt tolerance are those that increase or allow plant growth in an environment of higher salinity than the native environment of the plant into which the salt-tolerant gene(s) has been introduced.
[0105] Polynucleotides/polypeptides that influence amino acid biosynthesis include, for example, anthranilate synthase (AS; EC 4.1.3.27) which catalyzes the first reaction branching from the aromatic amino acid pathway to the biosynthesis
of tryptophan in plants, fungi, and bacteria. In plants, the chemical processes for the biosynthesis of tryptophan are compartmentalized in the chloroplast. See, for example, US Pub. 20080050506. Additional sequences of interest include Chorismate Pyruvate Lyase (CPL) which refers to a gene encoding an enzyme which catalyzes the conversion of chorismate to pyruvate and pHBA. The most well characterized CPL gene has been isolated from E. coli and bears the GenBank accession number M96268. See, US Patent No. 7,361,811.
[0106] These polynucleotide sequences of interest may encode proteins involved in providing disease or pest resistance. By "disease resistance" or "pest resistance" is intended that the plants avoid the harmful symptoms that are the outcome of the plant-pathogen interactions. Pest resistance genes may encode resistance to pests that have great yield drag such as rootworm, cutworm, European Corn Borer, and the like. Disease resistance and insect resistance genes such as lysozymes or cecropins for antibacterial protection, or proteins such as defensins, glucanases or chitinases for antifungal protection, or Bacillus thuringiensis endotoxins, protease inhibitors, collagenases, lectins, or glycosidases for controlling nematodes or insects are all examples of useful gene products. Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (U.S. Patent No. 5,792,931); avirulence (avr) and disease resistance (R) genes (Jones et al. (1994) Science 266:789; Martin et al. (1993) Science 262:1432; and Mindrinos et al. (1994) Cell 78:1089); and the like.
[0107] Furthermore, it is recognized that the polynucleotide of interest may also comprise antisense sequences complementary to at least a portion of the messenger RNA (mRNA) for a targeted gene sequence of interest. Antisense nucleotides are constructed to hybridize with the corresponding mRNA. Modifications of the antisense sequences may be made as long as the sequences hybridize to and interfere with expression of the corresponding mRNA. In this manner, antisense constructions having $70 \%, 80 \%$, or 85% sequence identity to the corresponding antisense sequences may be used. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, or greater may be used.
[0108] In addition, the polynucleotide of interest may also be used in the sense orientation to suppress the expression of endogenous genes in plants. Methods for suppressing gene expression in plants using polynucleotides in the sense orientation are known in the art. The methods generally involve transforming plants with a DNA construct comprising a promoter that drives expression in a plant operably linked to at least a portion of a nucleotide sequence that corresponds to the transcript of the endogenous gene. Typically, such a nucleotide sequence has substantial sequence identity to the sequence of the transcript of the endogenous gene, generally greater than about 65% sequence identity, about 85% sequence identity, or greater than about 95% sequence identity. See, U.S. Patent Nos. $5,283,184$ and $5,034,323$.
[0109] The polynucleotide of interest can also be a phenotypic marker. A phenotypic marker is screenable or a selectable marker that includes visual markers and selectable markers whether it is a positive or negative selectable marker. Any phenotypic marker can be used. Specifically, a selectable or screenable marker comprises a DNA segment that allows one to identify, or select for or against a molecule or a cell that contains it, often under particular conditions. These markers can encode an activity, such as, but not limited to, production of RNA, peptide, or protein, or can provide a binding site for RNA, peptides, proteins, inorganic and organic compounds or compositions and the like.
[0110] Examples of selectable markers include, but are not limited to, DNA segments that comprise restriction enzyme sites; DNA segments that encode products which provide resistance against otherwise toxic compounds including antibiotics, such as, spectinomycin, ampicillin, kanamycin, tetracycline, Basta, neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT)); DNA segments that encode products which are otherwise lacking in the recipient cell (e.g., tRNA genes, auxotrophic markers); DNA segments that encode products which can be readily identified (e.g., phenotypic markers such as β-galactosidase, GUS; fluorescent proteins such as green fluorescent protein (GFP), cyan (CFP), yellow (YFP), red (RFP), and cell surface proteins); the generation of new primer sites for PCR (e.g., the juxtaposition of two DNA sequence not previously juxtaposed), the inclusion of DNA sequences not acted upon or acted upon by a restriction endonuclease or other DNA modifying enzyme, chemical, etc.; and, the inclusion of a DNA sequences required for a specific modification (e.g., methylation) that allows its identification.
[0111] Additional selectable markers include genes that confer resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D).
[0112] A site-specific recombination system can be employed in a variety of ways to manipulate the transgenic SSI target site that has been integrated at the DSB transgenic SSI target site. The site-specific recombination system employs various components which are described in detail below and in U.S. Patent Nos. 6187994, 6262341, 6331661 and 6300545.
[0113] Various recombination sites can be employed in the methods and compositions disclosed herein (i.e. in the various transgenic SSI target sites or transfer cassettes disclosed herein). By "recombination site" is intended a naturally occurring recombination site and active variants thereof. Many recombination systems are known in the art and one of skill will recognize the appropriate recombination site to be used with the recombination system of interest. As discussed herein, various combinations of recombination sites can be employed including, sets of dissimilar sites and corresponding recombination sites and/or dissimilar and non-recombinogenic sites can be used in the various methods disclosed herein. Accordingly, any suitable recombination site or set of recombination sites may be utilized herein, including a FRT site,
a biologically active variant of a FRT site (i.e. a mutant FRT site), a LOX site, a biologically active variant of a LOX site (i.e. a mutant LOX site), any combination thereof, or any other combination of recombination sites known in the art. Examples of FRT sites include but are not limited to, for example, the wild type FRT site (FRT1, SEQ ID NO: 576), and various mutant FRT sites, including but not limited to, FRT5 (SEQ ID NO: 577), FRT6 (SEQ ID NO: 578), FRT12 (SEQ ID NO: 579) and FRT87 (SEQ ID NO: 580). See, for example, U.S. Patent No. 6,187,994 as well as FRT62 described in U.S. Patent No. 8,318493.
[0114] Recombination sites from the Cre/Lox site-specific recombination system can also be used. Such recombination sites include, for example, wild type LOX sites and mutant LOX sites. An analysis of the recombination activity of mutant LOX sites is presented in Lee et al. (1998) Gene 216:55-65. Also, see for example, Schlake and Bode (1994) Biochemistry 33:12746-12751; Huang et al. (1991) Nucleic Acids Research 19:443-448; Sadowski (1995) In Progress in Nucleic Acid Research and Molecular Biology Vol. 51, pp. 53-91; Cox (1989) In Mobile DNA, Berg and Howe (eds) American Society of Microbiology, Washington D.C., pp. 116-670; Dixon et al. (1995) Mol. Microbiol. 18:449-458; Umlauf and Cox (1988) EMBO 7:1845-1852; Buchholz et al. (1996) Nucleic Acids Research 24:3118-3119; Kilby et al. (1993) Trends Genet. 9:413-421; Rossant and Geagy (1995) Nat. Med. 1: 592-594; Albert et al. (1995) The Plant J. 7:649-659; Bayley et al. (1992) Plant Mol. Biol. 18:353-361; Odell et al. (1990) Mol. Gen. Genet. 223:369-378; Dale and Ow (1991) Proc. Natl. Acad. Sci. USA 88:10558-10562; Qui et al. (1994) Proc. NatI. Acad. Sci. USA 91:1706-1710; Stuurman et al. (1996) Plant Mol. Biol. 32:901-913; Dale et al. (1990) Gene 91:79-85; Albert et al. (1995) The Plant J. 7:649-659 and WO 01/00158.
[0115] Active variants and fragments of recombination sites (i.e. SEQ ID NOS: 576-580) are also encompassed by the compositions and methods disclosed herein. Fragments of a recombination site retain the biological activity of the recombination site and hence facilitate a recombination event in the presence of the appropriate recombinase. Thus, fragments of a recombination site may range from at least about $5,10,15,20,25,30,35,40$ nucleotides, and up to the full-length of a recombination site. Active variants can comprise at least $65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 91 \%, 92 \%$, $93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ or more sequence identity to the native recombination site, wherein the active variants retain biological activity and hence facilitate a recombination event in the presence of the appropriate recombinase. Assays to measure the biological activity of recombination sites are known in the art. See, for example, Senecoll et al. (1988) J. Mol. Biol. 201:406-421; Voziyanov et al. (2002) Nucleic Acid Research 30:7, U.S. Patent No. 6,187,994, WO/01/00158, and Albert et al. (1995) The Plant Journal 7:649-659.
[0116] Recombinases are also employed in the methods and compositions disclosed herein. By "recombinase" is intended a native polypeptide that catalyzes site-specific recombination between compatible recombination sites. For reviews of site-specific recombinases, see Sauer (1994) Current Opinion in Biotechnology 5:521-527; and Sadowski (1993) FASEB 7:760-767. The recombinase used in the methods can be a naturally occurring recombinase or a biologically active fragment or variant of the recombinase. Recombinases useful in the methods and compositions include recombinases from the Integrase and Resolvase families, biologically active variants and fragments thereof, and any other naturally occurring or recombinantly produced enzyme or variant thereof that catalyzes conservative site-specific recombination between specified DNA recombination sites.
[0117] The Integrase family of recombinases has over one hundred members and includes, for example, FLP, Cre, Int, and R. For other members of the Integrase family, see for example, Esposito et al. (1997) Nucleic Acid Research 25:3605-3614 and Abremski et al. (1992) Protein Engineering 5:87-91. Other recombination systems include, for example, the streptomycete bacteriophage phi C31 (Kuhstoss et al. (1991) J. Mol. Biol. 20:897-908); the SSV1 site-specific recombination system from Sulfolobus shibatae (Maskhelishvili et al. (1993) Mol. Gen. Genet. 237:334-342); and a retroviral integrase-based integration system (Tanaka et al. (1998) Gene 17:67-76). In other examples, the recombinase is one that does not require cofactors or a supercoiled substrate. Such recombinases include Cre, FLP, or active variants or fragments thereof.
[0118] The FLP recombinase is a protein that catalyzes a site-specific reaction that is involved in amplifying the copy number of the two-micron plasmid of S. cerevisiae during DNA replication. As used herein, FLP recombinase refers to a recombinase that catalyzes site-specific recombination between two FRT sites. The FLP protein has been cloned and expressed. See, for example, Cox (1993) Proc. Natl. Acad. Sci. U.S.A. 80:4223-4227. The FLP recombinase for use in the methods and with the compositions may be derived from the genus Saccharomyces. One can also synthesize a polynucleotide comprising the recombinase using plant-preferred codons for optimal expression in a plant of interest. A recombinant FLP enzyme encoded by a nucleotide sequence comprising maize preferred codons (FLPm) that catalyzes site-specific recombination events is known. See, for example, U.S. Patent 5,929,301. Additional functional variants and fragments of FLP are known. See, for example, Buchholz et al. (1998) Nat. Biotechnol. 16:617-618, Hartung et al. (1998) J. Biol. Chem. 273:22884-22891, Saxena et al. (1997) Biochim Biophys Acta 1340(2):187-204, and Hartley et al. (1980) Nature 286:860-864.
[0119] The bacteriophage recombinase Cre catalyzes site-specific recombination between two lox sites. The Cre recombinase is known in the art. See, for example, Guo et al. (1997) Nature 389:40-46; Abremski et al. (1984) J. Biol. Chem. 259:1509-1514; Chen et al. (1996) Somat. Cell Mol. Genet. 22:477-488; Shaikh et al. (1977) J. Biol. Chem.

EP 3191595 B1

272:5695-5702; and, Buchholz et al. (1998) Nat. Biotechnol. 16:617-618. The Cre polynucleotide sequences may also be synthesized using plant-preferred codons. Such sequences (moCre) are described in WO 99/25840.
[0120] It is further recognized that a chimeric recombinase can be used in the methods. By "chimeric recombinase" is intended a recombinant fusion protein which is capable of catalyzing site-specific recombination between recombination sites that originate from different recombination systems. That is, if a set of functional recombination sites, characterized as being dissimilar and non-recombinogenic with respect to one another, is utilized in the methods and compositions and comprises a FRT site and a LoxP site, a chimeric FLP/Cre recombinase or active variant or fragment thereof will be needed or, alternatively, both recombinases may be separately provided. Methods for the production and use of such chimeric recombinases or active variants or fragments thereof are described in WO 99/25840.
[0121] By utilizing various combinations of recombination sites in the transgenic SSI target sites and the transfer cassettes disclosed herein, the methods provide a mechanism for the site-specific integration of polynucleotides of interest into a specific site in the plant genome. The methods also allow for the subsequent insertion of additional polynucleotides of interest into the specific genomic site.
[0122] In one example, providing the recombinase comprises integrating into the genome of the plant cell a nucleotide sequence encoding the recombinase. In a specific example, the recombinase is FLP. In yet another example, the FLP recombinase is synthesized using maize-preferred codons or soybean-preferred codons.
[0123] As used herein, "providing" can include any method that allows for an amino acid sequence and/or a polynucleotide to be brought together with the recited components. A variety of methods are known in the art for the introduction of nucleotide sequence into a plant. Any means can be used to bring together the various components of the recombination system (i.e., the transgenic SSI target site, transfer cassette, and the appropriate recombinase), including, for example, transformation and sexual crossing. See, also, WO99/25884. In addition, as discussed elsewhere herein, the recombinase may also be provided by the introduction of the polypeptide or mRNA into the cell.
[0124] Active variants and fragments of recombinases (i.e. FLP or Cre) are also encompassed by the compositions and methods disclosed herein. Such active variants can comprise at least $65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 91 \%, 92 \%$, $93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ or more sequence identity to the native recombinase, wherein the active variants retain biological activity and hence implement a recombination event. Assays for recombinase activity are known and generally measure the overall activity of the enzyme on DNA substrates containing recombination sites.
[0125] As discussed above, various methods can be used to insert polynucleotides of interest into the transgenic SSI target site in a plant or plant cell. Non-limiting examples of various DNA constructs, transgenic SSI target sites, and transfer cassettes that can be used to insert a polynucleotide of interest into a plant or plant cell are described in PCT/US12/47202 application filed July 18, 2012. In short, once the transgenic SSI target site has integrated into the DSB target site or once the transfer cassette has integrated into the transgenic SSI target site, the appropriate selective agent can be employed to identify the plant cell having the desired DNA construct. Once a transgenic SSI target site has been established within the genome, additional recombination sites may be introduced by incorporating such sites within the nucleotide sequence of the transfer cassette. Thus, once a transgenic SSI target site has been established, it is possible to subsequently add or alter sites through recombination. Such methods are described in detail in WO 99/25821.
[0126] In one example, multiple genes or polynucleotides of interest can be stacked at the transgenic SSI target site in the genome of the plant. For example, as illustrated in Table 1, scheme D, the transgenic SSI target site integrated at the DSB target site can comprise the following components: RSF1::P1::R1::S1::T1-P2::NT1::T2-P3::R2-R3::RSF2, where RSF is a fragment of the DSB target site, P is a promoter active in a plant, R is a recombination site, S is the selection marker, T is a termination region, and NT is a polynucleotide of interest. The following transfer cassette comprising the following components could be introduced: R2::S2::T3-P4::NT2::T4-R3 (RSF = DSB target site fragment; $\mathrm{P}=$ promoter active in a plant; $\mathrm{R}=$ recombination site; $\mathrm{S}=$ selection marker; $\mathrm{T}=$ terminator region; $\mathrm{NT}=$ polynucleotide of interest; the symbol :: implies a fusion between adjacent elements and implies that the sequences are put together to generate an in frame fusion that results in a properly expressed and functional gene product). The plant with this transfer cassette integrated at the transgenic SSI target site, can then be selected for based on the second selection marker. In this manner, multiple sequences can be stacked at predetermined locations in the transgenic SSI target site. Various alterations can be made to the stacking method described above and still achieve the desired outcome of having the polynucleotides of interest stacked in the genome of the plant.
[0127] Methods and compositions are disclosed herein that combine a DSB-inducing-agent system, such as for example a guide polynucleotide/Cas endonuclease system (as described in US patent application 14/463687 filed on August 20, 2014 and US patent application 14/463691 filed on August 20, 2014) with a site-specific recombinase system which allow, for example, for improved methods and compositions for the targeted insertion of a sequence of interest in the genome of a plant. The methods disclosed herein comprise introducing into the genome of a plant cell a transgenic SSI target site into a DSB target site, wherein the transgenic SSI target site can optionally comprise a polynucleotide of interest.
[0128] By "introducing" is intended presenting to the plant the transgenic SSI target site in such a manner that the
sequence gains access to the interior of a cell of the plant. Methods for introducing sequences into plants are known in the art and include, but are not limited to, stable transformation methods, transient transformation methods, virusmediated methods, and sexual breeding. Thus, "introduced" in the context of inserting a nucleic acid fragment (e.g., various components of the site-specific integration system disclosed herein) into a cell, means "transfection" or "trans- formation" or "transduction" and includes reference to the incorporation of a nucleic acid fragment into a eukaryotic or prokaryotic cell where the nucleic acid fragment may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid, or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).
[0129] In some examples, the plant cells, plants and seeds employed in the methods and compositions have a DNA construct stably incorporated into their genome. By "stably incorporated" or "stably introduced" is intended the introduction of a polynucleotide into the plant such that the nucleotide sequence integrates into the genome of the plant and is capable of being inherited by progeny thereof. Any protocol may be used for the stable incorporation of the DNA constructs or the various components of the site-specific integration system employed herein.
[0130] Transformation protocols as well as protocols for introducing polypeptides or polynucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing polypeptides and polynucleotides into plant cells include microinjection (Crossway et al. (1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606, Agrobacteri-um-mediated transformation (U.S. Patent No. 5,563,055 and U.S. Patent No. 5,981,840), direct gene transfer (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, U.S. Patent Nos. $4,945,050$; U.S. Patent No. $5,879,918$; U.S. Patent No. $5,886,244$; and, $5,932,782$; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); McCabe et al. (1988) Biotechnology 6:923-926); and Lec1 transformation (WO 00/28058). Also see Weissinger et al. (1988) Ann. Rev. Genet. 22:421-477; Sanford et al. (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al. (1988) Plant Physiol. 87:671-674 (soybean); McCabe et al. (1988) Bio/Technology 6:923-926 (soybean); Finer and McMullen (1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh et al. (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al. (1988) Proc. NatI. Acad. Sci. USA 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); U.S. Patent Nos. 5,240,855; 5,322,783; and, 5,324,646; Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fromm et al. (1990) Biotechnology 8:833-839 (maize); Hooykaas-Van Slogteren et al. (1984) Nature (London) 311:763-764; U.S. Patent No. 5,736,369 (cereals); Bytebier et al. (1987) Proc. NatI. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet et al. (1985) in The Experimental Manipulation of Ovule Tissues, ed. Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al. (1990) Plant Cell Reports 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation); Li et al. (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens).
[0131] In other examples, any of the polynucleotides employed herein may be introduced into plants by contacting plants with a virus or viral nucleic acids. Generally, such methods involve incorporating a desired polynucleotide within a viral DNA or RNA molecule. It is recognized that a sequence employed in the methods or compositions disclosed herein may be initially synthesized as part of a viral polyprotein, which later may be processed by proteolysis in vivo or in vitro to produce the desired recombinant protein. Further, it is recognized that promoters employed herein also encompass promoters utilized for transcription by viral RNA polymerases. Methods for introducing polynucleotides into plants and expressing a protein encoded therein, involving viral DNA or RNA molecules, are known in the art. See, for example, U.S. Patent Nos. $5,889,191,5,889,190,5,866,785,5,589,367,5,316,931$, and Porta et al. (1996) Molecular Biotechnology 5:209-221.
[0132] In other examples, various components of the site-specific integration system can be provided to a plant using a variety of transient transformation methods. "Transient transformation" is intended to mean that a polynucleotide is introduced into the host (i.e., a plant) and expressed temporally. Such transient transformation methods include, but are not limited to, the introduction of any of the components of the site-specific integration system or active fragments or variants thereof directly into the plant or the introduction of the transcript into the plant. Such methods include, for example, microinjection or particle bombardment. See, for example, Crossway et al. (1986) Mol Gen. Genet. 202:179-185; Nomura et al. (1986) Plant Sci. 44:53-58; Hepler et al. (1994) Proc. NatI. Acad. Sci. 91: 2176-2180 and Hush et al. (1994) The Journal of Cell Science 107:775-784. Alternatively, the polynucleotide can be transiently transformed into the plant using techniques known in the art. Such techniques include viral vector system and the precipitation of the polynucleotide in a manner that precludes subsequent release of the DNA. Thus, the transcription from the particlebound DNA can occur, but the frequency with which it is released to become integrated into the genome is greatly reduced. Such methods include the use of particles coated with polyethylimine (PEI; Sigma \#P3143).
[0133] The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5:81-84. These plants may then be grown, and either pollinated

EP 3191595 B1

with the same transformed strain or different strains, and the resulting progeny having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved. In this manner, transformed seed having the recited DNA construct stably incorporated into their genome is provided.
[0134] In one example, the plant cell, a plant, a plant part and a seed having a transgenic SSI target site integrated at a DSB target site comprises a transgenic SSI target site comprising in the following order, a first recombination site, a second recombination site and wherein the first and the second recombination sites are dissimilar and non-recombinogenic with respect to one another. The transgenic SSI target site can further comprise a polynucleotide of interest between the first and the second recombination sites. The recombination sites can be any combination of recombination sites known in the art. For example, the recombination sites can be a FRT site, a mutant FRT site, a LOX site or a mutant LOX site.
[0135] In specific examples, the transgenic SSI target site of the plant cell, plant, plant part and seed further comprises a third recombination site between the first and the second recombination site, wherein the third recombination site is dissimilar and non-recombinogenic to the first and the second recombination sites. The first, second, and third recombination sites can comprise, for example, FRT1, FRT5, FRT6, FRT12, FRT62 (described in US patent US8318493 issued on November 27, 2012), or FRT87. Also, disclosed is a plant cell, plant, or seed wherein the first recombination site is FRT1, the second recombination site is FRT12 and the third recombination site is FRT87.
[0136] As used herein, the term plant includes plant cells, plant protoplasts, plant cell tissue cultures from which a plant can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers, and the like. Grain is intended to mean the mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants, and mutants of the regenerated plants are also included herein, provided that these parts comprise the recited DNA construct.
[0137] A transgenic plant includes, for example, a plant which comprises within its genome a heterologous polynucleotide introduced by a transformation step. The heterologous polynucleotide can be stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct. A transgenic plant can also comprise more than one heterologous polynucleotide within its genome. Each heterologous polynucleotide may confer a different trait to the transgenic plant. A heterologous polynucleotide can include a sequence that originates from a foreign species, or, if from the same species, can be substantially modified from its native form. Transgenic can include any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been altered by the presence of heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic. The alterations of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods, by the genome editing procedure described herein that does not result in an insertion of a foreign polynucleotide, or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation are not intended to be regarded as transgenic.
[0138] In certain examples of the disclosure, a fertile plant is a plant that produces viable male and female gametes and is self-fertile. Such a self-fertile plant can produce a progeny plant without the contribution from any other plant of a gamete and the genetic material contained therein. Other examples of the disclosure can involve the use of a plant that is not self-fertile because the plant does not produce male gametes, or female gametes, or both, that are viable or otherwise capable of fertilization. As used herein, a "male sterile plant" is a plant that does not produce male gametes that are viable or otherwise capable of fertilization. As used herein, a "female sterile plant" is a plant that does not produce female gametes that are viable or otherwise capable of fertilization. It is recognized that male-sterile and female-sterile plants can be female-fertile and male-fertile, respectively. It is further recognized that a male fertile (but female sterile) plant can produce viable progeny when crossed with a female fertile plant and that a female fertile (but male sterile) plant can produce viable progeny when crossed with a male fertile plant.
[0139] The components of the site-specific integration system disclosed herein may be used for transformation of any plant species, including, but not limited to, monocots and dicots. Examples of plant species of interest include, but are not limited to, corn (maize) (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana),
fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables, ornamentals, and conifers.
[0140] Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum.
[0141] Conifers that may be employed include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis). In specific examples, plants are crop plants (for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.). In other examples, corn and soybean plants are optimal, and in yet other examples corn plants are optimal.
[0142] Other plants of interest include grain plants that provide seeds of interest, oil-seed plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc. Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc. The invention is concerned with maize plants.
[0143] It is recognized that the plant having stably incorporated the DNA construct can be further characterized for site-specific integration potential, agronomic potential, and copy number. See, U.S. Patent No. 6,187,994.
[0144] Depending on the polynucleotide(s) of interest incorporated into the transgenic SSI target site, the transgenic plants, plant cells, or seeds comprising a transgenic SSI target site with a polynucleotide(s) of interest disclosed herein may have a change in phenotype, including, but not limited to, an altered pathogen or insect defense mechanism, an increased resistance to one or more herbicides, an increased ability to withstand stressful environmental conditions, a modified ability to produce starch, a modified level of starch production, a modified oil content and/or composition, a modified carbohydrate content and/or composition, a modified fatty acid content and/or composition, a modified ability to utilize, partition and/or store nitrogen, and the like.
[0145] Disclosed herein are polynucleotides or nucleic acid molecules comprising the various components of the DSB-inducing-agent system, such as for example a guide polynucleotide/Cas endonuclease system (as described in US patent application 14/463687 filed on August 20, 2014 and US patent application 14/463691 filed on August 20, 2014) and the site-specific integration system (transgenic SSI target site, a donor DNA, a transfer cassette, various site-specific recombination sites, site-specific recombinases, polynucleotides of interest or any active variants or fragments thereof). Also disclosed are nucleic acid molecules comprising any of the various transgenic SSI target sites disclosed herein integrated at the DSB target site in the plant genome.
[0146] The terms "polynucleotide," "polynucleotide sequence," "nucleic acid sequence," and "nucleic acid fragment" are used interchangeably herein. These terms encompass nucleotide sequences and the like. A polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof. The use of the term "polynucleotide" is not intended to limit the present invention to polynucleotides comprising DNA. Those of ordinary skill in the art will recognize that polynucleotides, can comprise ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides. Such deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues. The polynucleotides provided herein also encompass all forms of sequences including, but not limited to, single-stranded forms, doublestranded forms, hairpins, stem-and-loop structures, and the like.
[0147] The compositions disclosed herein can comprise an isolated or substantially purified polynucleotide. An "isolated" or "purified" polynucleotide is substantially or essentially free from components that normally accompany or interact with the polynucleotide as found in its naturally occurring environment. Thus, an isolated or purified polynucleotide is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Optimally, an "isolated" polynucleotide is free of sequences (optimally protein encoding sequences) that naturally flank the polynucleotide (i.e., sequences located at the 5^{\prime} and 3^{\prime} ends of the polynucleotide) in the genomic DNA of the organism from which the polynucleotide is derived. For example, in various examples, the isolated polynucleotide can contain less than about $5 \mathrm{~kb}, 4 \mathrm{~kb}, 3 \mathrm{~kb}, 2 \mathrm{~kb}, 1 \mathrm{~kb}$, 0.5 kb , or 0.1 kb of nucleotide sequence that naturally flank the polynucleotide in genomic DNA of the cell from which the polynucleotide is derived.

EP 3191595 B1

[0148] The terms "recombinant polynucleotide" and "recombinant DNA construct" are used interchangeably herein. A recombinant construct can comprise an artificial or heterologous combination of nucleic acid sequences, e.g., regulatory and coding sequences that are not found together in nature. For example, a transfer cassette can comprise restriction sites and a heterologous polynucleotide of interest. In other examples, a recombinant construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. Such a construct may be used by itself or may be used in conjunction with a vector. If a vector is used, then the choice of vector is dependent upon the method that will be used to transform host cells as is well known to those skilled in the art. For example, a plasmid vector can be used. The skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host cells comprising any of the isolated nucleic acid fragments disclosed herein. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al., EMBO J. 4:2411-2418 (1985); De Almeida et al., Mol. Gen. Genetics 218:78-86 (1989)), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, immunoblotting analysis of protein expression, or phenotypic analysis, among others.
[0149] In specific examples, one or more of the components of the site-specific integration system described herein can be provided in an expression cassette for expression in a plant or other organism or cell type of interest. The cassette can include 5' and 3' regulatory sequences operably linked to a polynucleotide disclosed herein. "Operably linked" is intended to mean a functional linkage between two or more elements. For example, an operable linkage between a polynucleotide of interest and a regulatory sequence (i.e., a promoter) is a functional link that allows for expression of the polynucleotide of interest. Operably linked elements may be contiguous or non-contiguous. When used to refer to the joining of two protein coding regions, by operably linked is intended that the coding regions are in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes. Such an expression cassette is provided with a plurality of restriction sites and/or recombination sites for insertion of a recombinant polynucleotide to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.
[0150] The expression cassette can include in the 5'-3' direction of transcription, a transcriptional and translational initiation region (i.e., a promoter), a recombinant polynucleotide disclosed herein, and a transcriptional and translational termination region (i.e., termination region) functional in plants. The regulatory regions (i.e., promoters, transcriptional regulatory regions, and translational termination regions) and/or a polynucleotide disclosed herein may be native/analogous to the host cell or to each other. Alternatively, the regulatory regions and/or a polynucleotide disclosed herein may be heterologous to the host cell or to each other. As used herein, "heterologous" in reference to a sequence is a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous polynucleotide is from a species different from the species from which the polynucleotide was derived, or, if from the same/analogous species, one or both are substantially modified from their original form and/or genomic locus, or the promoter is not the native promoter for the operably linked polynucleotide. Alternatively, the regulatory regions and/or a recombinant polynucleotide disclosed herein may be entirely synthetic.
[0151] The termination region may be native with the transcriptional initiation region, may be native with the operably linked recombinant polynucleotide, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous) to the promoter, the recombinant polynucleotide, the plant host, or any combination thereof. Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991) Mol. Gen. Genet. 262:141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141-149; Mogen et al. (1990) Plant Cell 2:1261-1272; Munroe et al. (1990) Gene 91:151-158; Ballas et al. (1989) Nucleic Acids Res. 17:7891-7903; and Joshi et al. (1987) Nucleic Acids Res. 15:9627-9639.
[0152] In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.
[0153] A number of promoters can be used in the expression cassettes disclosed herein. The promoters can be selected based on the desired outcome. It is recognized that different applications can be enhanced by the use of different promoters in the expression cassettes to modulate the timing, location and/or level of expression of the polynucleotide of interest. Such expression constructs may also contain, if desired, a promoter regulatory region (e.g., one conferring inducible, constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific/selective expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site,

EP 3191595 B1

and/or a polyadenylation signal.
[0154] In some examples, an expression cassette disclosed herein can be combined with constitutive, tissue-preferred, or other promoters for expression in plants. Examples of constitutive promoters include the cauliflower mosaic virus (CaMV) 35 S transcription initiation region, the 1'- or 2'-promoter derived from T-DNA of Agrobacterium tumefaciens, the ubiquitin 1 promoter, the Smas promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Pat. No. 5,683,439), the Nos promoter, the pEmu promoter, the rubisco promoter, the GRP1-8 promoter and other transcription initiation regions from various plant genes known to those of skill. If low level expression is desired, weak promoter(s) may be used. Weak constitutive promoters include, for example, the core promoter of the Rsyn7 promoter (WO 99/43838 and U.S. Pat. No. $6,072,050$), the core 35 S CaMV promoter, and the like. Other constitutive promoters include, for example, U.S. Pat. Nos. $5,608,149 ; 5,608,144 ; 5,604,121 ; 5,569,597 ; 5,466,785 ; 5,399,680 ; 5,268,463$; and $5,608,142$. See also, U.S. Pat. No. 6,177,611.
[0155] Examples of inducible promoters are the Adh1 promoter which is inducible by hypoxia or cold stress, the Hsp70 promoter which is inducible by heat stress, the PPDK promoter and the pepcarboxylase promoter which are both inducible by light. Also useful are promoters which are chemically inducible, such as the In2-2 promoter which is safener induced (U.S. Pat. No. $5,364,780$), the ERE promoter which is estrogen induced, and the Axig1 promoter which is auxin induced and tapetum specific but also active in callus (PCT US01/22169).
[0156] Examples of promoters under developmental control include promoters that initiate transcription preferentially in certain tissues, such as leaves, roots, fruit, seeds, or flowers. An exemplary promoter is the anther specific promoter 5126 (U.S. Pat. Nos. 5,689,049 and 5,689,051). Examples of seed-preferred promoters include, but are not limited to, 27 kD gamma zein promoter and waxy promoter, Boronat, A. et al. (1986) Plant Sci. 47:95-102; Reina, M. et al. Nucl. Acids Res. 18(21):6426; and Kloesgen, R. B. et al. (1986) Mol. Gen. Genet. 203:237-244. Promoters that express in the embryo, pericarp, and endosperm are disclosed in U.S. Pat. No. 6,225,529 and PCT publication WO 00/12733.
[0157] Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize $\ln 2-2$ promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1a promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl. Acad. Sci. USA 88:10421-10425 and McNellis et al. (1998) Plant J. 14(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (1991) Mol. Gen. Genet. 227:229-237, and U.S. Pat. Nos. 5,814,618 and 5,789,156).
[0158] Tissue-preferred promoters can be utilized to target enhanced expression of a polynucleotide of interest within a particular plant tissue. Tissue-preferred promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al. (1997) Mol. Gen Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2):157-168; Rinehart et al. (1996) Plant Physiol. 112(3):1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol. 112(2):513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Probl. Cell Differ. 20:181-196; Orozco et al. (1993) Plant Mol Biol. 23(6):1129-1138; Matsuoka et al. (1993) Proc Natl. Acad. Sci. USA 90(20):9586-9590; and Guevara-Garcia et al. (1993) Plant J. 4(3):495-505. Such promoters can be modified, if necessary, for weak expression.
[0159] Leaf-preferred promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J. 3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590. In addition, the promoters of cab and rubisco can also be used. See, for example, Simpson et al. (1958) EMBO J 4:2723-2729 and Timko et al. (1988) Nature 318:57-58.
[0160] Root-preferred promoters are known and can be selected from the many available from the literature or isolated de novo from various compatible species. See, for example, Hire et al. (1992) Plant Mol. Biol. 20(2):207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10):1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mol. Biol. 14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of Agrobacterium tumefaciens); and Miao et al. (1991) Plant Cell 3(1): 11-22 (full-length cDNA clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean). See also Bogusz et al. (1990) Plant Cell 2(7):633-641, where two root-specific promoters isolated from hemoglobin genes from the nitrogen-fixing nonlegume Parasponia andersonii and the related non-nitrogen-fixing nonlegume Trema tomentosa are described. The promoters of these genes were linked to a β-glucuronidase reporter gene and introduced into both the nonlegume Nicotiana tabacum and the legume Lotus corniculatus, and in both instances root-specific promoter activity was preserved. Leach and Aoyagi (1991) describe their analysis of the promoters of the
highly expressed rolC and roID root-inducing genes of Agrobacterium rhizogenes (see Plant Science (Limerick) 79(1):69-76). They concluded that enhancer and tissue-preferred DNA determinants are dissociated in those promoters. Teeri et al. (1989) used gene fusion to lacZ to show that the Agrobacterium T-DNA gene encoding octopine synthase is especially active in the epidermis of the root tip and that the TR2' gene is root specific in the intact plant and stimulated by wounding in leaf tissue, an especially desirable combination of characteristics for use with an insecticidal or larvicidal gene (see EMBO J. 8(2):343-350). The TR1' gene, fused to nptll (neomycin phosphotransferase II) showed similar characteristics. Additional root-preferred promoters include the VfENOD-GRP3 gene promoter (Kuster et al. (1995) Plant Mol. Biol. 29(4):759-772); and roIB promoter (Capana et al. (1994) Plant Mol. Biol. 25(4):681-691. See also U.S. Pat. Nos. $5,837,876 ; 5,750,386 ; 5,633,363 ; 5,459,252 ; 5,401,836 ; 5,110,732$; and $5,023,179$. The phaseolin gene (Murai et al. (1983) Science 23:476-482 and Sengopta-Gopalen et al. (1988) PNAS 82:3320-3324.
[0161] The expression cassette containing the polynucleotides disclosed herein can also comprise a selectable marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate ($2,4-\mathrm{D}$) and sulfonylureas. Additional selectable markers include phenotypic markers such as beta-galactosidase and fluorescent proteins such as green fluorescent protein (GFP) (Su et al. (2004) Biotechnol. Bioeng. 85:610-9 and Fetter et al. (2004) Plant Cell 16:215-28), cyan fluorescent protein (CYP) (Bolte et al. (2004) J. Cell Science 117:943-54 and Kato et al. (2002) Plant Physiol. 129:913-42), and yellow fluorescent protein (PhiYFP.TM. from Evrogen; see, Bolte et al. (2004) J. Cell Science 117:943-54). The above list of selectable marker genes is not meant to be limiting. Any selectable marker gene can be used in the compositions presented herein.
[0162] Where appropriate, the sequences employed in the methods and compositions (i.e., the polynucleotide of interest, the recombinase, the endonuclease, etc.) may be optimized for increased expression in the transformed plant. That is, the genes can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri (1990) Plant Physiol. 92:1-11 for a discussion of host-preferred codon usage. Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S. Patent Nos. $5,380,831$, and $5,436,391$, and Murray et al. (1989) Nucleic Acids Res. 17:477-498.
[0163] Fragments and variants of the various components of the DSB-inducing-agent system, such as for example the guide polynucleotide/Cas endonuclease system and the site-specific integration system (transgenic SSI target site, a donor DNA, a transfer cassette, various site-specific recombination sites, site-specific recombinases, polynucleotides of interest or any active variants or fragments thereof) are also encompassed herein. By "fragment" is intended a portion of the polynucleotide or a portion of the amino acid sequence and hence protein encoded thereby. Fragments of a polynucleotide may encode protein fragments that retain the biological activity of the native protein (i.e., a fragment of a recombinase implements a recombination event). As used herein, a "native" polynucleotide or polypeptide comprises a naturally occurring nucleotide sequence or amino acid sequence, respectively. Thus, fragments of a polynucleotide may range from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length polynucleotide. A fragment of a polynucleotide that encodes a biologically active portion of a protein employed in the methods or compositions will encode at least $15,25,30,50,100,150,200$, or 250 contiguous amino acids, or up to the total number of amino acids present in a full-length protein. Alternatively, fragments of a polynucleotide that are useful as a hybridization probe generally do not encode fragment proteins retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about $10,20,30,40,50,60,70,80$ nucleotides or up to the full length sequence.
[0164] A biologically active portion of a polypeptide can be prepared by isolating a portion of one of the polynucleotides encoding the portion of the polypeptide of interest and expressing the encoded portion of the protein (e.g., by recombinant expression in vitro), and assessing the activity of the portion of the polypeptide. For example, polynucleotides that encode fragments of a recombinase polypeptide can comprise nucleotide sequence comprising at least $16,20,50,75,100$, $150,200,250,300,350,400,450,500,550,600,650,700,800,900,1,000,1,100,1,200,1,300$, or 1,400 nucleotides, or up to the number of nucleotides present in a nucleotide sequence employed in the methods and compositions disclosed herein.
[0165] "Variants" is intended to mean substantially similar sequences. For polynucleotides, a variant comprises a polynucleotide having deletions (i.e., truncations) at the 5' and/or 3' end; deletion and/or addition of one or more nucleotides at one or more internal sites in the native polynucleotide; and/or substitution of one or more nucleotides at one or more sites in the native polynucleotide. For polynucleotides, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the polypeptides employed in the compositions and methods disclosed herein. Naturally occurring allelic variants such as these, or naturally occurring allelic variants of polynucleotides can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant polynucleotides also include synthetically derived polynucleotides, such as those generated, for example, by using site-directed muta-
genesis. Generally, variants of a particular polynucleotide employed in the methods and compositions disclosed herein will have at least about $40 \%, 45 \%, 50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%$, 95%, $96 \%, 97 \%, 98 \%, 99 \%$ or more sequence identity to that particular polynucleotide as determined by sequence alignment programs and parameters as described elsewhere herein.
[0166] Variants of a particular polynucleotide employed in the methods and compositions disclosed herein (i.e., Cas 9 endonucleases, DSB target sites, transgenic SSI target sites, recombinases, recombination sites, and polynucleotides of interest) can also be evaluated by comparison of the percent sequence identity between the polypeptide encoded by a variant polynucleotide and the polypeptide encoded by the reference polynucleotide. Thus, for example, an isolated polynucleotide that encodes a polypeptide with a given percent sequence identity to the polypeptide are disclosed. Percent sequence identity between any two polypeptides can be calculated using sequence alignment programs and parameters described elsewhere herein. Where any given pair of polynucleotides disclosed herein is evaluated by comparison of the percent sequence identity shared by the two polypeptides they encode, the percent sequence identity between the two encoded polypeptides is at least about $40 \%, 45 \%, 50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%$, $91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ or more sequence identity.
[0167] "Variant" protein is intended to mean a protein derived from the native protein by deletion (so-called truncation) of one or more amino acids at the N -terminal and/or C -terminal end of the native protein; deletion and/or addition of one or more amino acids at one or more internal sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Variant proteins employed in the methods and compositions disclosed herein are biologically active, that is they continue to possess the desired biological activity of the native protein. Such variants may result from, for example, genetic polymorphism or from human manipulation. Biologically active variants of a native protein disclosed herein will have at least about $40 \%, 45 \%, 50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 91 \%$, $92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs and parameters described elsewhere herein. A biologically active variant of a protein disclosed herein may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as $6-10$, as few as 5 , as few as $4,3,2$, or even 1 amino acid residue.
[0168] Proteins may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of the recombinase proteins can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Patent No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff et al. (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.). Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be preferable.
[0169] Thus, the polynucleotides used herein can include the naturally occurring sequences, the "native" sequences, as well as mutant forms. Likewise, the proteins used in the methods disclosed herein encompass both naturally occurring proteins as well as variations and modified forms thereof. Obviously, the mutations that will be made in the polynucleotide encoding the variant polypeptide must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See, EP Patent Application Publication No. 75,444.
[0170] The deletions, insertions, and substitutions of the protein sequences encompassed herein are not expected to produce radical changes in the characteristics of the protein. However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays.
[0171] Variant polynucleotides and proteins also encompass sequences and proteins derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, for example, one or more different recombinase coding sequences can be manipulated to create a new recombinase protein possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Patent Nos. 5,605,793 and 5,837,458.
[0172] The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides. As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a fulllength cDNA or gene sequence, or the complete cDNA or gene sequence. As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence
in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be $30,40,50,100$, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.
[0173] Sequence relationships can be analyzed and described using computer-implemented algorithms. The sequence relationship between two or more polynucleotides, or two or more polypeptides can be determined by determining the best alignment of the sequences, and scoring the matches and the gaps in the alignment, which yields the percent sequence identity, and the percent sequence similarity. Polynucleotide relationships can also be described based on a comparison of the polypeptides each encodes. Many programs and algorithms for the comparison and analysis of sequences are well-known in the art.
[0174] "Sequence identity" or "identity" in the context of nucleic acid or polypeptide sequences refers to the nucleic acid bases or amino acid residues in two sequences that are the same when aligned for maximum correspondence over a specified comparison window.
[0175] The term "percentage of sequence identity" refers to the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the results by 100 to yield the percentage of sequence identity. Useful examples of percent sequence identities include, but are not limited to, $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%$ or 95%, or any integer percentage from 50% to 100%. These identities can be determined using any of the programs described herein.
[0176] Sequence alignments and percent identity or similarity calculations may be determined using a variety of comparison methods designed to detect homologous sequences including, but not limited to, the MegAlign ${ }^{\text {™ }}$ program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Within the context of this application it will be understood that where sequence analysis software is used for analysis, that the results of the analysis will be based on the "default values" of the program referenced, unless otherwise specified. As used herein "default values" will mean any set of values or parameters that originally load with the software when first initialized.
[0177] The "Clustal V method of alignment" corresponds to the alignment method labeled Clustal V (described by Higgins and Sharp, (1989) CABIOS 5:151-153; Higgins et al., (1992) Comput Appl Biosci 8:189-191) and found in the MegAlign ${ }^{\text {TM }}$ program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). For multiple alignments, the default values correspond to GAP PENALTY=10 and GAP LENGTH PENALTY=10. Default parameters for pairwise alignments and calculation of percent identity of protein sequences using the Clustal method are KTUPLE=1, GAP PENALTY=3, WINDOW $=5$ and DIAGONALS SAVED=5. For nucleic acids these parameters are KTUPLE=2, GAP PENALTY=5, WINDOW=4 and DIAGONALS SAVED=4. After alignment of the sequences using the Clustal V program, it is possible to obtain a "percent identity" by viewing the "sequence distances" table in the same program.
[0178] The "Clustal W method of alignment" corresponds to the alignment method labeled Clustal W (described by Higgins and Sharp, (1989) CABIOS 5:151-153; Higgins et al., (1992) Comput Appl Biosci 8:189-191) and found in the MegAlign ${ }^{\text {TM }}$ v6.1 program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Default parameters for multiple alignment (GAP PENALTY=10, GAP LENGTH PENALTY=0.2, Delay Divergen Seqs (\%)=30, DNA Transition Weight=0.5, Protein Weight Matrix=Gonnet Series, DNA Weight Matrix=IUB). After alignment of the sequences using the Clustal W program, it is possible to obtain a "percent identity" by viewing the "sequence distances" table in the same program.
[0179] "BLAST" is a searching algorithm provided by the National Center for Biotechnology Information (NCBI) used to find regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance of matches to identify sequences having sufficient similarity to a query sequence such that the similarity would not be predicted to have occurred randomly. BLAST reports the identified sequences and their local alignment to the query sequence.
[0180] It is well understood by one skilled in the art that many levels of sequence identity are useful in identifying polypeptides from other species or modified naturally or synthetically wherein such polypeptides have the same or similar function or activity. Useful examples of percent identities include, but are not limited to, $50 \%, 55 \%, 60 \%, 65 \%, 70 \%$, $75 \%, 80 \%, 85 \%, 90 \%$ or 95%, or any integer percentage from 50% to 100%. Indeed, any integer amino acid identity from 50% to 100% may be useful in describing the present disclosure, such as $51 \%, 52 \%, 53 \%, 54 \%, 55 \%, 56 \%, 57 \%$, $58 \%, 59 \%, 60 \%, 61 \%, 62 \%, 63 \%, 64 \%, 65 \%, 66 \%, 67 \%, 68 \%, 69 \%, 70 \%, 71 \%, 72 \%, 73 \%, 74 \%, 75 \%, 76 \%, 77 \%$, $78 \%, 79 \%, 80 \%, 81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ or 99%.

EP 3191595 B1

[0181] Sequence identity/similarity values can also be obtained using GAP Version 10 (GCG, Accelrys, San Diego, CA) using the following parameters: \% identity and \% similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3 , and the nwsgapdna.cmp scoring matrix; \% identity and \% similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix (Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci USA 89:10915); or any equivalent program thereof. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10
[0182] GAP uses the algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the GCG Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3 . The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200 . Thus, for example, the gap creation and gap extension penalties can be $0,1,2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45$, $50,55,60,65$ or greater.
[0183] GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50 , the similarity threshold.
[0184] The components of a genomic window, (i.e. double-strand-break target sites, transgenic SSI target sites integrated into a DSB target site, randomly inserted transgenic SSI target sites, and/or genomic loci of interest) can be brought together by various methods to create a complex trait locus.
[0185] One such method is by crossing plants comprising various transgenic SSI target sites integrated into one or more DSB target sites and/or genomic loci of interest having in a given genomic window different genomic insertion sites and selecting for plants having undergone a recombination event such that the desired combination of target sites and/or genomic loci of interest are present in the same plant. Such breeding techniques can thereby be employed to create a complex trait locus in a plant. Examples of Complex Trait Loci comprising transgenic SSI target sites and/or genomic loci of interest in a genomic window produced by crossing members of an SSI library of randomly integrated SSI target sites are described US patent application 13/748704, filed January 24, 2014. Examples of Complex Trait Loci comprising engineered meganuclease target sites and/or genomic loci of interest in a genomic window produced by breeding are described in US patent application 13/427138, filed on March 22, 2013. Described herein is a method of producing a Complex Trait Loci by introducing transgenic SSI sites into a DSB target site such as but not limited to a Cas endonuclease target site located in close proximity to a genomic locus of interest (a native gene, a mutated or edited gene, a region of interest on a plant chromosome, a transgene) in a genomic window.
[0186] In one example, the method comprises a method of producing a complex trait locus in the genome of a plant comprising: (a) providing a first plant having within a genomic window at least a first transgenic target site for site specific integration integrated into a first Cas9 endonuclease target site, and wherein said genomic window is about 10cM in length and said first plant does not comprise a first genomic locus of interest; (b) breeding to said first plant a second plant, wherein said second plant comprises in said genomic window the first genomic locus of interest and said second plant does not comprise said first transgenic target site; and, (c) selecting a progeny plant from step (b) comprising said first transgenic target site and said genomic locus of interest; wherein said first transgenic target site and said first genomic locus of interest have different genomic insertion site in said progeny plant.
[0187] In one example, the method comprises a method of producing a complex trait locus in the genome of a plant comprising : (a) providing a first plant having within a genomic window at least a first transgenic target site for site specific integration integrated into a first Cas9 endonuclease target site and a second transgenic target site for site specific integration integrated into a second Cas9 endonuclease target site, wherein said genomic window is about 10 cM in length, and wherein said first transgenic target site and said second transgenic target site have a different genomic insertion site, wherein said first plant does not comprise a first genomic locus of interest; (b) breeding to said first plant a second plant, wherein said second plant comprises in said genomic window the first genomic locus of interest, wherein said second plant does not comprise said first transgenic target site or said second transgenic target site in the genomic window; and, (c) selecting a progeny plant from step (b) comprising said first transgenic target site, said second transgenic

EP 3191595 B1

target site and said first genomic locus of interest; wherein each of said first transgenic target site, said second transgenic target site and said first genomic locus of interest have a different genomic insertion site in said progeny plant. The genomic window can be about 5 cM in length and wherein each of said first transgenic target site, said second transgenic target site, and said genomic locus of interest in said progeny plant segregate independently from one another at a rate of about 5% to 0.1%.
[0188] In one example, the method of producing a complex trait locus described herein further comprises (a) breeding to said progeny plant a third plant comprising a second genomic locus of interest, wherein said third plant comprises in said genomic window said second genomic locus of interest, wherein said third plant does not comprise said first transgenic target site, said second transgenic target site or said first genomic locus of interest in said genomic window; and, (b) selecting a second progeny plant from step (a) comprising said first transgenic target site, said second transgenic target site, said first genomic locus of interest, and said second genomic locus of interest; wherein each of said first transgenic target site, said second transgenic target site, said first genomic locus of interest and said second genomic locus of interest have a different genomic insertion site in said second progeny plant; and, wherein each of said first transgenic target site, said second transgenic target site, said first genomic locus of interest, or said second genomic locus of interest in said second progeny plant segregate independently from one another at a rate of about 10% to about 0.1%.
[0189] In one example, the method comprises a method of producing a complex trait locus in the genome of a plant comprising (a) providing a first plant having within a genomic window at least a first transgenic target site for site specific integration integrated into a first Cas9 endonuclease target site, wherein said first plant does not comprise a first genomic locus of interest, and wherein said genomic window : (i) is flanked by at least a first marker comprising SYN12545, SYN12536, SYN14645, PZE-101023852, PZE-101024424, SYN25022, SYN31156, SYN31166 or SYN22238 and at least a second marker comprising SYN12536, SYN14645, PZE-101023852, PZE-101024424, SYN25022, SYN31156, SYN31166, SYN22238 or SYN20196; or, (ii) is flanked by at least a first marker comprising PZE-101205031, PUT-163A-148951459-517, PZE-101205904 or PZE-101206569 and at least a second marker comprising PUT-163A-148951459-517, PZE-101205904, PZE-101206569 or SYN24492; or, (iii) is flanked by at least a first marker comprising PZE-103000166, PZE-103000238, PZE-103000307 or SYN6355 and at least a second marker comprising PZE103000238, PZE-103000307, SYN6355 or PZE-103001421; or, (iv) is flanked by at least at least a first marker comprising PZE-110099037, PZE-110099048, PZE-110100195 or PZE-110100685 and at least a second marker comprising PZE110099048 , PZE-110100195, PZE-110100685 or PZE-110101412 (b) breeding to said first plant a second plant, wherein said second plant comprises in said genomic window the first genomic locus of interest and said second plant does not comprise said first transgenic target site; and, (c) selecting a progeny plant from step (b) comprising said first transgenic target site and said genomic locus of interest; wherein said first transgenic target site and said first genomic locus of interest have different genomic insertion sites in said progeny plant.
[0190] As used herein, "breeding" is the genetic manipulation of living organisms. Plants are bred through techniques that take advantage of the plant's method of pollination. A plant is self-pollinated if pollen from one flower is transferred to the same or another flower of the same plant. A plant is sib-pollinated when individuals within the same family or line are used for pollination. A plant is cross-pollinated if the pollen comes from a flower on a different plant from a different family or line. In a breeding application, a breeder initially selects and crosses two or more parental plants. As used herein, "crossing" can refer to a simple X by Y cross, or the process of backcrossing, depending on the context.
[0191] Methods are disclosed herein to either establish a complex trait locus or to break the complex trait locus apart using breeding techniques. For example, a first plant comprising a first transgenic SSI target site integrated in a DSB target site (or a plant comprising an altered DSB target site) within a genomic window, and the first plant does not comprise a first genomic locus of interest, can be crossed with a second plant comprising the first genomic locus of interest within the same genomic window and the second plant does not comprise said first transgenic SSI target site (or altered DSB target site) within the genomic window. A progeny plant is then selected comprising both the first transgenic SSI target site (or altered DSB target site) and the first genomic locus of interest within the genomic window. Selecting a progeny plant comprising both the transgenic SSI target site and the genomic locus of interest can be done through various methods. For example, a phenotypic analysis can be performed whereby the activity of a marker or an introduced sequence is detected in the progeny plant. Alternative methods that assay for markers which are specific to the genomic locus of interest and the transgenic SSI target site include techniques such as PCR, hybridization, Isozyme electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed PCR (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment length Polymorphisms (AFLPs), Simple Sequence Repeats (SSRs), and Single Nucleotide Polymorphisms (SNPs).
[0192] In non-limiting examples, the complex trait locus can comprise (1) a transgenic SSI target site integrated into a DSB target site and a genomic locus of interest having different genomic insertion sites in said genomic window; (2) 2 transgenic SSI target sites integrated into two DSB target sites and a genomic locus of interest having different genomic insertion sites in said genomic window; (3) 2 transgenic SSI target sites integrated into two DSB target sites and 2
genomic loci of interest having different genomic insertion sites in said genomic window; (4) a genomic locus of interest and a transgenic SSI target site integrated into a DSB target site comprising one or more polynucleotides of interest wherein said genomic locus of interest and transgenic target site have different genomic insertion sites; (5) a transgenic target site integrated into a DSB target site and a genomic locus of interest comprising a transgene, each having a different genomic insertion site; (6) a transgenic target site integrated into a DSB target site and a genomic locus of interest comprising a native trait, each having a different genomic insertion site; (7) a transgenic target site integrated into a DSB target site comprising a first and a second dissimilar recombination sites and a genomic locus of interest, each having a different genomic insertion site; (8) a genomic locus of interest, a first transgenic target site integrated into a first DSB target site comprising a first and a second dissimilar recombination sites and a second transgenic target site integrated into a second DSB target site comprising a third and a fourth dissimilar recombination sites, wherein each of said genomic locus of interest, first transgenic target site and second transgenic target site has a different genomic insertion site; (9) a genomic locus of interest, a first transgenic target site integrated into a DSB target site comprising a first and a second dissimilar recombination sites, a second transgenic target site comprising a third and a fourth dissimilar recombination sites and a third transgenic target site integrated into a third DSB target site comprising a fifth and a sixth dissimilar recombination sites, wherein each of said genomic locus of interest, first transgenic target site, second transgenic target site and third transgenic target site has a different genomic insertion site; (10) a first transgenic target site integrated into a first DSB target site and a second transgenic target site integrated into a second DSB target site wherein the second transgenic target site comprises different dissimilar recombination sites as the first transgenic target site and a genomic locus of interest, each having a different genomic insertion site; (11) a first transgenic target site integrated into a first DSB target site, a second transgenic target site integrated into a second DSB target site wherein the second transgenic target site comprises the same dissimilar recombination sites as the first transgenic target site, and a genomic locus of interest, each having a different genomic insertion site; (12) a first transgenic target site integrated into a first DSB target site, a second transgenic target site integrated into a second DSB target site wherein the dissimilar recombination sites comprise a FRT site or a mutant FRT site, and a genomic locus of interest, each having a different genomic insertion site; (13) a first transgenic target site integrated into a first DSB target site and a second transgenic target site integrated into second DSB target site wherein the dissimilar recombination sites comprise a FRT1, FRT5, a FRT6, a FRT7, a FRT12, or a FRT87 site, and a genomic locus of interest, each having a different genomic insertion site; or (14) a first transgenic target site integrated into a first DSB target site and a second transgenic target site integrated into a second DSB target site wherein the dissimilar recombination sites comprise a FRT1 and a FRT87 site, and a genomic locus of interest, each having a different genomic integration site.
[0193] A complex trait locus comprising multiple transgenic SSI target sites integrated into multiple DSB target sites, genomic loci of interest and/or polynucleotides of interest can be produced within a genomic window in the genome of a plant.
[0194] A non-limiting example of how two traits can be stacked into the genome at a genetic distance of, for example, 5 cM from each other is described as follows: A first plant comprising a first transgenic target site integrated into a first DSB target site within the genomic window and not having the first genomic locus of interest is crossed to a second transgenic plant, comprising a genomic locus of interest at a different genomic insertion site within the genomic window and the second plant does not comprise the first transgenic target site. About 5% of the plant progeny from this cross will have both the first transgenic target site integrated into a first DSB target site and the first genomic locus of interest integrated at different genomic insertion sites within the genomic window. Progeny plants having both sites in the defined genomic window can be further crossed with a third transgenic plant comprising a second transgenic target site integrated into a second DSB target site and/or a second genomic locus of interest within the defined genomic window and lacking the first transgenic target site and the first genomic locus of interest. Progeny are then selected having the first transgenic target site, the first genomic locus of interest and the second genomic locus of interest integrated at different genomic insertion sites within the genomic window. Such methods can be used to produce a transgenic plant comprising a complex trait locus having at least $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,19,20,21,22,23,24,25$, $26,27,28,29,30,31$ or more transgenic target sites integrated into DSB target sites and/or genomic loci of interest integrated at different sites within the genomic window. In such a manner, various complex trait loci can be generated.
[0195] In one non-limiting example, a method of producing a complex trait locus in the genome of a plant comprises providing a first plant having within a genomic window of about 10 cM in length at least a first transgenic target site integrated into a first DSB target site and does not comprise a first genomic region of interest. The genomic window can be any desired length as described elsewhere herein. The method involves breeding the first plant to a second plant which comprises in a different genomic insertion site within the same genomic window a first genomic locus of interest and does not comprise the first transgenic target site integrated into a first DSB target site, and selecting a progeny plant comprising the first transgenic target site and the genomic locus of interest. In another example, the method further involves providing a first plant having within a genomic window a first transgenic target site integrated into a first DSB target site and a second transgenic target site integrated into a second DSB target site having different genomic insertion sites wherein the first plant does not comprise a genomic locus of interest. Breeding the first plant with a second plant

EP 3191595 B1

where the second plant comprises a genomic locus of interest within the genomic window and does not comprise the first and second transgenic target sites, and selecting for a progeny plant comprising the first transgenic target site, the second transgenic target site and the genomic locus of interest all having different genomic insertion sites within the genomic window. The first transgenic target site, the second transgenic target site and the genomic locus of interest of the progeny plants can segregate independently from one another at a rate of about $10-0.1 \%$, about $10-0.5 \%$, about $10-1 \%$, about $10-5 \%$, about $9-0.1 \%$, about $9-0.5 \%$, about $9-1 \%$, about $9-5 \%$, about $8-0.1 \%$, about $8-0.5 \%$, about $8-1$ $\%$, about 8-4\%, about 7-0.1\%, about 7-0.5\%, about 7-1 \%, about 7-4\%, about 6-0.1\%, about 6-0.5\%, about 6-1 \%, about $6-3 \%$, about $5-0.1 \%$, about $5-0.5 \%$, about $5-1 \%$, about $4-0.1 \%$, about $4-0.5 \%$, about $4-1 \%$, about $3-0.1 \%$, about $3-0.5 \%$, about $3-1 \%$, about 2-0.1\%, about 2-0.5\%, about 1-0.1\% or about 1-0.5\%.
[0196] In this way, it is recognized that the plants disclosed herein can be crossed to produce a complex trait locus comprising any combination of the various genomic windows, double-strand-break target sites, transgenic SSI target sites, genomic loci of interest, and/or polynucleotides of interest described herein.
[0197] The previous section describes various methods for creating a complex trait locus by adding transgenic SSI target sites integrated into a DSB target sites and/or genomic loci of interest to a genomic window thereby making a complex trait locus. It is recognized that a complex trait locus can also be altered by removing or breeding-away certain target sites (double-strand-break target sites and/or transgenic SSI target sites) and/or genomic loci of interest. The complex trait loci disclosed herein are designed such that each altered double-strand-break target sites and/or genomic locus of interest has a different genomic insertion site and can segregate independently. Such a design allows traits to be bred into the genomic window and also to breed traits out of the genomic window.
[0198] The breeding methods described above for combining traits into a genomic window can also be employed to remove traits from a genomic window by breeding away the trait.
[0199] The method of altering a complex trait locus by breeding away comprises providing a first plant comprising a double-strand-break target sites and/or transgenic SSI target sites and/or genomic locus of interest to be removed and crossing the first plant with a second plant that does not have the particular double-strand-break target sites and/or transgenic SSI target sites and/or genomic locus of interest in the genomic window. The resulting progeny lacking the double-strand-break target sites and/or transgenic SSI target sites and/or genomic locus of interest would then be selected.
[0200] The transgenic target sites integrated into a DSB target site disclosed herein comprise at least one recombination site, as described elsewhere herein, which can be utilized for direct insertion of one or more polynucleotides of interest into the target site. Thus, a complex trait locus comprising various target sites can be manipulated by site-specific integration methods. Such methods are described in detail in WO 99/25821. This method allows removing, adding and/or replacing various polynucleotides of interest within transgenic target sites of an established complex trait locus by employing site-specific recombination. Alternatively, the transgenic target site can be altered in a plant before the plant is utilized in breeding methods to produce a complex trait locus.

EXAMPLES

[0201] In the following Examples, unless otherwise stated, parts and percentages are by weight and degrees are Celsius. It should be understood that these Examples, while including embodiments of the disclosure, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can make various changes and modifications of the disclosure to adapt it to various usages and conditions.

EXAMPLE 1

DNA constructs for guide RNA/Cas endonuclease systems for maize genome modifications
[0202] To test the guide RNA/Cas endonuclease system in maize, the Cas9 gene from Streptococcus pyogenes M1 GAS (SF370) (SEQ ID NO: 308) was maize codon optimized per standard techniques known in the art and the potato ST-LS1 intron was introduced in order to eliminate its expression in E. coli and Agrobacterium. To facilitate nuclear localization of the Cas9 protein in maize cells, Simian virus 40 (SV40) monopartite amino terminal nuclear localization signal (MAPKKKRKV, SEQ ID NO: 309) and Agrobacterium tumefaciens bipartite VirD2 T-DNA border endonuclease carboxyl terminal nuclear localization signal (KRPRDRHDGELGGRKRAR, SEQ ID NO: 310) were incorporated at the amino and carboxyl-termini of the Cas9 open reading frame respectively. The maize optimized Cas9 gene was operably linked to a maize Ubiquitin promoter by standard molecular biological techniques. A maize optimized Cas9 expression cassette is listed in SEQ ID NO: 311.
[0203] The maize U6 polymerase III promoter (SEQ ID NO: 312) was used to express guide RNAs which direct Cas9 nuclease to designated genomic sites (as described in US patent application 14/463687 filed on August 20, 2014). The guide RNA coding sequence was 77 bp long and comprised a 12-30 bp variable targeting domain from a chosen maize

EP 3191595 B1

genomic target site on the 5' end maize U6 polymerase III terminator (as described in US patent application 14/463687 filed on August 20, 2014).
[0204] To improve the co-expression and presence of the Cas9 endonuclease and the guide RNA to form a protein/RNA complex, the Cas9 endonuclease and guide RNA expression cassettes were linked into a single DNA construct. A 450-470 bp sequence containing the guide RNA coding sequence comprising the 12-30 bp variable targeting domain from the chosen maize genomic target site, and part of the U6 promoter were synthesized (Integrated DNA Technologies, Inc. 1710 Commercial Park, Coralville, lowa 52241, USA). The sequence was then cloned to the backbone already having the Cas9 expression cassette and the rest of the U6 promoter (for example bp 6741-7405 from SEQ ID NO: 106) of the gRNA expression cassette through restrict sites of BstBI/HindIII, which was then used to transform maize cells to test the maize optimized guide RNA/Cas system for genome modification. Similar DNA constructs were made to target different genomic sites using guide RNAs containing different target sequences as described in Example 3.

EXAMPLE 2

Selection of maize genomic windows for the introduction of Site Specific Integration (SSI) transgenic target sites by the guide RNA/Cas endonuclease system and Complex Trait Loci development
[0205] Four maize genomic regions (also referred to as genomic windows, Figure 1) were identified for the production of Complex Trait Loci comprising a combination of transgenic target sites for SSI introduced into that genomic window by a maize optimized guide RNA/ Cas9 endonuclease system described herein (Figure 2A-2D).
[0206] The first maize genomic window that was identified for development of a Complex Trait Locus (CTL) spans from ZM01: 12987435 (flanked by public SNP marker SYN12545) to Zm01:15512479 (flanked by public SNP marker SYN20196) on chromosome 1 (Figure 4). Table 1 shows the physical and genetic map position (if available) for a multitude of maize SNP markers (Ganal, M. et al, A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome. PloS one, December 08,2011 DOI: 10.1371) and Cas endonuclease target sites (31 sites) within the genomic window of interest on the maize chromosome 1.

Table 1. Genomic Window comprising a Complex Trait Locus (CTL1) on Chromosome 1 of maize

Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position (PUB B73v3)	Genetic $\begin{aligned} & \text { Position(PUB } \\ & \text { B73v3) } \end{aligned}$	Genetic Position (PHI)
SYN12545*	1	12987435	36.9	50.35
SYN12536*	2	12988556	36.9	50.36
49-CR2	3	13488227		50.87
50-CR1	4	13554078		50.95
51-CR1	5	13676343		51.06
SYN14645*	6	13685871	37.4	51.07
41-CR2	7	13830316		51.27
72-CR1	8	13841735		51.33
71-CR1	9	13846794		51.32
81-CR1	10	13967499		51.45
73-CR1	11	13986903		51.48
PZE-101023852*	12	14030843	37.6	51.53
14-CR4	13	14038610		51.54
74-CR1	14	14089937		51.61
75-CR1	15	14226763		51.68
84-CR1	16	14233410		51.68
76-CR1	17	14245535		51.69

EP 3191595 B1
(continued)

Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	$\begin{gathered} \text { Physical } \\ \text { position (PUB } \\ \text { B73v3) } \end{gathered}$	$\begin{gathered} \text { Genetic } \\ \text { Position(PUB } \\ \text { B73v3) } \end{gathered}$	Genetic Position (PHI)
77-CR1	18	14344614		51.72
78-CR1	19	14380330		51.75
PZE-101024424*	20	14506833	37.8	51.81
79-CR1	21	14577827		51.84
85-CR1	22	14811592		51.95
19-CR1	23	14816379		51.95
SYN25022*	24	14851517	37.8	51.97
86-CR1	25	14951113		52.54
08-CR1	26	14955364		52.56
43-CR1	27	15006039		52.8
11-CR1	28	15066942		53.15
SYN31156*	29	15070918	39.9	53.16
47-CR2	30	15081190		53.21
80-CR1	31	15084949		53.23
52-CR2	32	15088711		53.25
87-CR1	33	15158706		53.57
88-CR1	34	15162366		53.59
SYN31166*	35	15169575	40.9	53.62
45-CR1	36	15177228		53.66
10-CR3	37	15274433		54.56
44-CR2	38	15317833		54.16
46-CR2	39	15345674		54.43
SYN22238*	40	15491134	41.7	54.99
SYN20196*	41	15512479	41.9	55.48

[0207] The second maize genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Zm01:253.78 MM (flanked by public SNP marker PZE-101205031) to Zm01: 257 MM (flanked by public SNP marker SYN24492) on chromosome 1 (Figure 5). Table 2 shows the physical and genetic map position (if available) for a multitude of maize SNP markers (Ganal, M. et al (2011) PloS one, DOI: 10.1371) and Cas endonuclease target sites (15 sites) within this genomic window of interest on the maize chromosome 1.

Table 2. Genomic Window comprising a Complex Trait Locus 2 (CTL2) on Chromosome 1 of maize

Name of public SNP markers (*)	Cas endonuclease target or or Cas endonuclease target site SNP sequence(SEQ ID NO:)	Physical position (PUB B73v3)	Genetic Position (PUB B73v3)	Genetic Position (PHI)
PZE-101205031*	42	253779529	185.7	230.5
$62-C R 1$	43	253823089		230.55
$27-C R 1$	44	254009239		230.83

EP 3191595 B1
(continued)

Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP sequence (SEQ ID NO:)	Physical position (PUB B73v3)	Genetic Position (PUB B73v3)	Genetic Position (PHI)
$27-C R 3$	45	254009251		230.83
$63-C R 1$	46	254022286		230.85
$64-C R 1$	47	254064681		230.92
PUT-163A-148951459-517**	48	254154625	-	231.06
$30-C R 2$	49	254323740		231.38
$30-C R 1$	50	254323749		231.38
$65-C R 1$	51	254362279		231.47
$66-C R 1$	52	254528255		231.69
PZE-101205904**	53	254809233	-	232.1
$67-C R 1$	55	254810763		232.1
$68-C R 1$	56	254873093		232.2
$34-C R 1$	57	255390916		232.82
$34-C R 3$	58	255390924		232.82
$34-C R 2$	59	255390944		232.82
PZE-101206569*	60	255763233		233.29
$69-C R 1$	61	255783594		233.31
SYN24492*	256998852	188.6	234.74	

[0208] The third maize genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Zm03: 742991 (flanked by public SNP marker PZE-103000166) to Zm03: 1614189 (flanked by public SNP marker PZE-103001421) on chromosome 3 (Figure 6). Table 3 shows the physical and genetic map position (if available) for a multitude of maize SNP markers (Ganal, M. et al (2011) PloS one, DOI: 10.1371) and Cas endonuclease target sites (18 sites) within this genomic window of interest on the maize chromosome 3.

Table 3. Genomic Window comprising a Complex Trait Locus 3 (CTL3) on Chromosome 3 of maize

Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position(PUB B73v3)	Genetic Position (PUB B73v3)	Genetic position (PHI)
PZE-103000166	62	742991	-	3.44
chr3-TS1	63	899135		4.04
chr-TS2	64	1036161		4.62
chr3-TS3	65	1037353		4.63
chr-TS4	66	1083686		4.81
PZE-103000238*	67	1106831	-	4.91
Chr3-TS6	68	1172164		5.55
Chr3-TS7	69	1218009		5.56
Chr3-TS10	70	1219548		5.93
Chr3-TS11	71	1223674		5.94

EP 3191595 B1

(continued)

Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position(PUB B73v3)	Genetic Position(PUB B73v3)	Genetic position (PHI)
Chr3-TS12	72	1223862		5.95
PZE-103000307*	73	1233863	-	5.62
Chr3-TS9	74	1270677		5.70
Chr3-TS8	75	1272057		5.69
Chr3-TS13	76	1337819		6.12
Chr3-TS14	77	1386369		6.32
Chr3-TS15	78	1459144		6.71
SYN6355*	79	1554858	0.4	6.88
Chr3-TS16	81	1559776		6.90
Chr3-TS17	82	1561991		6.91
Chr3-TS18	83	1563993		6.92
Chr3-TS19	84	1577833		6.98
PZE-103001421*	1614189		7.22	

[0209] The fourth maize genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Zm10: 143.75MM (flanked by public SNP marker PZE-110099037) to Zm10: 144.62MM (flanked by public SNP marker PZE-110101412) on chromosome 10 (Figure 7). Table 4 shows the physical and genetic map position (if available) for a multitude of maize SNP markers (Ganal, M. et al (2011) PloS one, DOI: 10.1371) and Cas endonuclease target sites (15 sites) within this genomic window of interest on the maize chromosome 10.
[0210] The internal and public genetic position are not all aligned to the same order for this region, this could due to the wrong assembly either the public or internal.

Table 4. Genomic Window comprising a Complex Trait Locus 4 (CTL4) on Chromosome 10 of maize

Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position (PUB B73v3)	GeneticPosition (PUBB73v3)	Genetic Position (PHIB73v2)
PZE-110099037*	85	143748355	93.5	128.26
PZE-110099048*	86	143749018	-	128.25
chr10-TS4	87	143820705		128.16
chr10-TS3	88	143824753		128.14
chr10-TS2	89	143826830		128.13
chr10-TS1	90	143836660		128.09
SYN29534*	91	144045172	94.6	129.11
chr10-TS5	92	144087077		129.23
chr10-TS6	93	144174303		129.45
PZE-110100195*	94	144177211	94.8	129.46
chr10-TS7	96	144208739		129.54
chr10-TS8	97	144209967		129.55
chr10-TS10	98	144350690		130.41
chr10-TS9		144358655		130.16

(continued)

Name of public SNP markers (*) or Cas endonuclease $_{\text {target site }}$	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position (PUB B73v3)	GeneticPosition (PUBB73v3)	Genetic Position (PHI B73v2)
PZE-110100685*	99	144410276	96.6	131.79
chr10-TS16	100	144416223		131.17
chr10-TS15	101	144417106		131.16
chr10-TS14	102	144421928		131.11
chr10-TS13	103	144438323		130.95
chr10-TS12	104	144438619		130.94
PZE-110101412*	105	144620418	98.4	132.71

EXAMPLE 3

Guide RNA expression cassettes, Cas9 endonuclease expression cassettes and donor DNA's for introduction of transgenic target sites for SSI in a maize genomic window.
[0211] The maize U6 maize U6 polymerase III promoter (SEQ ID NO: 312) was used to express guide RNAs to direct Cas9 nuclease to designated genomic target sites. A maize codon optimized Cas9 endonuclease expression cassette and a guide RNA expression cassette were linked in a first plasmid that was co-delivered with a second plasmid comprising a donor DNA (repair DNA) cassette (Figure 2C). The donor DNA contained FRT1/FRT87(6) recombination sites for site specific integration, flanking the NPTII marker: terminator (Figure 2B) which upon integration by homologous recombination with the guide RNA/Cas system created the FRT1/FRT87(6) target lines for SSI technology application (Figure 2D). [0212] The guide RNA (gRNA)/Cas9 DNA constructs targeting various maize genomic sites that were constructed for the introduction of transgenic SSI target sites into Cas endonuclease target sites through homologous recombination are listed in Table 5 and Table 7. Table 6 and Table 8 list the guide RNAs that were expressed from the guide RNA constructs. The bases of the guide RNA that comprise the variable targeting domain are listed in the Tables 6 and 8 as well. For example, the first 19 bases of SEQ ID NO: 267 (base 1-19) comprise the variable targeting domain of guide RNA 49-CR2 (Table 6). All the guide RNA/Cas9 constructs differed only in the 17-25 bp guide RNA variable targeting domain targeting the maize genomic target sites. All the donor DNA constructs differed only in the homologous regions such as ZM-SEQX(HR1) and ZM-SEQY(HR2). These guide RNA/Cas9 DNA constructs and donor DNAs were codelivered into an elite maize genome by the stable transformation procedure described in Example 4.

Table 5. Guide RNA/Cas9 used in maize Stable Transformation for the Complex Trait Locus on ZM01-CTL1

Experiment	Guide RNA/Cas9	SEQ ID NO:
$49-C R 2$	ZM-U6:49CR2+UBI:CAS9 (PHP70573)	106
$50-C R 1$	ZM-U6:50CR1+UBI:CAS9 (PHP70586)	107
$51-C R 1$	ZM-U6:51CR1+UBI:CAS9 (PHP70581)	108
$41-C R 2$	ZM-U6:41CR2+UBI:CAS9 (PHP70582)	109
$72-C R 1$	ZM-U6:72CR1+UBI:CAS9 (PHP70588)	110
$71-C R 1$	ZM-U6:71CR1+UBI:CAS9 (PHP70587)	111
$81-C R 1$	ZM-U6:81CR1+UBI:CAS9 (PHP70589)	112
$73-C R 1$	ZM-U6:73CR1+UBI:CAS9 (PHP70590)	113
14-CR4	ZM-U6:14CR4+UBI:CAS9 (PHP70591)	114
$74-C R 1$	ZM-U6:74CR1+UBI:CAS9 (PHP70592)	115
$75-C R 1$	ZM-U6:75CR1+UBI:CAS9 (PHP70593)	116
$84-C R 1 ~$	ZM-U6:84CR1+UBI:CAS9 (PH P70594)	117

EP 3191595 B1
(continued)

Experiment	Guide RNA/Cas9	SEQ ID NO:
$76-C R 1$	ZM-U6:76CR1+UBI:CAS9 (PHP70595)	118
$77-C R 1$	ZM-U6:77CR1+UBI:CAS9 (PHP70596)	119
$78-C R 1$	ZM-U6:78CR1+UBI:CAS9 (PHP70597)	120
$85-C R 1$	ZM-U6:85CR1+UBI:CAS9 (PHP70599)	121
$19-C R 1$	ZM-U6I:19CR1+UBI:CAS9 (PHP70577)	122
$86-C R 1$	ZM-U6:86CR1+UBI:CAS9 (PHP70600)	123
$8-C R 1$	ZM-U6:8CR1+UBI:CAS9 (PHP71193)	124
$43-C R 1$	ZM-U6:43CR1+UBI:CAS9 (PHP70583)	125
$11-C R 1$	ZM-U6:11CR1+UBI:CAS9 (PH P70584)	126
$47-$ CR2	ZM-U6:47CR2+UBI:CAS9 (PHP70574)	127
$80-C R 1 ~$	ZM-U6:80CR1+UBI:CAS9 (PHP70601)	128
$52-C R 2$	ZM-U6:52CR2+UBI:CAS9 (PHP70602)	129
$87-C R 1$	ZM-U6:87CR1+UBI:CAS9 (PHP70603)	130
$88-C R 1$	ZM-U6:88CR1+UBI:CAS9 (PHP70604)	131
$45-C R 1 ~$	ZM-U6:45CR1+UBI:CAS9 (PHP70605)	132
$10-C R 3$	ZM-U6:10CR3+UBI:CAS9 (PHP70580)	133
$44-C R 2$	ZM-U6:44CR2+UBI:CAS9 (PHP70575)	134
$46-C R 2$	ZM-U6:46CR2+UBI:CAS9 (PHP70585)	135

Table 6. Guide RNA used in maize Stable Transformation for the Complex Trait Locus on ZM01-CTL1

Guide RNA name	SEQ ID NO:	Variable targeting domains
$49-C R 2$	267	Base 1-19
$50--C R 1$	268	Base 1-19
$51-C R 1$	269	Base 1-21
$41-C R 2$	270	Base 1-21
$72-C R 1$	271	Base 1-20
$71-C R 1$	272	Base 1-22
$81-C R 1$	273	Base 1-20
$73-C R 1$	274	Base 1-19
$14-C R 4$	275	Base 1-20
$74-C R 1$	276	Base 1-19
$75-C R 1$	277	Base 1-20
$84-C R 1$	278	Base 1-20
$76-C R 1$	279	Base 1-21
$77-C R 1$	280	Base 1-22
$78-C R 1$	281	Base 1-20
$85-C R 1$	282	Base 1-19

EP 3191595 B1
(continued)

Guide RNA name	SEQ ID NO:	Variable targeting domains
19-CR1	283	Base 1-24
86-CR1	284	Base 1-21
8-CR1	285	Base 1-18
$43-C R 1$	286	Base 1-21
11-CR1	287	Base 1-18
$47-C R 1$	288	Base 1-22
$80-C R 1$	289	Base 1-24
52-CR2	290	Base 1-19
$87-C R 1$	291	Base 1-20
$88-C R 1$	292	Base 1-23
$45-C R 1$	293	Base 1-21
$10-C R 3$	294	Base 1-18
$44-C R 2$	295	Base 1-19
$46-C R 2$	296	Base 1-20

Table 7. Guide RNA/Cas9 used in Maize Stable Transformation for the Complex Trait Locus 2 (CTL2) on Zm01

Experiment	Guide RNA/Cas9	SEQ ID NO:
62-CR1	ZM-U6:62CR1+UBI:CAS9 (PHP71924)	136
$27-C R 1$	ZM-U6:27CR1+UBI:CAS9 (PHP71918)	137
$63-C R 1$	ZM-U6:63CR1+UBI:CAS9 (PHP71925)	138
$64-C R 1$	ZM-U6:64CR1+UBI:CAS9 (PHP71926)	139
$30-C R 1$	ZM-U6:30CR1+UBI:CAS9 (PHP71920)	140
$65-C R 1$	ZM-U6:65CR1+UBI:CAS9 (PHP71927)	141
$66-C R 1$	ZM-U6:66CR1+UBI:CAS9 (PHP71928)	142
$67-C R 1$	ZM-U6:67CR1+UBI:CAS9 (PHP71930)	143
$68-C R 1$	ZM-U6:68CR1+UBI:CAS9 (PHP71931)	144
$34-C R 1$	ZM-U6:34CR1+UBI:CAS9 (PHP71922)	145
$69-C R 1 ~$	ZM-U6:69CR1+UBI:CAS9 PHP71932)	146

Table 8. Guide RNA used in maize Stable Transformation for the Complex Trait Locus (CTL-2) on ZM01-CTL2

Guide RNA name	SEQ ID NO:	Variable targeting domains
62-CR1	297	Base 1-20
$27-C R 1$	298	Base 1-22
$63-C R 1$	299	Base 1-19
$64-C R 1$	300	Base 1-22
$30-C R 1$	301	Base 1-22
$65-C R 1$	302	Base 1-22

EP 3191595 B1

(continued)

Guide RNA name	SEQ ID NO:	Variable targeting domains
66-CR1	303	Base 1-23
$67-C R 1$	304	Base 1-19
$68-C R 1$	305	Base 1-20
34-CR1	306	Base 1-20
$69-C R 1$	307	Base 1-22

EXAMPLE 4

Delivery of the guide RNA/Cas9 endonuclease system DNA to maize by stable transformation
[0213] The guide RNA/Cas9 DNA constructs and donor DNAs described in Example 3 were co-delivered to an elite maize genome by the stable transformation procedure described below. Transformation of maize immature embryos using particle delivery is performed as follows.
[0214] Maize ears are husked and surface sterilized in 30% Clorox bleach plus 0.5% Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are isolated and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560 Y medium for 4 hours and then aligned within the $2.5-\mathrm{cm}$ target zone in preparation for bombardment. Alternatively, isolated embryos are placed on 560L (Initiation medium) and placed in the dark at temperatures ranging from $26^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$ for 8 to 24 hours prior to placing on 560 Y for 4 hours at $26^{\circ} \mathrm{C}$ prior to bombardment as described above.
[0215] Plasmids containing the double strand brake inducing agent and donor DNA are constructed using standard molecular biology techniques and co-bombarded with plasmids containing the developmental genes ODP2 (AP2 domain transcription factor ODP2 (Ovule development protein 2); US20090328252 A1) and Wushel (US2011/0167516).
[0216] The plasmids and DNA of interest are precipitated onto $0.6 \mu \mathrm{~m}$ (average diameter) gold pellets using a proprietary lipid-polymer mixture of a water-soluble cationic lipid transfection reagent as follows. DNA solution is prepared on ice using $1 \mu \mathrm{~g}$ of plasmid DNA and optionally other constructs for co-bombardment such as $50 \mathrm{ng}(0.5 \mu \mathrm{l})$ of each plasmid containing the developmental genes ODP2 (AP2 domain transcription factor ODP2 (Ovule development protein 2); US20090328252 A1, published December 31, 2009) and Wushel. To the pre-mixed DNA, 20μ l of prepared gold particles $(15 \mathrm{mg} / \mathrm{ml})$ and $1 \mu \mathrm{I} A$ of the water-soluble cationic lipid transfection reagent is added in water and mixed carefully. Gold particles are pelleted in a microfuge at $10,000 \mathrm{rpm}$ for 1 min and supernatant is removed. The resulting pellet is carefully rinsed with 100 ml of $100 \% \mathrm{EtOH}$ without resuspending the pellet and the EtOH rinse is carefully removed. $105 \mu \mathrm{l}$ of $100 \% \mathrm{EtOH}$ is added and the particles are resuspended by brief sonication. Then, $10 \mu \mathrm{l}$ is spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment.
[0217] The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid is removed, and the particles are washed with $500 \mathrm{ml} 100 \%$ ethanol, followed by a 30 second centrifugation. Again, the liquid is removed, and $105 \mu \mathrm{l} 100 \%$ ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA particles are briefly sonicated. $10 \mu \mathrm{l}$ of the tungsten/DNA particles is spotted onto the center of each macrocarrier, after which the spotted particles are allowed to dry about 2 minutes before bombardment.
[0218] The sample plates are bombarded at level \#4 with a Biorad Helium Gun. All samples receive a single shot at 450 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA.
[0219] Following bombardment, the embryos are incubated on 560P (maintenance medium) for 12 to 48 hours at temperatures ranging from 26 C to 37 C , and then placed at 26 C . After 5 to 7 days the embryos are transferred to a selection medium containing $150 \mathrm{mg} / \mathrm{liter}$ Geneticin (G418), and sub-cultured every 2 weeks at 26 C . After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288 J medium to initiate plant regeneration. Following somatic embryo maturation ($2-4$ weeks), well-developed somatic embryos are transferred to medium for germination and transferred to a lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272 V hormone-free medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to a $2.5^{\prime \prime}$ pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to Classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored and scored for transformation efficiency, and/or modification of regenerative capabilities.
[0220] Initiation medium (560L) comprises $4.0 \mathrm{~g} / \mathrm{N} 6$ basal salts (SIGMA C-1416), $1.0 \mathrm{ml} / \mathrm{I}$ Eriksson's Vitamin Mix (1000X SIGMA-1511), $0.5 \mathrm{mg} / \mathrm{I}$ thiamine $\mathrm{HCl}, 20.0 \mathrm{~g} / \mathrm{l}$ sucrose, $1.0 \mathrm{mg} / \mathrm{L} 2,4-\mathrm{D}$, and $2.88 \mathrm{~g} / \mathrm{L}$-proline (brought to volume

EP 3191595 B1

with D-I H 2 O following adjustment to pH 5.8 with KOH); $2.0 \mathrm{~g} / l$ Gelrite (added after bringing to volume with D-I H 2 O); and $8.5 \mathrm{mg} / \mathrm{l}$ silver nitrate (added after sterilizing the medium and cooling to room temperature).
[0221] Maintenance medium (560P) comprises $4.0 \mathrm{~g} / \mathrm{l}$ N6 basal salts (SIGMA C-1416), $1.0 \mathrm{ml} / \mathrm{I}$ Eriksson's Vitamin Mix (1000X SIGMA-1511), $0.5 \mathrm{mg} / \mathrm{l}$ thiamine $\mathrm{HCl}, 30.0 \mathrm{~g} / \mathrm{l}$ sucrose, $2.0 \mathrm{mg} / \mathrm{l} 2,4-\mathrm{D}$, and $0.69 \mathrm{~g} / \mathrm{l}$ L-proline (brought to volume with D-I H2O following adjustment to pH 5.8 with KOH); $3.0 \mathrm{~g} / \mathrm{I}$ Gelrite (added after bringing to volume with D-I H 2 O); and $0.85 \mathrm{mg} / \mathrm{l}$ silver nitrate (added after sterilizing the medium and cooling to room temperature).
[0222] Bombardment medium (560Y) comprises $4.0 \mathrm{~g} / \mathrm{I}$ N6 basal salts (SIGMA C-1416), $1.0 \mathrm{ml} / \mathrm{I}$ Eriksson's Vitamin Mix (1000X SIGMA-1511), $0.5 \mathrm{mg} / \mathrm{I}$ thiamine $\mathrm{HCl}, 120.0 \mathrm{~g} / \mathrm{l}$ sucrose, $1.0 \mathrm{mg} / \mathrm{l} 2,4-\mathrm{D}$, and $2.88 \mathrm{~g} / \mathrm{l}$ L-proline (brought to volume with D-I H2O following adjustment to pH 5.8 with KOH); $2.0 \mathrm{~g} / \mathrm{I}$ Gelrite (added after bringing to volume with D-I H 2 O); and $8.5 \mathrm{mg} / \mathrm{silver}$ nitrate (added after sterilizing the medium and cooling to room temperature).
[0223] Selection medium (560R) comprises $4.0 \mathrm{~g} / \mathrm{IN} 6$ basal salts (SIGMA C-1416), $1.0 \mathrm{ml} / /$ Eriksson's Vitamin Mix (1000X SIGMA-1511), $0.5 \mathrm{mg} / \mathrm{l}$ thiamine $\mathrm{HCl}, 30.0 \mathrm{~g} / \mathrm{l}$ sucrose, and $2.0 \mathrm{mg} / \mathrm{l} 2,4-\mathrm{D}$ (brought to volume with D-I H2O following adjustment to pH 5.8 with KOH); $3.0 \mathrm{~g} / \mathrm{l}$ Gelrite (added after bringing to volume with D-I H2O); and $0.85 \mathrm{mg} / \mathrm{l}$ silver nitrate and $3.0 \mathrm{mg} / / \mathrm{Geneticin}$ (G418) (both added after sterilizing the medium and cooling to room temperature).
[0224] Plant regeneration medium (288J) comprises $4.3 \mathrm{~g} / \mathrm{I} \mathrm{MS}$ salts (GIBCO 11117-074), $5.0 \mathrm{ml} / \mathrm{I} \mathrm{MS}$ vitamins stock solution (0.100 g nicotinic acid, $0.02 \mathrm{~g} / \mathrm{l}$ thiamine $\mathrm{HCL}, 0.10 \mathrm{~g} / \mathrm{l}$ pyridoxine HCL , and $0.40 \mathrm{~g} / \mathrm{g}$ glycine brought to volume with polished D-I H2O) (Murashige and Skoog (1962) Physiol. Plant. 15:473), $100 \mathrm{mg} / \mathrm{l}$ myo-inositol, $0.5 \mathrm{mg} / \mathrm{l}$ zeatin, 60 g / l sucrose, and $1.0 \mathrm{ml} / \mathrm{l}$ of 0.1 mM abscisic acid (brought to volume with polished $\mathrm{D}-\mathrm{I} \mathrm{H} 2 \mathrm{O}$ after adjusting to pH 5.6); $3.0 \mathrm{~g} / / \mathrm{Gelrite}$ (added after bringing to volume with D-I H2O); and $1.0 \mathrm{mg} / \mathrm{l}$ indoleacetic acid and $3.0 \mathrm{mg} / \mathrm{l}$ Geneticin (G418) (added after sterilizing the medium and cooling to $60^{\circ} \mathrm{C}$). Hormone-free medium (272V) comprises $4.3 \mathrm{~g} / \mathrm{I} \mathrm{MS}$ salts (GIBCO 11117-074), $5.0 \mathrm{ml} / \mathrm{I} \mathrm{MS}$ vitamins stock solution ($0.100 \mathrm{~g} / \mathrm{l}$ nicotinic acid, $0.02 \mathrm{~g} / \mathrm{l}$ thiamine $\mathrm{HCL}, 0.10 \mathrm{~g} / \mathrm{l}$ pyridoxine HCL , and $0.40 \mathrm{~g} / \mathrm{g}$ glycine brought to volume with polished $\mathrm{D}-\mathrm{I} \mathrm{H} 2 \mathrm{O}$), $0.1 \mathrm{~g} / \mathrm{l}$ myo-inositol, and $40.0 \mathrm{~g} / \mathrm{l}$ sucrose (brought to volume with polished D-I H2O after adjusting pH to 5.6); and $6 \mathrm{~g} / \mathrm{l}$ bacto-agar (added after bringing to volume with polished D-I H2O), sterilized and cooled to $60^{\circ} \mathrm{C}$.

EXAMPLE 5

Detection of site-specific Non-Homologous-End Joining (NHEJ) (indicative of target site mutation) mediated by the guide RNA/Cas9 system in stably transformed maize
[0225] Genomic DNA was extracted from stable maize shoots (obtained from maize events described in Example 3-4) on maturation plates and analyzed by quantitative PCR using a 7900 real time PCR system (Applied Biosystems, Foster City, CA) with target site-specific primers and FAM-labeled fluorescence probe to check copy number changes of the double strand break target sites. The qPCR analysis was done in duplex reactions with Alcohol DeHydrogenases (ADH) as the endogenous controls. The endogenous control probe ADH was labeled with VIC and the gene-specific probes for all the target sites were labeled with FAM for the simultaneous detection of both fluorescent probes (Applied Biosystems). PCR reaction data were captured and analyzed using the sequence detection software provided with the 7900 real time PCR system and the gene copy numbers were calculated using the relative quantification methodology (Applied Biosystems). The primers and probes for obtaining the target site copy number using qPCR at each site were as listed in Table 9 (SEQ ID NO: 147-266).

Table 9. Primers/Probes used in qPCR analyses of transgenic maize events

CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
1	49CR2	49CR2 MGB Probe	AGCGCCCAGCACC	147
		49CR2_F_1	GATTGGACGTGCGGCTGT	148
		49CR2_R_1	TAGCCATCGCGTGCCC	149
1	50-CR1	50CR1 MGB Probe	CTGCCGTTGTTGTTCA	150
		50CR1_F_1	TGTGTGAATCCCATTTCTCCTAGA	151
		50CR1_R_1	AGGTGAAGGATCGGTCGAGA	152
1	51-CR1	51CR1 MGB Probe	TAGGTAGAAATGTGAAGGTC	153
		51CR1_F_1	AGAGGTTGAGACGCTCCACG	154
		51CR1_R_1	GTGCGTGCTTTGTTTGTTTCTT	155

(continued)

CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
1	41-CR2	41CR2 MGB Probe	CCCAAGTAGCAATTACA	156
		41CR2_F_1	GGCTAGGTAATGGTTGAATCTACATATTA	157
		41CR2_R_1	TTCTGCGTTTGCTCGCCT	158
1	72-CR1	72CR1 MGB Probe	ACTTCTCCAATGCGTCACA	159
		72CR1_F_1	AGAAGCAGGCTCGCCAGAA	160
		72CR1_R_1	GCAACCCCTCCCTCGTCT	161
1	71-CR1	71CR1 MGB Probe	CCTCCATCCTTTTACCTC	162
		71CR1_F_1	CAGTTGCTGGTATGCCTTGCT	163
		71CR1_R_1	GCACAGGAGCAACCAGAATCA	164
1	81-CR1	81CR1 MGB Probe	TTGCTGATGGATCAAT	165
		81CR1_F_1	GGAGAAGAGGTGCCTTGGC	166
		81CR1_R_1	TATGTTAGCCCTAATCTCGACCGT	167
1	73-CR1	73CR1 MGB Probe	TAGTCCAGTCTTGTCATCGT	168
		73CR1_F_1	CTTACCATCTTTCATCCTTCGTCTT	169
		73CR1_R_1	TCCAGTGCATATCGCAGTTCC	170
1	14-CR4	14CR4 MGB Probe	CAAATCCTAAGGAGGACCAT	171
		14CR4_F_1	TCCGACATAAATCTGTGGTCACAT	172
		14CR4_R_1 74CR1 MGB	CGCTTCTACCATATGTAGTTGTTGC	173
1	74-CR1	Probe	TACTCCATGTGGTCATTGT	174
		74CR1_F_1	TCTGTCGCTCGTCCAAATCC	175
		74CR1_R_1	CAGGTGGGGAAGCACGAC	176
1	75-CR1	75CR1 MGB Probe	TTGCCGGTCGATGCT	177
		75CR1_F_1	CGCTTTTTTCTCCTGCTATTCTG	178
		75CR1_R_1	AAGACAGGCAGTGCCAGAGG	179
1	84-CR1	84CR1 MGB Probe	CCTAAACCTACTCTCTTGAGC	180
		84CR1_F_1	TGACACTTTGTATTGGTGCTCTTG	181
		84CR1_R_1	CAAAGGAAAGGGGAGTAACCAAC	182
1	76-CR1	76CR1 MGB Probe	TCTGAATACCCGCTCTAG	183
		76CR1_F_1	TTCATCTATCCTAATGAGACATCCTCA	184
		76CR1_R_1	AGGGTCATAATGCAAGACTCGAAT	185
1	77-CR1	77CR1 MGB Probe	TAGTTCCACTCTCGGCAAC	186
		77CR1_F_1	TGGTGAGAGAAGAGGCTTTTGG	187
		77CR1_R_1	ACACCTAGCCTAGATGCCTCAGTC	188
1	78-CR1	78CR1 MGB Probe	CCAAGCCTCTGCATCT	189
		78CR1_F_1	CGAACCTTGTCCGCGTC	190
		78CR1_R_1	CAAAGTCCCAGAGAGCTTGTTATC	191

(continued)

CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
1	85-CR1	85CR1 MGB Probe	TGCTCCTTTATCACTAGGTAT	192
		85CR1_F_1	GAATAAACTAGACGAAAAATGAGGTTGAC	193
		85CR1_R_1	AGGACTGATGAGACTTGTCTTGAGC	194
1	19-CR1	19CR1 MGB Probe	TTTGCCAATTCTTTC	195
		19CR1_F_1	GCAAAAGCTCTTAGAATATCCCTTTC	196
		19CR1_R_1	AGCTATAATAAAGTCTTCCCCTCTAGTT	197
1	86-CR1	86CR1 MGB Probe	ATTCTCTGTTAAGGAATGACT	198
		86CR1_F_1	CGGAGCATTTTTCTCCCCA	199
		86CR1_R_1	TGACTACGGATGTCAATGGAGAA	200
1	43-CR1	43CR1 MGB Probe	CCTGCTACTGCGAACC	201
		43CR1_F_1	CCAACCAGCGGCAGAGG	202
		43CR1_R_1	GCAGCGTACATGGCTCATG	203
1	11-CR1	11CR1 MGB Probe	TGTTCCAAATTCTCCTGCCT	204
		11CR1_F_1	GTTCTTATATCTGGCGATAACCACTT	205
		11CR1_R_1	TTGTAGCACTTGCACGTAGTTACATA	206
1	47-CR2	47CR2 MGB Probe	CACATACACTTGCACGGCA	207
		47CR2_F_1	TGGGAGTAGTAGTGAACGGAATACG	208
		47CR2_R_1	TCCAAAAATTATATAGCACGCACG	209
1	80-CR1	80CR1 MGB Probe	CGTCCAAGATTATCTCCT	210
		80CR1_F_1	CCACCACTCTCGCATAATAAGTGA	211
		80CR1_R_1	GCTTGGAATCAGTAGAATGGAACAC	212
1	52-CR2	52CR2 MGB Probe	TAGGCAATTTGTATCTTGCGC	213
		52CR2_F_1	ACACCTCCAGTAGCCACATCC	214
		52CR2_R_1	TGCTTTACGCTAGGTGTGTATCTTACA	215
1	87-CR1	87CR1 MGB Probe	AAACACAGACAAGTTGG	216
		87CR1_F_1	GAATCACATTCTCTCСTCCCTCTT	217
		87CR1_R_1	CGCAGAATCGGCGAGG	218
1	88-CR1	88CR1 MGB Probe	ACTGTCTAAATACTGGTATCTT	219
		88CR1_F_1	GATGGAGGATAGAATTGTATCTTTTAGGA	220
		88CR1_R_1	ACTGTCTTAATTTACTCGACTCTTTCTTA	221
1	45-CR1	45CR1 MGB Probe	ATTGCTCCTCATCCTCGA	222
		45CR1_F_1	CCACGGACTGGATTAGATAGTGGT	223
		45CR1_R_1	TCTAGCTTTGCATCATGTCTTGAAC	224
1	10-CR3	10CR3 MGB Probe	TGTCCCTGTATCTCCAAC	225
		10CR3_F_1	GGCAGGAATCAAGGCTCGT	226
		10CR3_R_1	GCCTCGCCTTCGCTAGTTAA	227

(continued)

CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
1	44-CR2	44CR2 MGB Probe	AGCCTGAGCCCATGCA	228
		44CR2_F_1	AGCCACCGCACTCCACC	229
		44CR2_R_1	GCTTCTGCGATCTGCGGT	230
1	46-CR2	46CR2 MGB Probe	CCTGTGCCATCGCT	231
		46CR2_F_1	CATGTGGCGAAGGTTGGAT	232
		46CR2_R_1	GGAAGAAAAAAGATGTTATCGAAAGC	233
2	62-CR1	62CR1 MGB Probe	AGTTGGATATGTCTAGCCG	234
		62CR1_F_1	TGAGGGAGAAATTAAACATCCAGC	235
		62CR1_R_1	TTGGCGTGAAACGGAGCT	236
2	27-CR1	27CR1 MGB Probe	TGCACCCCGTCGTC	237
		27CR1_F_1	AGAGAAAGCAGATGACACGCAC	238
		27CR1_R_1	CAAATCCGATTACCACACATTAGC	239
2	63-CR1	63CR1 MGB Probe	AGCTTACATCAGCTTTGGT	240
		63CR1_F_1	TCGAGATAACCCTAGAAAAAATGGTT	241
		63CR1_R_1	GTGGTCCACCATCGAGCAA	242
2	64-CR1	64CR1 MGB Probe	ACCGTGATTGCATTGC	243
		64CR1_F_1	TGGAAACGCTTCATATTCGGA	244
		64CR1_R_1	TCTCTCCGATGCCATTGAACTAG	245
2	30-CR1	30CR1_MGB Probe	AGGAAGGCAACGATG	246
		30CR1_F_1	ATGTTCGCCACCTTTATTTGC	247
		30CR1_R_1	CATCAACCCGTTCTGTCCCT	248
2	65-CR1	65CR1 MGB Probe	TCTCGGCCATGGATT	249
		165CR1_F_1	TGGTCGAACTCTTGCACGG	250
		65CR1_R_1	ATTTTTTGAACAAGAACCGTGGAC	251
2	66-CR1	66CR1 MGB Probe	CTGGCCGCTAGAAC	252
		66CR1_F_1	CGGAAAAGGAACAGTCTTGATTG	253
		66CR1_R_1	TGTGCTCTCTACCTTTGCATGTG	254
2	67-CR1	67CR1 MGB Probe	CGGAACTGTGAGTGACG	255
		67CR1_F_1	CTAGCCTAGCAGGAGTACGAGTTGT	256
		67CR1_R_1	TGTCCTAGTTTTTCATCTGCAATCTG	257
2	68-CR1	68CR1 MGB Probe	ATGGTCCACTTTGATAGC	258
		68CR1_F_1	GGTCGTAGTGCCGTTGATGG	259
		68CR1_R_1	CCAGTCCCTGTGTACGTGTGC	260
2	34-CR1	34CR1 MGB Probe	ACACACGTACTGCGGCGT	261
		34CR1_F_1	TGTCTTTCTTGTCGCTGTGGAT	262
		34CR1_R_1	CCACACGTCGTCCGAGTTC	263

(continued)

CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
2	$29-C R 1$	$69 C R$ MGB Probe	AACTCGTAAACCTAGCGCT	264
		69CR1_F_1	TAGCCGAAACATGACCTCTTTGA	265
		69CR1_R_1	ACCCCAATAAAACCCCCTAGC	266

[0226] The "Event Recovery frequency " was calculated using the number of events recovered divided by the total number of embryos bombarded, and may indicate if an endonuclease has some toxic effect or not. Hence, if 1000 embryos were bombarded and 200 were recovered, the Event Recovery frequency is 20%. Table 10 and Table 11 indicate that for all target sites analyzed so far, the Event Recovery frequency ranged between 14% and 39%. Targets like 74-CR1 with lower event recovery (14%) indicated some toxicity for this guide RNA/Cas system. Overall, the guide RNA/Cas system used herein showed low toxicity with variation from guide to guide.
[0227] Cas endonuclease activity was measured in-planta by determining the "Target Site Mutation frequency "(Tables 10-11) which is defined as: (number of events with target site modification / total number recovered events)*100 \%. Hence, if 200 events were recovered and 160 events showed a mutation, the Target Site Mutation frequency is 80%. The target site mutation was measured using target site allele copy number as described in Example 18 of as described in US patent application 14/463687, filed on August 20, 2014. In short, if no modification of the target site was observed, the event would be called wild type (WT), both alleles are intact, target site copy number would be 2. Events with one allele modified due to double strand break, have the target site copy number reduced to 1 (one allele). Events with both alleles of the target site modified, have a copy number of 0 (null). Events that were identified to have a target site mutation included both one allele and null events.
[0228] As shown in Table 10 and Table 11, the target site mutation frequency (Cas9 endonuclease activity) varied from target site to target site (ranging from between about 32 to about 98%), and most target sites' mutation frequency was above 50%. Over all, the guide RNA/Cas system was a very efficient double strand break system.

Table 10. Target site mutations and site specific gene integrations induced by the guide RNA/Cas9 system on a genomic window referred to as Complex Trait Locus 1 (CTL1) on Zm01 in maize

Target	Event Recovery frequency $(\%)$	TargetSite Mutationfrequency $(\%)$	Insertion frequency (HR1+HR2) (\%)
$49-C R 2$	19%	93%	$1 \%(3)$
$50--C R 1$	24%	83%	$4 \%(8)$
$41-C R 2$	39%	62%	$3 \%(9)$
$72-C R 1$	25%	93%	$2 \%(7)$
$71-C R 1$	27%	97%	$5 \%(13)$
$81-C R 1$	22%	77%	$3 \%(6)$
$73-C R 1$	24%	75%	$3 \%(7)$
$14-C R 4$	27%	98%	$1 \%(2)$
$74-C R 1$	14%	80%	$1 \%(1)$
$75-C R 1$	20%	80%	$3 \%(6)$
$84-C R 1$	25%	75%	$2 \%(6)$
$76-C R 1$	26%	75%	$7 \%(19)$
$77-C R 1$	20%	73%	$3 \%(7)$
$78-C R 1$	27%	57%	$2 \%(7)$
$85-C R 1$	19%	76%	$0.5 \%(1)$
$19-C R 1$	31%	32%	0
$86-C R 1$	22%	85%	$3 \%(7)$
$8-C R 1$	21%	94%	$5 \%(9)$

(continued)

Target	Event Recovery frequency $(\%)$	TargetSite Mutation frequency $(\%)$	Insertion frequency (HR1+HR2) (\%)
$43-C R 1$	18%	79%	$1 \%(2)$
$11-C R 1$	19%	98%	$4 \%(7)$
$47-C R 1$	20%	86%	$4 \%(7)$
$80-C R 1$	26%	98%	$2 \%(4)$
$87-C R 1$	23%	99%	$5 \%(12)$
$45-C R 1$	27%	90%	$7 \%(20)$
$44-C R 2$	24%	90%	$4 \%(9)$

Table 11. Target Site Mutations and Site Specific Gene Integration Induced by the Guide RNA/Cas9 system on a genomic window referred to as CTL2 on Zm01 in maize

Target site	\#Event recovery frequency $(\%)$	Target site mutation frequency (\%)	Insertion (HR1+HR2) frequency (\%)
62-CR1	26%	95%	$1 \%(4)$
$27 C R 1$	20%	97%	$2 \%(4)$
$63-C R 1$	23%	91%	$6 \%(15)$
$64-C R 1$	27%	84%	$5 \%(17)$
$30 C R 1$	20%	91%	$1 \%(1)$
$65-C R 1$	29%	90%	$3 \%(13)$
More in progress.			

EXAMPLE 6

Introducing transgenic SSI target sites within a maize genomic window using the guide RNA/Cas9 endonuclease system.
[0229] In order to develop a Complex Trait Locus in a genomic window of the maize genome, a method was developed to introduce transgenic SSI (site specific Integration) target sites in close proximity to a maize genomic locus of interest using the guide RNA/Cas9 endonuclease system. First, a genomic window was identified into which multiple SSI target sites in close proximity can be introduced (Figure 2A, Figures 4-7, and Example 2). The DNA sequence of the genomic window was than evaluated for the presence of any double strand break target sites, specifically for the presence of any Cas9 endonuclease target sites. Any $12-30$ bp genomic DNA sequence following the pattern NGG can be selected as a target site for the guide RNA/Cas9 endonuclease system. A guide RNA and a Cas endonuclease can be introduced either through the use of expression cassettes (as described in Example 3 and Example 4, Figure 2C), or can directly be provided to a maize cell comprising any one of the Cas9 endonuclease target sites, wherein said guide RNA and Cas endonuclease are capable of forming a complex that enables the Cas endonuclease to introduce a double strand break at the Cas endonuclease target site. These maize cells were provided with a donor DNA comprising a transgenic SSI target site comprising two recombination sites (such as but not limited to FRT1, FRT87, FRT6, Figure 2B) flanked by a first and second region of homology (Figure 2B). Optionally, the donor DNA can contain a polynucleotide of interest between the two FRT sites. These maize cells were then evaluated for the target site mutation indicating that the guide RNA/Cas endonuclease system was functional and capable of introducing a double strand break (Example 5). Upon cleavage of the Cas9 endonuclease target site, the transgenic SSI target site was introduced into the DSB target site resulting into a modified double strand break target site (aDSB, Figure 2D) comprising a transgenic SSI target site.
[0230] The integration of the transgenic SSI target sites via guide RNA/Cas9 system mediated DNA homologous recombination was determined by border-specific PCR analysis at both possible transgene genomic DNA junctions at different DSB target sites. For Example, the 5 ' end borders of $41-\mathrm{CR} 1$ events (Figure 8) were amplified as a 660 bp

EP 3191595 B1

41HR1PCR amplicon by PCR with primers while the 3 ' borders of the same events were amplified as a 655 bp HR2PCR amplicon. Any event with both the 5^{\prime} border and 3^{\prime} border-specific bands amplified was considered as a site-specific integration event containing the transgene target site from the donor DNA fragment. All the border-specific PCR fragments were sequenced and were all confirmed to be recombined sequences. Border PCR assays for other DSB sites were carried out with the same approach with the specific border primers. On average, integration of the transgenic target sites through the guide RNA/Cas9 mediated homologous recombination occurred at 0.5% to 7% of the total recovered transgenic events (Insertion frequency, Table 10 and 11). Integration events were obtained in 28 out of 30 sites at CTL1 region, a 90% successful rate without any pre-screening indicating that the guide RNA/Cas endonuclease system is very robust and efficient system for introducing transgenic target sites at specific genomic locations.
[0231] The Introduction of the transgenic SSI target sites comprising the FRT1 and FRT87(or FRT6) recombination sites in these Cas9 endonuclease target sites enables the use the FLP/FRT technology to perform gene stacking by the SSI technology and develop a complex trait loci within a genomic window.

EXAMPLE 7

DNA constructs to test the guide RNA/Cas endonuclease system for soybean genome modifications
[0232] A soybean codon optimized Cas9 (SO) gene (SEQ ID NO: 313) from Streptococcus pyogenes M1 GAS (SF370) was expressed with a strong soybean constitutive promoter GM-EF1A2 (described in US patent 8697817, issued on April 15, 2014). A simian vacuolating virus 40 (SV40) large T-antigen nuclear localization signal PKKKRKV with a linker SRAD, (SRADPKKKRKV SEQ ID NO: 314) was added to the carboxyl terminus of the codon optimized Cas9 to facilitate transporting the codon optimized Cas9 protein to the nucleus. In some other constructs, the Simian virus 40 (SV40) monopartite nuclear localization signal (MAPKKKRKV, SEQ ID NO: 309) was incorporated at the amino terminal and Agrobacterium tumefaciens bipartite VirD2 T-DNA border endonuclease nuclear localization signal (KRPRDRHDGELGGRKRAR; SEQ ID NO: 310) were incorporated at the carboxyl-termini of the Cas9 open reading frame respectively. The codon optimized Cas9 gene was synthesized as two pieces by GenScript USA Inc. (Piscataway, NJ) and cloned in frame downstream of the GM-EF1A2 promoter to make Cas9 expression DNA constructs (as described in US patent application 14/463687 filed on August 20, 2014)
[0233] Approximately 0.5 kb genomic DNA sequence upstream of the first G nucleotide of a soybean U6 small nuclear RNA (snRNA) genes was selected to be used as a RNA polymerase III promoter (as described in US patent application $14 / 463687$ filed on August 20, 2014). For example, GM-U6-13.1 promoter, (SEQ ID NO: 315), was used to express guide RNAs which direct Cas9 nuclease to designated genomic sites (as described in US patent application 14/463687 filed on August 20, 2014). The guide RNA coding sequence was 76 bp long and comprised a 19 to 20 bp variable targeting domain from a chosen soybean genomic target site on the 5 ' end and a tract of 4 or more T residues as a transcription terminator on the 3 ' end. The first nucleotide of the 20 bp variable targeting domain was a G residue to be used by RNA polymerase III for transcription initiation. If the first base is not endogenously a G residue it can be replaced with a G residue in guide RNA target sequence to accommodate RNA polymerase III, which should not sacrifice recognition specificity of the target site by the guide RNA. The U6 gene promoter and the complete guide RNA was synthesized and then cloned into an appropriate vector.
[0234] The Cas9 endonuclease and guide RNA expression cassettes were linked into a single DNA construct (as described in US patent application 14/463687 filed on August 20, 2014), which was then used to transform soybean cells to test the soybean optimized guide RNA/Cas system for genome modification. Similar DNA constructs were made to target different genomic sites using guide RNAs containing different target sequences as described in Example 9.

EXAMPLE 8

Selection of soybean genomic windows for the introduction of transgenic SSI target sites by the guide RNA/Cas endonuclease system and Complex Trait Loci development.
[0235] Three soybean genomic regions (also referred to as genomic windows) were identified for the production of Complex Trait Loci comprising a combination of transgenic SSI sites introduced into that genomic window by a soybean optimized guide RNA/ Cas9 endonuclease system described herein.
[0236] The first soybean genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Gm04:45593558 (flanked by public SNP marker BARC_1.01_Gm04_45591011_C_T) to Gm04:45937320 (flanked by public SNP marker BARC_1.01_Gm04_46113406_T_G) on chromosome 4 (Figure 9). Table 12 shows the physical and genetic map position for a multitude of soybean SNP markers (Song, Q et al. (2013), Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PloS one, 8(1), e54985) and Cas endonuclease target sites (D6-CR1, D6-CR3, DD49-CR2, DD49-CR3, DD43-CR1, DD43-CR2, DD38-CR1, DD38-CR2, DD52-CR1,

DD52-CR3, DD20-CR1, DD20-CR2, DD51-CR1 and DD51-CR2) within this genomic window of interest on the soybean chromosome 4. The genetic map positions of a public 4.0 soybean genetic map as well as the genetic map position of an internally derived DuPont-Pioneer map (PHB) are shown in Table 12.

Table 12. Genomic Window comprising a Complex Trait Locus D (CTL-D) on

Chromosome 4 of soybean.

Name of public SNP markers (*)or	Cas		Genetic	
	endonucleas			
	e target or		Genetic	Position
Cas endonuclease target site	SNP marker		Position	PHB
	sequence		Public	map
	(SEQ ID NO:)	Physical location	4.0 map	
BARC_1.01_Gm04_45591011_C				
_T ${ }^{*}$)	316	Gm04:45591011	88.56	103.29
		Gm04:45593558..4	88.59	103.30
D6-CR1	317	5593579	88.59	103.30

$\left.\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}\text { Gm04: } \\ \text { L5593565..455935 }\end{array} & 88.59\end{array}\right) 103.30$
[0237] The second soybean genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Gm06:47537067 (flanked by public SNP marker BARC_1.01_Gm06_46915875_T_C) to Gm06:47864578 (flanked by public SNP marker BARC_1.01_Gm06_48528885_G_T) on chromosome 6 (Figure 10). Table 13 shows the physical and genetic map position for a multitude of soybean SNP markers (Song, Q et al. (2013) PloS one, 8(1), e54985) and Cas endonuclease target sites (XA9-CR1, XA9-CR2, XA1-CR1, XA1-CR3, XB9-CR1, XB9-CR2, XB5-CR1, XB5CR2, XB11-CR1, XB11-CR2) within this genomic window of interest on the soybean chromosome 6.

Table 13. Genomic Window comprising a Complex Trait Locus X (CTL-X) on

Chromosome 6 of soybean.

Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical location	Genetic Position Public 4.0 map	Genetic Position PHB map
BARC_1.01_Gm06_46915875_T_C (*)	340	Gm06:46915875	111.69	131.45
BARC_1.01_Gm06_47524452_G_T (*)	341	Gm06:47524452	113.11	134.14
XA9-CR1	342	$\begin{aligned} & \text { Gm06:47537067.. } 47 \\ & 537089 \end{aligned}$	113.11	134.20
XA9-CR2	343	$\begin{aligned} & \text { Gm06:47537127..47 } \\ & 537106 \end{aligned}$	113.11	134.20
BARC_1.01_Gm06_47561262_C_T (*)	344	Gm06:47561262	113.13	134.31
BARC_1.01_Gm06_47625670_C_T (*)	345	Gm06:47625670	113.16	134.72
XA1-CR1	346	$\begin{aligned} & \text { Gm06:47626401. } 47 \\ & 626422 \end{aligned}$	113.16	134.73
XA1-CR3	347	$\begin{aligned} & \text { Gm06:47626395.. } 47 \\ & 626374 \end{aligned}$	113.16	134.73
BARC_1.01_Gm06_47631544_T_C (*)	348	Gm06:47631544	113.16	134.77
BARC_1.01_Gm06_47789229_C_T (*)	349	Gm06:47789229	113.41	135.92
XB9-CR1	350	$\begin{aligned} & \text { Gm06:47802683.. } 47 \\ & 802704 \end{aligned}$	113.74	136.07
XB9-CR2	351	$\begin{aligned} & \text { Gm06:47802756.. } 47 \\ & 802778 \end{aligned}$	113.75	136.08

BARC_1.01_Gm06_47821576_T_G (*)	352	Gm06:47821576	114.18	136.29
BARC_1.01_Gm06_47829363_A_C (*)	353	Gm06:47829363	114.21	136.38
XB5-CR1	354	$\begin{aligned} & \text { Gm06:47830474.478 } \\ & 30496 \end{aligned}$	114.21	136.39
XB5-CR2	355	$\begin{aligned} & \text { Gm06:47830453.478 } \\ & 30474 \end{aligned}$	114.21	136.39
BARC_1.01_Gm06_47833095_A_G (*)	356	Gm06:47833095	114.22	136.42
BARC_1.01_Gm06_47847021_G_T (*)	357	Gm06:47847021	114.26	136.60
XB11-CR1	358	$\begin{aligned} & \text { Gm06:47864569.. } 47 \\ & 864590 \end{aligned}$	114.30	136.93
XB11-CR2	359	$\begin{aligned} & \text { Gm06:47864557.. } 47 \\ & 864578 \end{aligned}$	114.30	136.93
BARC_1.01_Gm06_47895876_G_A (*)	360	Gm06:47895876	114.39	137.53
BARC_1.01_Gm06_48221293_T_C (*)	361	Gm04:48221293	115.32	140.63
BARC_1.01_Gm06_48528885_G_T (*)	362	Gm06:48528885	116.19	143.52

[0238] The third soybean genomic window that was identified for the development of a Complex trait Locus (CTL) spans from Gm01:7835614 (flanked by public SNP marker BARC_1.01_Gm01_6984873_T_C) to Gm01:32717275 (flanked by public SNP marker BARC_1.01_Gm01_36994849_A_G) on chromosome 1 (Figure 11). Table 14 shows the physical and genetic map position for a multitude of soybean SNP markers (Song, Q et al. (2013). Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PloS one, 8(1), e54985) and Cas endonuclease target sites (RA1-CR1, RA1-CR2, RA3-CR1, RA3-CR2, RA13-CR1, RA13-CR2, RC9-CR1, RC9-CR2, RC19-CR1, RC19-CR2, RC1-CR1, RC1-CR2, RB1-CR1, RB1-CR2, RB7-CR1 and RB7-CR2) within this genomic window of interest on the soybean chromosome 1.

Table 14. Genomic Window comprising a Complex Trait Locus R (CTL-R) on
Chromosome 1 of soybean.

Name of public SNP markers (*) or Cas endonuclease target site	endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical location	Genetic Position PHB map
BARC_1.01_Gm01_6984873_T_C (*)	363	Gm01:6984873	46.69
$\underset{\left({ }^{*}\right)}{\underset{A}{\text { BARC_1 }}}$	364	Gm01:7775299	48.08
RA1-CR1	365	Gm01:7835614..7835635	48.11
RA1-CR2	366	Gm01:7835636..7835615	48.11
$\underset{(*)}{\text { BARC_1.01_Gm01_7856395_A_C }}$ (*)	367	Gm01:7856395	48.12
BARC_1.01_Gm01_8569887_A_G (*)	368	Gm01:8569887	48.54
BARC_1.01_Gm01_8601858_C_T (*)	369	Gm01:8601858	48.59
RA3-CR1	370	Gm01:8640527..8640505	48.64
RA3-CR2	371	Gm01:8640496..8640518	48.64
$\underset{\left({ }^{*}\right)}{\text { BARC_1.01_Gm01_8641430_C_T }}$	372	Gm01:8641430	48.64
$\begin{aligned} & \text { BARC_1.01_Gm01_8674202_A_C } \\ & \left({ }^{*}\right) \end{aligned}$	373	Gm01:8674202	48.73
```BARC_1.01_Gm01_8933345_C_T (*)```	374	Gm01:8933345	49.11
$\underset{\left({ }^{*}\right)}{\text { BARC_1.01_Gm01_8964201_T_C }}$	375	Gm01:8964201	49.16
RA13-CR1	376	Gm01:8967870..8967891	49.16
RA13-CR2	377	Gm01:8967909..8967888	49.16
$\underset{\left({ }^{*}\right)}{\text { BARC_1.01_Gm01_9014216_T_G }}$	378	Gm01:9014216	49.23
$\underset{\left({ }^{*}\right)}{\text { BARC_1.01_Gm01_28179606_A_G }}$	379	Gm01:28179606	51.53
RC9-CR1	380	Gm01:28347890..2834791 2	51.78
RC9-CR2	381	Gm01:28347966..2834798 7	51.78
BARC_1.01_Gm01_28364595_A_G $\left(^{\star}\right)$	382	Gm01:28364595	51.83
BARC_1.01_Gm01_28536363_G_A (*)	383	Gm01:28536363	52.34
RC19-CR1	384	Gm01:28565100..2856507 8	52.42



$\begin{aligned} & \text { Gm01:28565047.. } 2856506 \\ & 9 \end{aligned}$	52.42
Gm01:28599526	52.52
Gm01:28913996	52.98
```Gm01:28943206..2894322 8```	52.99
$\begin{aligned} & \text { Gm01:28943240.. } 2894321 \\ & 9 \end{aligned}$	52.99
Gm01:29284158	53.15
Gm01:31202345	53.31
$\begin{aligned} & \text { Gm01:31769791.. } 3176981 \\ & 3 \end{aligned}$	53.47
$\begin{aligned} & \text { Gm01:31769811.. } 3176978 \\ & 9 \end{aligned}$	53.47
Gm01:31770743	53.47
Gm01:32683433	54.11
```Gm01:32717222..3271724 3```	54.12
```Gm01:32717275..3271725 3```	54.12
Gm01:34327255	54.80
Gm01:36994849	56.42

EXAMPLE 9

Guide RNA expression cassettes, Cas9 endonuclease expression cassettes and donor DNA's for introduction of transgenic SSI target sites in a soybean genomic window.
[0239] The soybean U6 small nuclear RNA promoters GM -U6-9.1 (SEQ ID NO: 414) or GM-U6-13.1 (SEQ ID. NO: 315) were used to express guide RNAs to direct Cas9 nuclease to designated genomic target sites (Table 15). A soybean codon optimized Cas9 endonuclease expression cassette and a guide RNA expression cassette were linked in a first plasmid that was co-delivered with a second plasmid comprising a donor DNA (repair DNA) cassette. The donor DNA contained FRT1/FRT87 recombination sites for site specific integration, flanking a selectable marker (such as but not limited to the hygromycin selectable Marker (HPT) and a terminator (such as but not limited to a nopaline synthase terminator,NOS) (Figure 2B) which upon integration by homologous recombination with the guide RNA/Cas9 endonuclease system created the FRT1/FRT87 target lines for SSI technology application (Figure 2D).
[0240] The guide RNA (gRNA)/Cas9 DNA constructs targeting various soybean genomic sites that were constructed for the introduction of transgenic SSI target sites into Cas endonuclease target sites through homologous recombination are listed in Table 15, Table 16, and Table 17. Tables 18, 19, and 20 list the guide RNAs that were expressed from the guide RNA constructs and the bases of the guide RNA that comprise the variable targeting domain are as well. All the guide RNA/Cas9 constructs differed only in the 19 to 20 bp guide RNA variable targeting domain targeting the soybean genomic target sites. All the donor DNA constructs differed only in the homologous regions such as D6HR1 and D6HR2. These guide RNA/Cas9 DNA constructs and donor DNAs were co-delivered to elite (93B86) or a non-elite (Jack) soybean genome by the stable transformation procedure described in Example 10.

Table 15. Guide RNA/Cas9 used in Soybean Stable Transformation for the Complex Trait Locus, CTL-D, on Gm04

Experiment	Guide RNA/Cas9	SEQ ID NOs:
U6-13.1D6CR1	U6-13.1:D6CR1+EF1A2:CAS9 (QC882)	400
U6-13.1D6CR3	U6-13.1:D6CR3+EF1A2:CAS9 (QC883)	401
U6-13.1DD49CR2	U6-13.1:DD49CR2+EF1A2:CAS9 (QC884)	402
U6-13.1 DD49CR3	U6-13.1:DD49CR3+EF1A2:CAS9 (QC885)	403
U6-9.1 DD43CR1	U6-9.1:DD43CR1+EF1A2:CAS9 (QC799)	404
U6-13.1 DD43CR2	U6-13.1:DD43CR2+EF1A2:CAS9 (QC816)	405
U6-13.1 DD38CR1	U6-13.1:DD38CR1+EF1A2:CAS9 (QC886)	406
U6-13.1 DD38CR2	U6-13.1:DD38CR2+EF1A2:CAS9 (QC887)	407
U6-13.1 DD52CR1	U6-13.1:DD52CR1+EF1A2:CAS9 (QC888)	408
U6-13.1 DD52CR3	U6-13.1:DD52CR3+EF1A2:CAS9 (QC889)	409
U6-9.1DD20CR1	U6-9.1:DD20CR1+EF1A2:CAS9 (QC810)	410
U6-13.1DD20CR2	U6-13.1:DD20CR2+EF1A2:CAS9 (QC818)	411
U6-13.1DD51CR1	U6-13.1:DD51CR1+EF1A2:CAS9 (QC890)	412
U6-13.1DD51CR2	U6-13.1:DD51CR2+EF1A2:CAS9 (QC891)	413

Table 16. Guide RNA/Cas9 used in Soybean Stable Transformation for the Complex Trait Locus, CTL-X, on Gm06.

Experiment	Guide RNA/Cas9	SEQ ID NOs:
U6-13.1XA9CR1	U6-13.1:XA9CR1+EF1A2:CAS9 (RTW1116)	415
U6-13.1XA9CR2	U6-13.1:XA9CR2+EF1A2:CAS9 (RTW1117)	416
U6-13.1XA1CR1	U6-9.1:XA1CR1+EF1A2:CAS9 (RTW1114)	417
U6-13.1XA1CR3	U6-13.1:XA1CR3+EF1A2:CAS9 (RTW1181)	418
U6-13.1XB9CR1	U6-13.1:XB9CR1+EF1A2:CAS9 (RTW1120)	419
U6-13.1XB9CR2	U6-13.1:XB9CR2+EF1A2:CAS9 (RTW1121)	420
U6-13.1XB5CR1	U6-13.1:XB5CR1+EF1A2:CAS9 (RTW1118)	421
U6-13.1XB5CR2	U6-13.1:XB5CR2+EF1A2:CAS9 (RTW1119)	422
U6-13.1XB11CR1	U6-13.1:XB 11 CR 1+EF 1 A2:CAS9 (RTW1122)	423
U6-13.1XB11CR2	U6-13.1:XB 11 CR2+EF 1 A2:CAS9 (RTW1123)	424

Table 17. Guide RNA/Cas9 used in Soybean Stable Transformation for the Complex Trait Locus, CTL-R, on Gm01.

Experiment	Guide RNA/Cas9	SEQ ID NOs:
U6-13.1RA1CR1	U6-13.1:RA1CR1+EF1A2:CAS9 (RTW1096)	425
U6-13.1RA1CR2	U6-13.1:RA1CR2+EF1A2:CAS9 (RTW1097)	426
U6-13.1RA3CR1	U6-13.1:RA3CR1+EF1A2:CAS9 (RTW1098)	427
U6-13.1RA3CR2	U6-13.1:RA3CR2+EF1A2:CAS9 (RTW1099)	428
U6-13.1RA13CR1	U6-13.1:RA13CR1+EF1A2:CAS9 (RTW11 00)	429
U6-13.1RA13CR2	U6-13.1 :RA13CR2+EF1A2:CAS9(RTW1101)	430

EP 3191595 B1
(continued)

Table 18. Guide RNAs used in soybean transformation for the Complex Trait Locus on CTL-D

Guide RNA name	SEQ ID NO:	Variable targeting domains
D6-CR1	441	Base 2-20
D6-CR3	442	Base 2-20
DD49-CR2	443	Base 1-20
DD49-CR3	444	Base 2-20
DD43-CR1	445	Base 1-20
DD43-CR2	446	Base 1-20
DD38-CR1	447	Base 2-20
DD38-CR2	448	Base 2-20
DD52-CR1	449	Base 2-20
DD52-CR3	450	Base 2-20
DD20-CR1	451	Base 1-20
DD20-CR2	452	Base 1-20
DD51-CR1	453	Base 2-20
DD51-CR2	454	Base 1-20

Table 19. Guide RNA used in soybean transformation for the Complex Trait Locus on CTL-X

Guide RNA name	SEQ ID NO:	Variable targeting domains
XA9-CR1	455	Base 1-20
XA9-CR2	456	Base 2-20
XA1-CR1	457	Base 2-20
XA1-CR3	458	Base 2-20
XB9-CR1	459	Base 2-20
XB9-CR2	460	Base 1-20
XB5-CR1	461	Base 1-20

EP 3191595 B1
(continued)

Guide RNA name	SEQ ID NO:	Variable targeting domains
XB5-CR2	462	Base 2-20
XB11-CR1	463	Base 2-20
XB11-CR2	464	Base 2-20

Table 20. Guide RNA used in soybean transformation for the Complex Trait Locus on CTL-R

Guide RNA name	SEQ ID NO:	Variable targeting domains
RA1-CR1	465	Base 2-20
RA1-CR2	466	Base 2-20
RA3-CR1	467	Base 1-20
RA3-CR2	468	Base 1-20
RA13-CR1	469	Base 2-20
RA13-CR2	470	Base 2-20
RC9-CR1	471	Base 1-20
RC9-CR2	472	Base 2-20
RC19-CR1	473	Base 1-20
RC19-CR2	474	Base 1-20
RC1-CR1	475	Base 1-20
RC1-CR2	476	Base 2-20
RB1-CR1	477	Base 1-20
RB1-CR2	478	Base 1-20
RB7-CR1	479	Base 2-20
RB7-CR2	480	Base 1-20

EXAMPLE 10

Delivery of the guide RNA/Cas9 endonuclease system DNA to soybean by stable transformation
[0241] The guide RNA/Cas9 DNA constructs and donor DNAs described in Example 9 were co-delivered to an elite (93B86) and/or a non-elite (Jack) soybean genome by the stable transformation procedure described below.
[0242] Soybean somatic embryogenic suspension cultures were induced from a DuPont Pioneer proprietary elite cultivar 93B86 or non-elite Jack as follows. Cotyledons ($\sim 3 \mathrm{~mm}$ in length) were dissected from surface sterilized, immature seeds and were cultured for $6-10$ weeks in the light at $26^{\circ} \mathrm{C}$ on a Murashige and Skoog (MS) media containing 0.7% agar and supplemented with $10 \mathrm{mg} / \mathrm{ml} 2,4-\mathrm{D}$ (2,4-Dichlorophenoxyacetic acid). Globular stage somatic embryos, which produced secondary embryos, were then excised and placed into flasks containing liquid MS medium supplemented with 2,4-D ($10 \mathrm{mg} / \mathrm{ml}$) and cultured in light on a rotary shaker. After repeated selection for clusters of somatic embryos that multiplied as early, globular staged embryos, the soybean embryogenic suspension cultures were maintained in 35 ml liquid media on a rotary shaker, 150 rpm , at $26^{\circ} \mathrm{C}$ with fluorescent lights on a $16: 8$ hour day/night schedule. Cultures were subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 ml of the same fresh liquid MS medium.
[0243] Soybean embryogenic suspension cultures were then transformed by the method of particle gun bombardment using a DuPont Biolistic ${ }^{\text {TM }}$ PDS1000/HE instrument (Bio-Rad Laboratories, Hercules, CA). To $50 \mu \mathrm{l}$ of a $60 \mathrm{mg} / \mathrm{ml} 1.0$ mm gold particle suspension were added in order: 30μ l of equal amount ($30 \mathrm{ng} / \mu \mathrm{l}$) plasmid DNA comprising, for example, U6-9.1:DD20CR1+EF1A2:CAS9 and plasmid DNA comprising, for example, (DD20HR1-SAMS:HPT-DD20HR220 μ l of 0.1 M spermidine, and $25 \mu \mathrm{l}$ of $5 \mathrm{M} \mathrm{CaCl}_{2}$. The particle preparation was then agitated for 3 minutes, spun in a centrifuge

EP 3191595 B1

for 10 seconds and the supernatant removed. The DNA-coated particles were then washed once in $400 \mu \mathrm{l} 100 \%$ ethanol and resuspended in 45μ l of 100% ethanol. The DNA/particle suspension was sonicated three times for one second each. Then 5μ l of the DNA-coated gold particles was loaded on each macro carrier disk.
[0244] Approximately $300-400 \mathrm{mg}$ of a two-week-old suspension culture was placed in an empty $60 \times 15 \mathrm{~mm}$ Petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5 to 10 plates of tissue were bombarded. Membrane rupture pressure was set at 1100 psi and the chamber was evacuated to a vacuum of 28 inches mercury. The tissue was placed approximately 3.5 inches away from the retaining screen and bombarded once. Following bombardment, the tissue was divided in half and placed back into liquid media and cultured as described above.
[0245] Five to seven days post bombardment, the liquid media was exchanged with fresh media containing $30 \mathrm{mg} / \mathrm{ml}$ hygromycin as selection agent. This selective media was refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue was observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue was removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each clonally propagated culture was treated as an independent transformation event and subcultured in the same liquid MS media supplemented with 2,4-D ($10 \mathrm{mg} / \mathrm{ml}$) and $30 \mathrm{ng} / \mathrm{ml}$ hygromycin selection agent to increase mass. The embryogenic suspension cultures were then transferred to agar solid MS media plates without 2,4D supplement to allow somatic embryos to develop. A sample of each event was collected at this stage for quantitative PCR analysis.
[0246] Cotyledon stage somatic embryos were dried-down (by transferring them into an empty small Petri dish that was seated on top of a 10 cm Petri dish containing some agar gel to allow slow dry down) to mimic the last stages of soybean seed development. Dried-down embryos were placed on germination solid media and transgenic soybean plantlets were regenerated. The transgenic plants were then transferred to soil and maintained in growth chambers for seed production. Transgenic events were sampled at somatic embryo stage or T0 leaf stage for molecular analysis.

EXAMPLE 11

Detection of Site-specific NHEJ Mediated by the Guide RNA/Cas9 System in Stably Transformed Soybean

[0247] Genomic DNA was extracted from somatic embryo samples of soybean events generated as described in Examples $9-10$ and analyzed by quantitative PCR using a 7500 real time PCR system (Applied Biosystems, Foster City, CA) with target site-specific primers and FAM-labeled fluorescence probe to check copy number changes of the double strand break target sites. The qPCR analysis was done in duplex reactions with a syringolide induced protein (SIP) as the endogenous controls and a wild type 93B86 genomic DNA sample that contains one copy of the target site with 2 alleles, as the single copy calibrator. The presence or absence of the guide RNA -Cas9 expression cassette in the transgenic events was also analyzed with the qPCR primer/probes for gRNA/Cas9 and for Pinll. The qPCR primers/probes for all the DSB target sites are listed in Table 21.

Table 21. Primers/Probes used in qPCR analyses of transgenic soybean events

Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
D6-CR1	D6-F	GAGAACGAGCACACATGTCGAT	481
	D6-R	GGTTTAGTTTGGCGTTGGTAAAA	482
	D6-T (FAM-MGB)	TGGTTTCAATCTAAGAATG	483
D6-CR3	D6-F2	AACCAAATAAACTCCATTCTCACGA G	484
	D6-R	GGTTTAGTTTGGCGTTGGTAAAA	482
DD49-CR2	D6-T (FAM-MGB)	TGGTTTCAATCTAAGAATG	483
	DD49-R	ATCTGCCACTTCATTTACTCAACTTG	485
	DD49-T (FAM-MGB)	AGCTTTCTCTCATCAAAA	486

(continued)

Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
DD49-CR3	DD49-F6	TACTACAACTCAAAGTCATATTTTTCAG G	488
	DD49-R	TGTATGGTGTCAAGTATGAAGTTTA TAGTGA	486
	DD49-T (FAM-MGB)	AGCTTTCTCTCATCAAAA	487
DD43-CR1	DD43-F	TTCTAGAATACCCTCCGTACGTACA A	489
	DD43-R	CCCAGATGATTCTCTTTTCACTATTG	490
	DD43-T(FAM-MGB)	CAAGGGACTTGTGAGTTGT	491
DD43-CR2	DD43-F2	AAAGAAGAGGCAGACTCCAATTCCT C	492
	DD43-R	CCCAGATGATTCTCTTTTCACTATTG	490
	DD43-T (FAM-MGB)	CAAGGGACTTGTGAGTTGT	491
DD38-CR1	DD38-F4	TCCATTTTGTCTGTTCTCCATGGAT G	493
	DD38-R	CACATTGTCCCAGTCACAGAAAG	494
	DD38-T (FAM-MGB)	AGATGCGGTAAATTAT	495
DD38-CR2	DD38-F5	ACGTGATGCATCATAGATGCGG	496
	DD38-R2	AGTGTTCTGGCACAAGGTTTACC	497
	DD38-T2 (FAM-MGB)	CTCCTCCAGTGGCCAC	498
DD52-CR1	DD52-F	TCCCTGAAATTTGTGGTTGGTAA	499
	DD52-R2	TACTAGGAAATGACTGTGGCAC	500
	DD52-T (FAM-MGB)	CATGGCGTAACCCGTGAT	501
DD52-CR3	DD52-F3	CCCTTTTAAGGAAAAAAACTACGTC AT	502
	DD52-R4	ACATGGCACTGTAACATCAC	503
	DD52-T2 (FAM-MGB)	CCCTGAAATTTGTGGTTGG	504
DD20- CR1\&CR2	DD20-F	ATTCGGAACTGACACACGACAT	505
	DD20-R	TCGACATGCAAAGTCAAAAACC	506
	DD20-T (FAM-MGB)	ATGGAACGTGACTAAGG	507
DD51CR1\&CR2	DD51-F	CGATAACGAGAAGGAGATACATAAG GT	508
	DD51-R	TGAACTTCTTCATCCCCATAATTG	509
	DD51-T (FAM-MGB)	CGTTGTTGTGTGAGGTAC	510
RA1-CR1	RA1-F	CCAAAGGCACGTACGTAAAGG	511
	RA1-R	TTGCAATTGTGCACTGTTTTTTT	512
	RA1-T (FAM-MGB)	AGCACATGTTCTAATGAA	513

(continued)

Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
RA1-CR2	RA1-F2	CACACACAAAAATTACCAAAGGC	514
	RA1-R	TTGCAATTGTGCACTGTTTTTTT	512
	RA1-T(FAM-MGB)	AGCACATGTTCTAATGAA	513
RA3-CR1\&CR2	RA3-F	TTTGGTGTCCACAGAATATTCGA	515
	RA3-R	CTTTAATGCATTGTTTTGGATAGTCA TC	516
	RA3-T(FAM-MGB)	AGATGTAGTACCACACTAACTA	517
RA13CR1\&CR2	RA13-F	CTGCACTCACCGGCAAAGT	518
	RA13-R	ACCTCTCTATCCCTTCTTTCTTCGT	519
	RA13-T(FAM-MGB)	CTCTCCAATAAAGAGAATAGA	520
RC9-CR1\&CR2	RC9-F	AAGTGAGATGTGGTGCGTACGTAG G	521
	RC9-R		522
	RC9-T (FAM-MGB)	ATTCTTAAAAAAGATCGAAGGAC	523
RC19CR1\&CR2	RC19-F	GAATTCAGGTCGGATCCAAGAT	524
	RC19-R	GTGCTATGGTGCTCGTGTAAGG	525
	RC19-T (FAM-MGB)	TGAGTGATCGGAGTTTC	526
RC1-CR1\&CR2	RC1-F	CAACACCAACACCCTTTCTAACAG	527
	RC1-R2	AAGGCCCCCCGTGCAGG	528
	RC1-T (FAM-MGB)	AGCATCAAAATTGGC	529
RB1-CR1	RB1-F	CCCCGGTTTCGTACAACAATGGCA	530
	RB1-R	CATCCTCGCTACTCTCTAAGACAAT G	531
	RB1-T (FAM-MGB)	CTTGATCTCAATTCCG	532
RB1-CR2	RB1-F2	AATCTATTATCCCCCGGTTTCG	533
	RB1-R	CATCCTCGCTACTCTCTAAGACAAT G	531
	RB1-T (FAM-MGB)	CTTGATCTCAATTCCG	532
RB7-CR1	RB7-F1	CCCTATATGACTAGGAAAATTCAGG	534
	RB7-R	GCTACATTTGGTTGGGTCACTTG	535
	RB7-T (FAM-MGB)	TCGGTCCCTATGCCTAT	536
RB7-CR2	RB7-F2	CAGGTACGGACCACCACTAATGG	537
	RB7-R	GCTACATTTGGTTGGGTCACTTG	535
	RB7-T (FAM-MGB)	TCGGTCCCTATGCCTAT	536
XA9-CR1\&CR2	XA9-F	GAAACTTTTGTGAGCAAGTAGGTAG CT	538

(continued)

Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
	XA9-R	ATGGCAAGAACAAGACCAAAGAC	539
	XA9-T (FAM-MGB)	AGAGTCAAGACCAATTAATGA	540
XA1-CR1	XA1-F2	ATGAAGTGTGAGTGGGCAAGTG	541
	XA1-R	GTCCTCACCGCCATGCACT	542
	XA1-T2 (FAM-MGB)	CGTTTCTTCCACGATTAT	543
XA1-CR3	XA1-F	GCGTTTCTTCCACGATTATGTG	544
	XA1-R	GTCCTCACCGCCATGCACT	542
	XA1-T (FAM-MGB)	TGGCCGCAACGACAA	545
XB9-CR1\&CR2	XB9-F	ATTATTACACAATTTAGTTGCCTGAC GG	546
	XB9-R	TGTGGTGATAGATCCCCTTTTATAG G	547
	XB9-T (FAM-MGB)	TTTTTTTCATCCAACCTTGTCA	548
XB5-CR1	XB5-F1	GGTTCAGGTTGTTGTACGACATG	549
	XB5-R	GTTGAATGGTATGATGTTACTGAGC TTAT	550
	XB5-T(FAM-MGB)	TTGTGGATACGGTAGTTGTG	551
XB5-CR2	XB5-F2	TTATTGTATGAAGACATGAATCATTG AGG	552
	XB5-R	GTTGAATGGTATGATGTTACTGAGC TTAT	550
	XB5-T (FAM-MGB)	TTGTGGATACGGTAGTTGTG	551
XB11-CR1	XB11-F	GTGCCATTTGCCCATTATGTATG	553
	XB11-R	CTTGTTGGTACTTCATGCTAGTAGA TTTC	554
	XB11-T (FAM-MGB)	TGCAAGTTGGGTTATGAAATTGGT	555
XB11-CR2	XB11-F3	CATTATGTATGATGCAAGTTGGG	556
	XB 11-R2	CATGGGTTATGATCCTCAAAGTCA	557
	XB11-T2 (FAM-MGB)	AGCTACGTGATCTGATG	558
gRNA/CAS9	Cas9-F	CCTTCTTCCACCGCCTTGA	559
	Cas9-R	TGGGTGTCTCTCGTGCTTTTT	560
	Cas9-T (FAM-MGB)	AATCATTCCTGGTGGAGGA	561
pINII	pINII-99F	TGATGCCCACATTATAGTGATTAGC	562
	pINII-13R	CATCTTCTGGATTGGCCAACTT	563
	pINII-69T (FAM-MGB)	ACTATGTGTGCATCCTT	564
Donor DNA	Sams-76F	AGGCTTGTTGTGCAGTTTTTGA	565
	FRT1-41R	GCGGTGAGTTCAGGCTTTTTC	566
	FRT1-63T	TGGACTAGTGGAAGTTCCTATA	567

EP 3191595 B1

(continued)

Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
SIP	SIP-130F	TTCAAGTTGGGCTTTTTCAGAAG	568
	SIP-198R	TCTCCTTGGTGCTCTCATCACA	569
	SIP-170T (VIC-MGB)	CTGCAGCAGAACCAA	570

[0248] The endogenous control probe SIP-T was labeled with VIC and the gene-specific probes for all the target sites were labeled with FAM for the simultaneous detection of both fluorescent probes (Applied Biosystems). PCR reaction data were captured and analyzed using the sequence detection software provided with the 7500 real time PCR system and the gene copy numbers were calculated using the relative quantification methodology (Applied Biosystems).
[0249] Since the wild type Jack or 93B86 genomic DNA with two alleles of the double strand break target site was used as the single copy calibrator, events without any change of the target site would be detected as one copy herein termed Wt-Homo (qPCR value >=0.7), events with one allele changed, which is no longer detectible by the target sitespecific qPCR, would be detected as half copy herein termed NHEJ-Hemi (qPCR value between 0.1 and 0.7), while events with both alleles changed would be detected as null herein termed NHEJ-Null (q PCR value $=<0.1$). The wide range of the qPCR values suggested that most of the events contained mixed mutant and wild type sequences of the target site. As shown in Table 23, the Double Strand Break (DSB) efficiency varied from site to site and from one guide RNA/Cas9 endonuclease system to another on the same target. For example, the D6 CR1 provided 19\% NHEJ-Hemi and 57% NHEJ-Null (a very efficient DSB reagent), in contrast, the D6 CR3 only provided 22% NHEJ-Hemi and 3% NHEJ-Null in Jack genotype. The D6 CR3 also exhibited some toxicity as was evidence by the low event generation number (37 events from D6 CR3 vs 168 events from D6 CR1).
[0250] DD49 CR2 can be a better DSB reagent than DD49 CR3 as is evidenced by the higher NHEJ-Heni and Insertion frequency (Table 22). The two guide RNA/Cas9 systems for the other sites (DD43, DD38, DD52, DD20, DD51) all provided good double strand breaks (DSB) efficiency. One set of CR for each target was also tested in elite 93B86 genotype as shown in Table 23. The DSB efficiency is very similar to the data from Jack.
[0251] Both NHEJ-Hemi and NHEJ-Null were detected in Jack or 93B86 genotypes. The differences between NHEJ frequencies were likely caused by variations between transformation experiments. NHEJ mutations mediated by the guide RNA/Cas9 system at the specific Cas9 target sites were confirmed by PCR/topo cloning/sequencing.

Table 22. Target Site Mutations and Site Specific Gene Integration Induced by the Guide RNA/Cas9 system on a genomic window referred to as CTL-D on Gm04 in soybean (Jack). Numbers indicate no. of events (numbers in parentheses are \%).

Project	Total event	Wt-Homo (\%)	NHEJ-Hemi (\%)	NHEJ-Null (\%)	Insertion Frequency $(\%)$
U6-13.1 D6CR1	168	$40(24 \%)$	$32(19 \%)$	$96(57 \%)$	$1(0.6 \%)$
U6-13.1 D6CR3	37	$28(76 \%)$	$8(22 \%)$	$1(3 \%)$	0
U6-13.1 DD49CR2	121	$66(55 \%)$	$34(28 \%)$	$21(17 \%)$	$2(1.6 \%)$
U6-13.1 DD49CR3	136	$113(83 \%)$	$23(17 \%)$	$0(0 \%)$	0
U6-9.1 DD43 CR1	141	$84(60 \%)$	$27(19 \%)$	$30(21 \%)$	$1(0.7 \%)$
U6-13.1 DD43 CR1	152	$67(44 \%)$	$56(37 \%)$	$29(18 \%)$	0
U6-13.1 DD43 CR2	156	$38(24 \%)$	$64(41 \%)$	$54(35 \%)$	$1(0.6 \%)$
U6-13.1 DD38 CR1	143	$52(36 \%)$	$79(55 \%)$	$12(8 \%)$	$2(1.4 \%)$
U6-13.1 DD38 CR2	110	$34(31 \%)$	$38(34 \%)$	$38(34 \%)$	$2(1.8 \%)$

(continued)

Project	Total event	Wt-Homo (\%)	NHEJ-Hemi (\%)	NHEJ-Null (\%)	Insertion Frequency $(\%)$
U6-13.1 DD52 CR1	177	$108(61 \%)$	$45(25 \%)$	$24(14 \%)$	$1(0.6 \%)$
U6-13.1 DD52 CR3	150	$39(26 \%)$	$20(13 \%)$	$91(61 \%)$	$1(0.7 \%)$
U6-9.1 DD20 CR1	114	$76(67 \%)$	$28(25 \%)$	$10(9 \%)$	0
U6-13.1 DD20 CR1	118	$58(49 \%)$	$37(31 \%)$	$23(20 \%)$	0
U6-13.1 DD20 CR2	111	$43(39 \%)$	$29(26 \%)$	$39(35 \%)$	0
U6-13.1 DD51 CR1	323	$67(21 \%)$	$102(32 \%)$	$154(48 \%)$	$4(1.2 \%)$
U6-13.1 DD51 CR2	156	$62(40 \%)$	$46(29 \%)$	$48(31 \%)$	$3(1.9 \%)$

Table 23. Target Site Mutations and Site Specific Gene Integration Induced by the Guide RNA/Cas9 system on CTLD on Gm04 in elite soybean germplasm 93B86. Numbers indicate no. of events (numbers in parentheses are \% of the total analyzed events).

Project	Total event	Wt-Homo (\%)	NHEJ-Hemi $(\%)$	NHEJ-Null (\%)	Insertion frequency $(\%)$
U6-13.1D6CR1	146	$34(23 \%)$	$28(19 \%)$	$84(58 \%)$	$0(0 \%)$
U6-13.1DD49CR2	90	$12(13 \%)$	$38(42 \%)$	$40(44 \%)$	In progress
U6-9.1DD43CR1	263	$53(20 \%)$	$88(34 \%)$	$122(46 \%)$	$10(3.8 \%)$
U6-13.1DD38CR1	134	$29(22 \%)$	$90(67 \%)$	$15(11 \%)$	$2(1.5 \%)$
U6-13.1DD52CR1	162	$28(17 \%)$	$84(52 \%)$	$50(31 \%)$	$0(0 \%)$
U6-9.1DD20CR1	239	$85(36 \%)$	$77(32 \%)$	$77(32 \%)$	$11(4.6 \%)$
U6-13.1DD51CR1	148	$13(9 \%)$	$38(26 \%)$	$97(66 \%)$	In progress

EXAMPLE 12

Introducing transgenic SSI target sites within a soybean genomic window using the guide RNA/Cas9 endonuclease system.
[0252] In order to develop a Complex Trait Locus in a genomic window of the soybean genome, a method was developed to introduce transgenic SSI (site specific Integration) target sites in close proximity to a soybean genomic locus of interest using the guide RNA/Cas9 endonuclease system. First, a genomic window was identified into which multiple SSI target sites in close proximity can be introduced (Figure 2A, Figures 4-7, and Figures 9-11, Example 8). The DNA sequence of the genomic window was than evaluated for the presence of any double strand break target sites, specifically for the presence of any Cas9 endonuclease target sites. Any 23 bp genomic DNA sequence following the pattern $N(20)$ NGG can be selected as a target site for the guide RNA/Cas9 endonuclease system. A guide RNA and a Cas endonuclease can be introduced either through the use of expression cassettes (as described in Example 9 and Example 10), or can directly be introduced into a soybean cell comprising any one of the Cas9 endonuclease target sites, wherein said guide RNA and Cas endonuclease are capable of forming a complex that enables the Cas endonuclease to introduce a double strand break at the Cas endonuclease target site. These soybean cells were provided with a donor DNA comprising a transgenic SSI target site comprising two recombination sites (such as but not limited to

EP 3191595 B1

FRT1, FRT87, FRT6, Figure 2B) flanked by a first and second region of homology (Figure 2B). Optionally, the donor DNA can contain a polynucleotide of interest between the two FRT sites. These soybean cells were then evaluated for the presence of NHEJ indicating that the guide RNA/Cas endonuclease system was functional and capable of introducing a double strand break (Example 11). Upon cleavage of the Cas9 endonuclease target site, the transgenic SSI target site was introduced into the DSB target site resulting into a modified double strand break target site (aDSB, Figure 2D) comprising a transgenic SSI target site.
[0253] The integration of the transgenic SSI sites via guide RNA/Cas9 system mediated DNA homologous recombination was determined by border-specific PCR analysis at both possible transgene genomic DNA junctions at different DSB target sites using two primer pairs. For Example, the 5' end borders of DD38CR1 events were amplified as a 1241 bp PCR amplicon by PCR with while the 3 ' borders of the same events were amplified as a 1210 bp PCR amplicon. Any events with both the 5^{\prime} border and 3^{\prime} border-specific bands amplified were considered as site-specific integration events through homologous recombination containing the transgene from the donor DNA. All the border-specific PCR fragments were sequenced and were all confirmed to be recombined sequences as expected from homologous recombination. Border PCR assays for other DSB sites were carried out with the same approach with the specific border primers. On average, gene integration through the guide RNA/Cas9 mediated homologous recombination occurred at 0.6% to 4% of the total transgenic events (Insertion frequency, Table 22 and Table 23) in either Jack or 93B86 genotype.
[0254] The Introduction of the FRT1 and FRT87 sites in these DSB sites provided the ability to use the FLP/FRT technology to perform gene stacking by the SSI technology and develop a complex trait locus within a genomic window.

EXAMPLE 13

Introduction of trait genes directly into double strand break target sites using a guide RNA/Cas endonuclease systems in plant genomes
[0255] Described herein (Examples 1-12) are methods for introducing transgenic target sites for SSI (comprising recombination sites such as but not limited to FRT1, FRT87, FRT6) into a double-strand break target site (such as a Cas9 endonuclease target site) using a guide RNA/Cas9 system and allowing for the use of FLP/FRT technology to perform gene integration and gene stacking by the SSI technology and develop a complex trait loci within a genomic window. One skilled in the art understands that transgenic SSI target sites can also be introduced into DSB sites by other double strand break agents such as but not limited to Zinc fingers, meganucleases, TALENS etc. The Introduction of the FRT1 and FRT87 (or FRT6) sites in these DSB sites enables the use of the FLP/FRT technology to perform gene stacking by the SSI technology.
[0256] Another method of specific gene integration is to introduce one or more trait (or gene expression cassettes) directly into a DSB site of a plant genome, such as Cas9 endonuclease target site, as illustrated in Figure 3A-3C and described below.
[0257] Plant cells can be provided with a donor DNA containing at least one polynucleotide of interest (such as, but not limited to, a trait gene cassette) flanked by flanked by a first and second region of homology (HR1, HR2, respectively, Figure 3B) to a first and second DNA sequence (DNA1, DNA2, respectively, Figure 3A) located in a genomic window (Figure 3A). The donor DNA can contain one or more trait gene cassette(s).
[0258] These plant cells are further provided with a guide RNA and Cas endonuclease, either directly or via expression cassettes such as a plant codon optimized Cas9 endonuclease expression cassette (such as, but not limited to, a soybean codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette) and a guide RNA expression cassette, located on different plasmids or linked on the same plasmid (as illustrated in Figure 2C).
[0259] The plant cells are then evaluated for the alteration of the DSB target site (such as the alteration of a Cas9 endonuclease target site) indicating that the guide RNA/Cas endonuclease system was functional and capable of introducing a double strand break and enabling trait integration at these pre-defined double strand break target sites by homologous recombination (Figure 3C). The resulting plant cells
[0260] For direct trait gene integration into a maize cell, the donor DNA can contain nucleotide sequences like 45HR1Selectable Marker- Trait Gene Expression Cassette-45HR2 or it can contain trait genes flanked by homologous regions surrounding other maize target sites described herein. For direct trait gene integration into a soybean cell, the donor DNA can contain DD38 HR1-Promoter::Selectable marker- Trait Gene Expression Cassette-DD38 HR2, or it can contain trait genes flanked by homologous regions surrounding other soybean target sites described herein.

EXAMPLE 14

Creation of Complex Trait Loci (CTL) in maize and soybean

[0261] As discussed herein, four genomic windows were identified for the creation of Complex Trait Loci (CTL) in a maize genome. CTL1 on maize chromosome 1 (Table 1, Figure 4), CTL2 on maize chromosome 1 (Table 2, Figure 5), CTL3 on maize chromosome 3 (Table 3, Figure 6) and CTL4 on maize chromosome 10 (Table 4, Figure 7). Also, Three genomic windows were selected for the creation of complex trait loci in a soybean genome, CTL-D on soybean chromosome 4, Gm04 (Table 12, Figure 9), CTL-X on soybean chromosome 6, Gm06 (Table 13, Figure 10) and CTL-R on soybean chromosome 1, Gm01 (Table 14, Figure 11).
[0262] Multiple transgenic SSI target sites were introduced into each of said genomic windows, in close proximity to a maize or soybean genomic locus of interest (plus or minus 5 cM), using the guide RNA/Cas9 endonuclease system described herein (Example 6, Example 7-13). Furthermore, trait genes can also be directly introduced into double strand break target sites (such as Cas9 endonuclease sites) located within said genomic windows, using a guide RNA/Cas endonuclease system (as described in Example 13). Plants comprising one or multiple of these introduced transgenic SSI target sites, and/or introduced trait genes, can be crossed and progeny can be screened for the presence of the stacked transgenic SSI target sites and / or integrated trait genes. For example, a first plant comprising three transgenic SSI target sites A, B, C in a genomic window, can be crossed with a second plant comprising three transgenic SSI target sites D, E, F in the same genomic window, and progeny can be identified that comprises the sic transgenic SSI target sites A, B, C, D, E, F. This process can be repeated again with plants having other target sites in the same genomic window to further create the more target sites in that genomic window.
[0263] Different trait genes can be specifically integrated into the transgenic SSI target sites or into the different DSB sites in wild type elite genotype, such as maize GR2HT or maize HC69, soybean 93B86 and can be stacked together by breeding at later generations (as described in US patent application 13/427138, filed on March 22, 2013 and US patent application 13/748704, filed January 24,2014). The trait gene integration can be executed either by SSI technology with the FRT1/FRT87 (or FRT6) sites or by direct trait gene integration by double strand break technology.
[0264] The resulting progeny plants can be screened for the presence of the stacked trait genes within the same genomic locus thereby creating a Complex Trait Locus.

SEQUENCE LISTING

[0265]
<110> E.I. DUPONT DE NEMOURS AND COMPANY and PIONEER HI-BRED INTERNATIONAL, INC. Cigan, Mark Huirong, Gao Liu, Zhan-Bin Mutti, Jasdeep S. Podlich, Dean Scelonge, Christopher Liu, Zhan-bin $<120>$ GENERATION OF SITE-SPECIFIC-INTEGRATION SITES FOR COMPLEX TRAIT LOCI IN CORN AND SOYBEAN, AND METHODS OF USE
<130> BB2355 PCT
<150>62/049465
<151> 2014-09-12
<160> 580
<170> PatentIn version 3.5
<210> 1
<211> 201
<212> DNA
<213> Zea mays
<400> 1

```
tgtgttccaa agaaattgct agtgtacgca tccaagtact ctcacgagtt tgaagagtct }6
cgtggatttg gatggacata tgagactgat ccgaagcatg attggagcac tctcatagcc 120
aataaaata cagagctgca gcgcctggtt ggcatttaca ggaatatttt aaacaatgca 180
ggagtcactc tgatcgaagg t 201
<210>2
<211> 201
<212> DNA
<213> Zea mays
<400>2
gttattacaa taactggtgc caagtttctc attttgtttg tcgctctaac ctttggtgct }6
tttgcaacaa tttcgtgcta ggttgatgag tattcacgta cctcagttga ttccatttgg 120
gctgttggag atgttaccaa tagggtcaac ctgacaccag ttgcactgat ggagggtggg 180
gcatttgcga aaactgtctt t 201
<210> }
<211> 22
<212> DNA
<213> Zea mays
<400> }
gctgtggacg tggggtgctg gg 22
<210>4
<211> 22
<212> DNA
<213> Zea mays
<400> 4
gaaccacact gaacaacaac gg 22
<210> 5
<211> 24
<212> DNA
<213> Zea mays
<400> 5
gccgcctagg tagaaatgtg aagg 24
<210> }
<211> 201
<212> DNA
<213> Zea mays
<400> 6
caagtaatat aacataatat aagcatttgg ataaacatcg gaagtcgcat tcttagaaca }\quad6
gaagatgagc cccctatatg actatcgaga ccacagcatc atttttacag gaattatgct 120
acttcagaag taaagaaaac ggacaagctc ctgggcacat tatcagaagc acatggaagt 180
cattttacta atttgaccac a
201
<210>7
<211> 24
<212> DNA
<213> Zea mays
```

```
<400> }
gactaaatgt aattgctact tggg 24
<210>8
<211> 25
<212> DNA
<213> Zea mays
<400> }
gcaggacagg gaggtaaaag gatgg 25
<210> 9
<211> 23
<212> DNA
<213> Zea mays
<400> }
gagggaggcc tgtgacgcat tgg 23
<210> 10
<211> 23
<212> DNA
<213> Zea mays
<400> 10
gaccgttgct gatggatcaa tgg 23
<210> 11
<211> 22
<212> DNA
<213> Zea mays
<400> 11
gttccaacga tgacaagact gg 22
<210> 12
<211> 201
<212> DNA
<213> Zea mays
<400> 12
```

```
catggaagac gacccgcttc ggcagctcgt ccgcgcgcac ggcctccacc ggcgtccgcg 60
```

catggaagac gacccgcttc ggcagctcgt ccgcgcgcac ggcctccacc ggcgtccgcg 60
gcaccaggta ggcctcctgc atatatacgt actcaggaaa aatcatctca gattctgcat 120
gcaccaggta ggcctcctgc atatatacgt actcaggaaa aatcatctca gattctgcat 120
atatacccca aaccaaacgg ggccttaatt ctacgcatgc caatctttca ggtagtacct 180
atatacccca aaccaaacgg ggccttaatt ctacgcatgc caatctttca ggtagtacct 180
aaaatgcaac tataatctaa t 201
aaaatgcaac tataatctaa t 201
<210> 13
<210> 13
<211> 23
<211> 23
<212> DNA
<212> DNA
<213> Zea mays
<213> Zea mays
<400> 13
<400> 13
gcacaataat ggtcctcctt agg 23
gcacaataat ggtcctcctt agg 23
<210> 14
<210> 14
<211> 22
<211> 22
<212> DNA

```
<212> DNA
```

```
<213> Zea mays
<400> 14
gatgatgaca atgaccacat gg 22
<210> 15
<211> 23
<212> DNA
<213> Zea mays
<400> 15
gtgccagagg cagcatcgac cgg 23
<210> 16
<211> 23
<212> DNA
<213> Zea mays
<400> 16
gctcttgggc tcaagagagt agg 23
<210> 17
<211> 24
<212> DNA
<213> Zea mays
<400> 17
gagacatcct cattctagag cggg 24
<210> 18
<211> 25
<212> DNA
<213> Zea mays
<400> 18
gcctcagtca tagttccact ctcgg 25
<210> 19
<211> 23
<212> DNA
<213> Zea mays
<400> }1
gagcttgtta tcagatgcag agg 23
<210> 20
<211> 201
<212> DNA
<213> Zea mays
<400> 20
gtcgtcgccg tcgtgtcccg cccggcgatc acgaagttga gcaccacgtc ccggaggctc 60
ttatcgtccc cgaagccgcc gccgtcgtcg ccggcctcgc ccagctcgat gaaccgtgac 120
aggatgtcgt gcttcatctg cccattttaa tttgccctca caagtcacat ggatatataa 180
tcaatcagga tcaggtccat c
201
<210> 21
```

```
<211> 22
<212> DNA
<213> Zea mays
<400> 21
gtcctcgtac aggagggcgc gg 22
<210> 22
<211> 22
<212> DNA
<213> Zea mays
<400> 22
gagctatacc tagtgataaa gg 22
<210> 23
<211> 27
<212> DNA
<213> Zea mays
<400> 23
gaatatccct ttctacgaaa gaattgg 27
<210> 24
<211> 201
<212> DNA
<213> Zea mays
<400> 24
aaacctgaaa actcttgcga gagctttgag taggtcaaga actcagcgag cttggtatgca 
<210> 25
<211> 25
<212> DNA
<213> Zea mays
<400> 25
gtcaatggag aattctctgt taagg 25
<210> 26
<211> 21
<212> DNA
<213> Zea mays
<400> 26
gtacgtaacg tgcagtactg g 21
<210> 27
<211> 24
<212> DNA
<213> Zea mays
<400> 27
gtgctccctg ctactgcgaa ccgg 24
```

```
<210> 28
<211> 21
<212> DNA
<213> Zea mays
<400>28
ggtgcaggca ggagaattg g 21
<210> 29
<211> 201
<212> DNA
<213> Zea mays
<400> 29
atcggtacaa taacttacca cagccaccag aaacgcgcct ttcaggtttg cgcaggcttc 
<210> 30
<211> 25
<212> DNA
<213> Zea mays
<400> 30
gatcgataca catacacttg cacgg 25
<210> }3
<211> 27
<212> DNA
<213> Zea mays
<400> }3
gcataataag tgaggagata atcttgg 27
<210> 32
<211> 22
<212> DNA
<213> Zea mays
<400> }3
gcaattgta tcttgcgcac gg 22
<210> 33
<211> 23
<212> DNA
<213> Zea mays
<400> 33
gaggaaacac agacaagttg ggg 23
<210> 34
<211> 26
<212> DNA
<213> Zea mays
<400> 34
```

```
gtacttgctc actgtctaaa tactgg
```

```
<210> 35
```

<210> 35
<211> 201
<211> 201
<212> DNA
<212> DNA
<213> Zea mays
<213> Zea mays
<400> 35

```
<400> 35
```

26
atccaagtgc ccaagatgcc gcctgatgaa tgcttcaagt gctccgacaa ggaatcgctt 60
gcggtgggca ctgagctgct tgtgttcggg atggcgcgta tcgtcttccg atacagcatc 180
acgagtgtcg gcgggaaggc c 201
<210> 36
<211> 24
<212> DNA
<213> Zea mays
<400> 36
gcataatgag gatcgaggat gagg 24
<210> 37
<211> 21
<212> DNA
<213> Zea mays
<400> 37
gctcgtgttg gagatacagg g 21
<210> 38
<211> 22
<212> DNA
<213> Zea mays
<400> 38
gtgagcctga gcccatgcat gg 22
<210> 39
<211> 23
<212> DNA
<213> Zea mays
<400> 39
gttgatcaaa gcgatggcac agg 23
<210> 40
<211> 201
<212> DNA
<213> Zea mays
<400> 40
$\begin{array}{llrl}\text { aggtgtcaaa gcgagacgat ctcgatgcta } & \text { gtctcagaaa } & \text { tggcagttgc tgacacagcg } & 60 \\ \text { tttgcgctac tcgccatcgt cgtcgtccac aggttggcca } & \text { tcaccggcgt cgccattaga } & 120 \\ \text { tgctggaagg ggttcacagg agcagcgatg ctcatctcac cctctagcat cttcaccacc } & 180 \\ \text { gcacccatgg gcggcctcgc } t & & 201\end{array}$

```
<210> 41
<211> 201
<212> DNA
<213> Zea mays
<400>41
```

tagtgtcttg cctatgcagc taagagtaca ggtctaaagc acaagcaata aatacaacag 60
tacataataa aagtgtctgg tgtaccttag ataaccatga caagaccatg gaaaaaaaga 120
ctgatgcaag ggtgtcacta acctcatatg tcatattatc aggctcaatg ttatcttgcc 180
aaacaaccta caaacataat a
<210> 42
<211> 201
<212> DNA
<213> Zea mays
<400> 42
$\begin{array}{llrl}\text { ctagcttgat } & \text { gtggattctc } \text { tgtttttttt aactcgagtg caaccaaaat aataataaaa } & 60 \\ \text { atgctctgtt gttgcagctt ggagctctgg tactacactg cggtgctcat ccttgtaggg } & 120 \\ \text { ttcctgaaga acgcgcggct tcagattgac gtcatgtcca tctggtaact aatttttatg } & 180 \\ \text { aactaagcag cccatgcatc a } & & 201\end{array}$
<210> 43
<211> 23
<212> DNA
<213> Zea mays
<400> 43
gcagttggat atgtctagcc ggg 23
<210> 44
<211> 25
<212> DNA
<213> Zea mays
<400> 44
gacacgcact gcaccccgtc gtcgg 25
<210> 45
<211> 23
<212> DNA
<213> Zea mays
<400> 45
gctagctgag aaaatgtgcc cgg 23
<210> 46
<211> 22
<212> DNA
<213> Zea mays
<400> 46
gcacagctta catcagctt gg 22

```
<210>47
<211> 25
<212> DNA
<213> Zea mays
<400> 47
gcatgtacat gcaatgcaat cacgg 25
<210> 48
<211> 201
<212> DNA
<213> Zea mays
<400>48
ggtactaagg taggatataa tcaaatcgaa cgcaaagatc acaaagaaac agtctaaggg }6
tttcaaagcg ttggaccaag gcatcagact ggtggagtac atgcatcaga ttacacaata }12
gagcaaaccc tagcaaaatt tcaattgggc tcagggaaga agcgagtttg ggtcacacaa 180
ttgtggaggc tccaaccatc c 201
<210>49
<211> 22
<212> DNA
<213> Zea mays
<400> 49
gccggggacc tgtacaggaa gg 22
<210> 50
<211> 25
<212> DNA
<213> Zea mays
<400> 50
gacctgtaca ggaaggcaac gatgg 25
<210> 51
<211> }2
<212> DNA
<213> Zea mays
<400> 51
gaactcttgc acggccaatc catgg 25
<210> 52
<211> 26
<212> DNA
<213> Zea mays
<400> 52
gaactcgagg aagacggttc tagcgg 26
<210> 53
<211> 201
<212> DNA
```

<213> Zea mays
<400> 53

```
gctaaatgag ttagtttttt tgggtggggg aggggctctt gcattattgc tagaaatatt }6
tttaaaaaaa aaacctcatg agctccacca cccgtccgcc caggacggga agcccgaaac 120
cgcgcgcggc cgcagcaggc cogccggcgc ggcggcgccg gccattctct gcagctgttg 180
ggtgctggta gctgcagcgt c 201
<210> 54
<211> 22
<212> DNA
<213> Zea mays
<400> 54
gcagcggaac tgtgagtgac gg 22
<210> 55
<211> 23
<212> DNA
<213> Zea mays
<400> 55
gtacgtgtgc gctatcaaag tgg 23
<210> 56
<211> 23
<212> DNA
<213> Zea mays
<400> 56
gccgtgcgac acacgtactg cgg 23
<210> 57
<211> 24
<212> DNA
<213> Zea mays
<400> 57
gacacacgta ctgcggcgtc atgg 24
<210> 58
<211> 25
<212> DNA
<213> Zea mays
<400> 58
gtcgccacac gtcgtccgag ttcgg 25
<210> 59
<211> 201
<212> DNA
<213> Zea mays
<400> 59
```

```
caatggagaa aaaggggcct caggccctca cagcaactga gctgaatgct gccgtgtaca }6
gatacctcca ggaatcaggt ttcagaacca taatctaacc ctgtcacaat tcggttagat 120
attagcatta catgtttgtc ggttctttct tggggaaatt atgatcattg tgttgttagg 180
ggtctacgta atgaccagaa t 201
<210> 60
<211> 25
<212> DNA
<213> Zea mays
<400> }6
gaccacggcc agctgtagcg ctagg 25
<210> 61
<211> }20
<212> DNA
<213> Zea mays
<400> }6
ttcttttttt ttcttatgtc cgtctgcctg caaatgtccc ttgtcttctt ttggtgtgct 60
tattatacgc gcatataaca tgttgtcagt tcttcagcgt cctcaagtaa tggcaggagc 120
tgaataatcc acacactagc atgtgcagag acaatgctaa tctgttccat ctgctgctac 180
ttccgacagg gggcgacgag a
<210> 62
<211> 201
<212> DNA
<213> Zea mays
<400> }6
ltgggtgaag aagtaaagat cagccgagaa tgaggtcaac ccagttgaat ccaatggagc 
<400> }6
gcacggtgta gggacgtgtg gg 22
<210> 64
<211> 21
<212> DNA
<213> Zea mays
<400> }6
gaaacagtca atacttgag g 21
<210> 65
<211> 22
<212> DNA
<213> Zea mays
```

```
<400> }6
gttgggctac atgaaccaag gg 22
<210> 66
<211> 22
<212> DNA
<213> Zea mays
<400> 66
gccagcccgg acctcatcgt gg 22
<210> 67
<211> 201
<212> DNA
<213> Zea mays
<400> 67
ccttagcaag gtgctgtaac tgactacaac agcgatcttc ctgaggaaat gtgcaagggg }6
ctgcccatag gtgtgaggga acgcatggct gatcacatga gcgcatgaca ggtcagctgc 120
aattgcggcg tcaccatact ccaccctaac agtagtgccc tgaataagtg gataaaataa 180
caaatgaaac ataatagaat t 201
<210> 68
<211> 21
<212> DNA
<213> Zea mays
<400> }6
gaaagggatg ctaccgacag g 21
<210> 69
<211> 25
<212> DNA
<213> Zea mays
<400> }6
gtaataagta ataaccatat gcagg 25
<210>70
<211> 20
<212> DNA
<213> Zea mays
<400> }7
ggttatcgag ggactagtgg 20
<210> }7
<211> 21
<212> DNA
<213> Zea mays
<400> }7
gagcatcaag ttcacttagg g 21
<210> 72
<211> }2
<212> DNA
```

```
<213> Zea mays
<400> 72
gcagtagcgt tcaatccgag g 21
<210> 73
<211> 201
<212> DNA
<213> Zea mays
<400>}7
```



```
<210> 74
<211> 22
<212> DNA
<213> Zea mays
<400> }7
gttagcatta tgacaagaca gg 22
<210> }7
<211> 20
<212> DNA
<213> Zea mays
<400>}7
gatctgccta ttgcgctggg 20
<210>76
<211> 26
<212> DNA
<213> Zea mays
<400>76
gtcaacaaat tagtgaggac gtcggg 26
<210> }7
<211> 20
<212> DNA
<213> Zea mays
<400>}7
gttcctgggc taccggttgg 20
<210>78
<211> 21
<212> DNA
<213> Zea mays
<400>}7
gccgtcgtcg ctcgatcgtg g 21
<210> }7
```

```
<211> 201
<212> DNA
<213> Zea mays
<400>79
```

$\begin{array}{lll}\text { ctcgtttagg ttcagttgag atctcacctc aggtagacaa acgcgtcacc agcaatcagc } & 60 \\ \text { ttctttgatg tgacaaacgt gctccatcca gtagtcagaa ggtgccgacg gggttggcct } & 120 \\ \text { agagaacaag gagttgcaga attaagcacc ataagttgca taagggtaga gaattcagtg } & 180 \\ \text { gagatggaga ctgtactgta c } & & 201\end{array}$
<210> 80
<211> 20
<212> DNA
<213> Zea mays
<400> 80
gcattatttc ggatcgtcgg 20
<210> 81
<211> 23
<212> DNA
<213> Zea mays
<400> 81
gccagtagtc taagcaaaga tgg 23
<210> 82
<211> 20
<212> DNA
<213> Zea mays
<400> 82
gatattgacg actcgatcgg 20
<210> 83
<211> 22
<212> DNA
<213> Zea mays
<400> 83
gttgctctta gactcgtatc gg 22
<210> 84
<211> 201
<212> DNA
<213> Zea mays
<400> 84
$\begin{array}{lll}\text { gacactcccg cttaaattt aagtttttcg cgaaaatctt gaataagact agccatttaa } & 60 \\ \text { acttggtaaa aaaatcatgt cagctatatt ggagtcgatt ctaccgatat cgaccatgat } & 120 \\ \text { attggatgaa ccggtccata ccgtctgact ttagttacat aattttttt tattggtcta } & 180 \\ \text { cacgtacttc acgtcaacta g } & & 201\end{array}$
<210> 85
<211> 201
<212> DNA

```
<213> Zea mays
<400> }8
```

```
gagtgttaga gtatatggat taggtccatg aggtccgtgt atgaatactg tatagcaacc60
```

ctctctaggg ctggcccaat aatgaattcc actctctcca acaagcttat catagaaatc 120
caacacagca gcatgcttct catcttggtc ggtgatcacc cgatcaccaa cctgcaactt 180
tgcaataaaa ttccetttct t 201

```
<210> 86
```

<210> 86
<211> 201
<212> DNA
<213> Zea mays
<400> }8

| ctgcaccgcc aaatccgtg gcaccagcac | tggcctagaa | gccgacacca | aaccccagat |
| :--- | :--- | :--- | :--- |$\quad 60$

```
<210> 87
<211> 20
<212> DNA
<213> Zea mays
<400> 87
ggctagaccg tgtacctagg 20
<210> 88
<211> 22
<212> DNA
<213> Zea mays
<400> 88
ggctcaaatc acaccgtaat gg 22
<210> 89
<211> 20
<212> DNA
<213> Zea mays
<400> 89
ggtacatctc gaaatgcagg 20
<210> 90
<211> 23
<212> DNA
<213> Zea mays
<400> 90
gactcagtgg ggaaatgttc tgg 23
<210> 91
<211> 201
<212> DNA
<213> Zea mays
<400> 91
```

catacaaaca aaagctccac aagtctctga aacttatatc tccacaacca cagccaatta }6
aacacttcaa caaatcccca aaatgtaact tgctactccc tatcgtatgc cccactcagt 120
tcagaaaact aatcaatgtt ttaattgcgg aaccaagaag tttcctcatc cccacgacca 180
ataataattc ttctctgatg c 201
<210> 92
<211> 20
<212> DNA
<213> Zea mays
<400> }9
gcaccatcga tggttaccgg 20
<210> 93
<211> 22
<212> DNA
<213> Zea mays
<400> 93
gaaactgtat aagcatgggt gg 22
<210> 94
<211> 201
<212> DNA
<213> Zea mays
<400> 94

```
\(\begin{array}{llr}\text { gaatttgaaa tatagtaaaa gtaataatat aattcatccc caatgaaata aatcaggagg } & 60 \\ \text { aagacctctt ctcgtccatt actagcagta ccataaaag aaacagtgg caacggccac } & 120 \\ \text { gatgcagaga gagtactgcc atgcaatgca aaccattcga agccggtagc ctaaaacagt } & 180 \\ \text { cggaacccaa cccaaagcag g } & & 201\end{array}\)
<210> 95
<211> 22
<212> DNA
<213> Zea mays
<400> 95
gaaattgcca tgagctcagc gg 22
<210> 96
<211> 22
<212> DNA
<213> Zea mays
<400> 96
gttgaatgtg gctctcatga gg 22
<210> 97
<211> 25
<212> DNA
```

<213> Zea mays
<400> }9
gcttctctcg ccaagttgcc atagg 25
<210> 98
<211> 21
<212> DNA
<213> Zea mays
<400> 98
gtctaccgac ttgctcctcg g 21
<210> 99
<211> 201
<212> DNA
<213> Zea mays
<400> 99
ctgcaaaatt ctaaattaaa aaaatggaca agagaatttg aataaaggtc tcataattaa }6
cagtgtcaca tcacccacag catggctgct catgcttctt actgaacaag ttccatccat 120
atttcaatca gatttagcca tggaacactg acttactggg atagggagaa atataaatat 180
ttacacaggg gataagctat a 201
<210> 100
<211> 21
<212> DNA
<213> Zea mays
<400> }10
gtccattcat gtctgaagtg g 21
<210> 101
<211> 20
<212> DNA
<213> Zea mays
<400> }10
gcttgctgga gtgcttatgg 20
<210> 102
<211> 23
<212> DNA
<213> Zea mays
<400> 102
gactagaaac aggtgtcagc agg 23
<210> 103
<211> 22
<212> DNA
<213> Zea mays
<400> 103
gattccttca tgcgcttact gg 22
<210> 104

```
```

<211> 20
<212> DNA
<213> Zea mays
<400> 104
gagcagtgtc gcacatcagg 20
<210> 105
<211> }20
<212> DNA
<213> Zea mays
<400> 105
lgaaaccaat ctgccatggt gctagtttat atctagccat catatgcgtt aagcaagcat
<210> 106
<211> 7844
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 106

```
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata a ttgacaacag gactctacag t caaatagctt cacctatata gggttaatgg ctaaattaag tagaataaaa aggaaacatt ctaacggaca cggcatctct ctccgctgtc ggcatccaga gcggcctcct cctcctctca ttcgctttcc caacctcgtg t cggcacctcc agatcggcgt gtgttagatc gtacgtcaga tggctctagc ggtttggttt g cttttcatgc t gatcggagta tgtgtgccat gataggtata cttggttgtg atactgtttc atcttcatag t tgatgtgggt t taaccttgag t atatacttgg tacgctattt tacttctgca ggtcocg acaagaagta cagcatcggc cggacgaata ta gcatcaagaa aaacttgatc ccaggctcaa gaggaccgcc tgcaggagat cttcagcaac aggaatcatt cctggtggag tcgtcgacga ggtaagtttc tagtagtaat ttgcttttct gtagtttata caaaacatgg tgatgtgcag ggaagaaact cgcatatgat caagttccgc ccgacgtgga caagctgttc accccataaa caagaaggct ggagaacctt gcaaccttat tgcgctcagc cggaggacgc caagctccag tggcccagat aggagaccag ctatcctgct cagcgacatc ccagcatgat taaacgctac tccgccagca gctccccgag acgcgggata tatcgacggc tcctggagaa gatggacggc
aatgaacagt tagacatggt ctaaaggaca attgagtatt ttttatcttt ttagtgtgca tgtgttctcc tttttttttg atacttcatc cattttatta gtacatccat ttagggttta ctaatttttt tagtacatct attttattct attttagcct ctctatttta gtttttttat ttaataattt agatataaa aaaaattaaa caaataccct ttaagaaatt aaaaaaacta cgagtagata atgccagcct gttaaacgcc gtcgacgagt aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca ctggacccct ctcgagagtt ccgctccacc gttggacttg aattgcgtgg cggagcggca gacgtgagcc ggcacggcag cggcaccggc agctacgggg gattcctttc ccaccgctcc cgccgtaata aatagacacc ccctccacac cctctttccc cgcacacaca cacaaccaga tctcccccaa atccaccegt acgecgetcg tcctcccccc cccccctctc taccttctct gcatggttag ggcccggtag ttctacttct gttcatgttt ttagatccgt gctgctagcg ttcgtacacg gatgcgacct ttgctaactt gccagtgttt ctctttgggg aatcctggga acgggatcga tttcatgatt ttttttgttt cgttgcatag tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttggttgtg atgatgtggt ctggttgggc ggtcgttcta tcaaactacc tggtggattt attaattttg gatctgtatg agttacgaat tgaagatgat ggatggaaat atcgatctag cgggttttac tgatgcatat acagagatgc tttttgttcg gtggttgggc ggtcgttcat tcgttctaga tcggagtaga gtgtatttat taattttgga actgtatgtg tgtgtcatac aagatggatg gaaatatcga tctaggatag gtatacatgt catatacatg atggcatatg cagcatctat tcatatgctc ttataataaa caagtatgtt ttataattat tttgatcttg atgcagcagc tatatgtgga tttttttagc cctgccttca tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca tcgaagaagt tcaaggtcct cggcaataca gaccgccaca cggcgagacc gcggaggcga caagaacagg atctgctacc aggagacggt acactaggcg caagaacagg atctgctacc gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tgcttctacc tttgatatat atataataat tatcattaat aaatattttt ttcaaaataa aagaatgtag tatatagcaa agtgtgtata ttttaattta taacttttct aatatatgac gtggcctacc acgagaagta cccgacaatc taccacctcc acagacaagg cggacctccg gctcatctac cttgccctcg ggccacttcc tcatcgaggg cgacctgaac ccggacaact atccagctcg tgcagacgta caatcaactg ttcgaggaga gtggacgcca aggccatcct ctcggccagg ctctcgaaat atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg ctcggcetga cgccgaactt caaatcaaac ttcgacctcg ctctcaaagg acacctacga cgacgacctc gacaacctcc tacgcggacc tcttcctcgc cgccaagaac ctctccgacg cttcgggtca acaccgaaat taccaaggca ccgctgtccg gacgagcacc atcaggacct cacgctgctc aaggcactcg aagtacaagg agatcttctt cgaccaatca aaaaacggct ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa accgaggagt tgctggtcaa gctcaacagg gaggacctcc
tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac 3480 tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga 3540 agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca 3600 actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg 3660 aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca 3780 ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt 3840 tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg 3900 tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg 3960 agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca 4020 agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca 4080 tcgtcctcac cotgaccetg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct 4140 acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt 4200 ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca 4260 tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccogaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgeg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag ta cgaaggaggt gctcgatgcg ac acttcgaca ccacgattga ccggaagcgg tacacgagca acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccetgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag

4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480
6540
6600
6660
6720
6780
6840
6900
6960
7020
7080
7140
7200
\begin{tabular}{lllll} 
ttttgagcga & gggggcatca aagatctggc tgtgtttcca & gctgtttttg ttagccccat & 7260 \\
cgaatccttg acataatgat cccgcttaaa taagcaacct & cgcttgtata gttccttgtg & 7320 \\
ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca & 7380 \\
gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta & 7440 \\
ttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg & 7500 \\
acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact & 7560 \\
tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga & 7620 \\
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc & 7680 \\
caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt & 7740 \\
gctgtggacg tggggtgctg tttagagct agaaatagca agttaaaata aggctagtcc & 7800 \\
gttatcaact tgaaaaagtg gcaccgagtc ggtgctttt tttt & & 7844
\end{tabular}
```

<210> 107
<211> 7844
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 107

```
gtgcagcgtg acceggtcgt gccectctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg tagaataaaa taaagtgact aggaaacatt tttcttgttt ctaacggaca ccaaccagcg a cggcatctct gtcgctgcct c ctccgctgtc ggcatccaga gcggcctcct cctcctctca ttcgctttcc cttcctcgcc caacctcgtg ttgttcggag cggcacctcc gcttcaaggt agatcggcgt tccggtccat gtgttagatc cgtgtttgtg t gtacgtcaga cacgttctga t tggctctagc cgttccgcag ggtttggttt gcccttttcc t cttttcatgc ttttttttgt gatcggagta tgtgtgccat acatatg gataggtata catgttgatg cttggttgtg atgatgtggt atactgtttc aaactacctg atcttcatag ttacgagttt tgatgtgggt tttactgatg taaccttgag tacctatcta atatacttgg atgatggcat tacgctattt atttgcttgg ta tacttctgca ggtcgactct acaagaagta cagcatcggc cggacgaata taaggtcccg t gcatcaagaa aaacttgatc ccaggctcaa gaggaccgcc tgcaggagat cttcagcaac g aggaatcatt cctggtggag tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa
ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc 2640 ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg 2700 cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact 2760 ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat 2820 caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg 3000 cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc 3060 tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg 3120 ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg 3180 ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac


\author{
<210> 108 \\ <211> 7846 \\ <212> DNA \\ <213> Artificial \\ <220> \\ <223> artificial \\ <400> 108
}
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct 420 ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa 480 tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660 cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg 720 ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag 780 gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc 840 ttcgetttcc cttcctcgec cgccgtaata aatagacacc ccctccacac cotctttccc 900 caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt 960 cggcacctcc gcttcaaggt acgecgetcg tcctcccccc ccccoctctc taccttctct agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga

EP 3191595 B1
atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac
1680 atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc

1740 taaccttgag tacctatcta ttataataaa caagtatgtt t atatacttgg atgatggcat atgcagcagc tatatgtgga t tacgctattt atttgcttgg tactgtttct tttgtcgatg tacttctgca ggtcgactct agaggatcca tggcaccgaa gaa acaagaagta cagcatcggc ctcgacatcg gcaccaactc cggacgaata taaggtcccg tcgaagaagt tcaaggtcct gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag ccaggctcaa gaggaccgcc aggagacggt acactaggcg tgcaggagat cttcagcaac gagatggcga aggtggacga aggaatcatt cctggtggag gaggacaaga agcatgagcg tcgtcgacga ggtaagtttc tgcttctacc tttgatatat tagtagtaat ataatatttc aaatattttt ttcaaaataa ttgcttttct gtagtttata agtgtgtata ttttaattta ta caaaacatgg tgatgtgcag gtggcctacc acgagaagta ggaagaaact ggtggacagc acagacaagg cggacctccg cgcatatgat caagttccgc ggccacttcc tcatcgaggg ccgacgtgga caagctgttc atccagctcg tgcagacgta accccataaa cgctagcggc gtggacgcca aggccatcct caagaaggct ggagaacctt atcgcgcagt tgccaggcga gcaaccttat tgcgctcagc ctcggcctga cgccgaactt cggaggacgc caagctccag ctctcaaagg acacctacga c tggcccagat aggagaccag tacgcggacc tcttcctcgc ctatcctgct cagcgacatc cttcgggtca acaccgaaat tccgccagca gctccccgag aagtacaagg agatcttctt acgcgggata tatcgacggc ggtgccagcc aggaagagtt c tcctggagaa gatggacggc accgaggagt tgctggtcaa g tcaggaagca gaggaccttc gacaacggct ccatcccgca t tgcatgccat cotgcggcgc caggaggact tctacccgtt c agatcgagaa gatcttgacg ttccgcatcc catactacgt actcccggtt cgcctggatg acccggaagt cggaggagac c aggaggtggt cgataagggc gctagcgctc agagcttcat c ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga g tcctgagcgg cgagcagaag aaggcgatag tggacctcct tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat a agatctcggg cgtggaggat cggttcaacg cctcactcgg c agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cotgaccetg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g ggggaaggct gtcccgcaag ctcattaatg gcatcaggga
tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa acgactcgct cacgttcaag gaagacatcc agaaggcaca ccctccacga acacatcgcc aacctggecg gctcgccggc c agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg c tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aatacccag ctccagaatg aaaagctcta c gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat c ggtcggataa aaatcggggc aagagcgaca acgtgcccag
tgaaaacta ctggcgccag ctcctcaacg cgaaactgat acctgacgaa ggcggaacgc ggtggcttga gcgaactcga t ggcagctggt cgagacgcgc cagatcacga agcatgtcgc c tgaatactaa gtacgatgaa aacgacaagc tgatccggga g agtccaagct cgtgtcggac ttccgcaagg acttccagtt c acaactacca ccacgcccac gacgcctacc tgaatgcggt g agaagtaccc gaagctggag tcggagttcg tgtacggcga c gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc c actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca

1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg
atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg 5520 aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc 5580 tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc caccttgact aatcacaaga gtggagcgta ccttataac cgagccgcaa gcaccgaatt gccgcctagg tagaaatgtg agttttagag ctagaaatag caagttaaaa taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt tttttt
```

$<210>109$
$<211>7846$
$<212>$ DNA
$<213>$ Artificial
<220>
<223> artificial
<400> 109
<211>}784
<212> DNA
<213> Artificial

```
-
\begin{tabular}{llllll} 
gtgcagcgtg & acccggtcgt & gcccctctct & agagataatg & agcattgcat & gtctaagtta
\end{tabular}\(\quad 60\)
ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcggcctcct cetcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc840 ttcgetttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cctctttccc 900 caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccaccegt  agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgeg

4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480

\section*{6540}

6600
6660
6720
6780
6840
6900
6960
7020
7080
7140
7200
7260
7320
7380
7440
7500
7560
7620
7680
7740
7800
7846
\(<210>110\)
\(<211>7845\)
\(<212>\) DNA
\(<213>\) Artificial

\section*{<220>}
<223> artificial
<400> 110
taaaaaatta ccacatattt atacatatat ttaaacttta gtgttttaga gaatcatata ttgacaacag gactctacag caaatagctt cacctatata gggttaatgg tttttataga ctaaattaag aaaactaaaa tagaataaaa taaagtgact aggaaacatt tttcttgttt ctaacggaca ccaaccagcg cggcatctct gtcgctgcct ctccgctgtc ggcatccaga gcggcctcct cctcctctca ttcgctttcc cttcctcgcc caacctcgtg ttgttcggag cggcacctcc gcttcaaggt agatcggcgt tccggtccat gtgttagatc cgtgtttgtg gtacgtcaga cacgttctga tggctctagc cgttccgcag ggtttggttt gcccttttcc cttttcatgc ttttttttgt gatcggagta gaattctgtt tgtgtgccat acatattcat gataggtata catgttgatg cttggttgtg atgatgtggt atactgtttc aaactacctg atcttcatag ttacgagttt tgatgtgggt tttactgatg taaccttgag tacctatcta atatacttgg atgatggcat tacgetattt atttgcttgg tacttctgca ggtcgactct acaagaagta cagcatcggc cggacgaata taaggtcccg gcatcaagaa aaacttgatc ccaggctcaa gaggaccgcc tgcaggagat cttcagcaac aggaatcatt cctggtggag tcgtcgacga ggtaagtttc tagtagtaat ataatatttc ttgcttttct gtagtttata caaaacatgg tgatgtgcag ggaagaaact ggtggacagc cgcatatgat caagttccgc ccgacgtgga caagctgttc accccataaa cgctagcggc caagaaggct ggagaacctt gcaaccttat tgcgctcagc cggaggacgc caagctccag tggcccagat aggagaccag ctatcctgct cagcgacatc ccagcatgat taaacgctac tccgccagca gctccccgag acgcgggata tatcgacggc tcctggagaa gatggacggc tcaggaagca gaggaccttc tgcatgccat cctgcggcgc agatcgagaa gatcttgacg
gtgcagcgtg acccggtcgt gccectctct agagataatg agcattgcat gtctaagtta agtgcagttt atctatcttt ctctacgaat aatataatct atagtactac aataatatca aatgaacagt tagacatggt ctaaaggaca attgagtatt ttttatcttt ttagtgtgca tgtgttctcc tttttttttg atacttcatc cattttatta gtacatccat ttagggttta ctaatttttt tagtacatct attttattct attttagcct ctctatttta gtttttttat ttaataattt agatataaaa aaaaattaaa caaataccet ttaagaaatt aaaaaacta cgagtagata atgccagcct gttaaacgcc gtcgacgagt aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca ctggacccct ctcgagagtt ccgctccacc gttggacttg aattgcgtgg cggagcggca gacgtgagcc ggcacggcag cggcaccggc agctacgggg gattcctttc ccaccgctcc cgecgtaata aatagacacc ccctccacac cctctttccc cgcacacaca cacaaccaga tctcccccaa atccaccogt acgecgetcg tcctcccccc cccccctctc taccttctct gcatggttag ggcccggtag ttctacttct gttcatgttt ttagatccgt gctgctagcg ttcgtacacg gatgcgacct ttgctaactt gccagtgttt ctctttgggg aatcctggga acgggatcga tttcatgatt ttttttgttt cgttgcatag tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttggttgtg atgatgtggt ctggttgggc ggtcgttcta tcaaactacc tggtggattt attaattttg gatctgtatg agttacgaat tgaagatgat ggatggaaat atcgatctag cgggttttac tgatgcatat acagagatgc tttttgttcg gtggttgggc ggtcgttcat tcgttctaga tcggagtaga gtgtatttat taattttgga actgtatgtg tgtgtcatac aagatggatg gaaatatcga tctaggatag gtatacatgt catatacatg atggcatatg cagcatctat tcatatgctc ttataataaa caagtatgtt ttataattat tttgatcttg atgcagcagc tatatgtgga tttttttagc cctgccttca tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca tcgaagaagt tcaaggtcct cggcaataca gaccgccaca ggcgccctcc tgttcgatag cggcgagacc gcggaggcga aggagacggt acactaggeg caagaacagg atctgctacc gagatggcga aggtggacga ctccttcttc caccgcctgg gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tgcttctacc tttgatatat atataataat tatcattaat aaatattttt ttcaaaataa aagaatgtag tatatagcaa agtgtgtata ttttaattta taacttttct aatatatgac gtggcctacc acgagaagta cccgacaatc taccacctcc acagacaagg cggacctccg gctcatctac cttgccctcg ggccacttcc tcatcgaggg cgacctgaac ccggacaact atccagctcg tgcagacgta caatcaactg ttcgaggaga gtggacgcca aggccatcct ctcggccagg ctctcgaaat atcgcgcagt tgccaggcga aaagaagaac ggcetcttcg ctcggcctga cgccgaactt caaatcaaac ttcgacctcg ctctcaaagg acacctacga cgacgacctc gacaacctcc tacgcggacc tcttcctcgc cgccaagaac ctctccgacg cttcgggtca acaccgaaat taccaaggca ccgctgtccg gacgagcacc atcaggacct cacgetgctc aaggcactcg aagtacaagg agatcttctt cgaccaatca aaaacggct ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa accgaggagt tgctggtcaa gctcaacagg gaggacctcc gacaacggct ccatcccgca tcagatccac ctgggcgaac caggaggact tctacccgtt cctgaaggat aaccgggaga gggcccgctg gctcgcggca
actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg
3660
aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt 3780 cegtgtacaa egagctcace aaggtcaaat acgtcaccga gggcatgegg aagecggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga c gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cac actcgaacat catgaacttc ttcaagaccg agatcaccct agcccccoct catcgaaacc aacggcgaga cgggcgagat atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt c aggtccagac gggcgggttc agcaaggagt ccatcctccc g tcatcgcgag gaagaaggat tgggacccga aaaaatatgg ca tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg c ccgtgaagga gctgctcggg atcacgatta tggagcggtc c tcgacttcct agaggccaag ggatataagg aggtcaagaa g cgaagtactc gctcttcgag ctggaaaacg gccgcaagag g agttgcagaa gggcaacgag ctcgccctcc cgagcaaata
ctagccacta tgaaaagctc aagggcagcc cggaggacaa tggagcagca caagcattac ctggacgaga tcatcgagca g gggtgatcct cgccgacgcg aacctggaca aggtgctgtc acaaaccaat acgcgagcag gccgaaaata tcatccacct gcgctccggc agccttcaag tacttcgaca ccacgattga cgaaggaggt gctcgatgcg acgctgatcc accagagcat c gcatcgacct gagccagctg ggcggagaca agagaccacg g
tgggaggcc
caagcgggca aggtaggtac cgttaaccta tggccaactt aattaatgta tgaaataaaa ggatgcacac a ataatgtggg catcaaagtt gtgtgttatg tgtaattact a aagagatcat ccatatttct tatcctaaat gaatgtcacg t gaaccagatg catttcatta accaaatcca tatacatata a aatatcaatt gggttagcaa aacaaatcta gtctaggtgt g ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa ggttgttccg gattagagcc ccggattaat tcctagccgg a agattttgat gagctggaat gaatcctggc ttattccggt a ggataccagt autcgctgag ctaaattggc atgctgtcag agt gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca
```

gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta
tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg
acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact
tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgtttttgtcc
caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt
gagggaggcc tgtgacgcat gttttagagc tagaaatagc aagttaaaat aaggctagtc
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt ttttt 7845
7 8 0 0
<210> 111
<211> 7847
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 111

```
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 360 420 480

EP 3191595 B1
cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac coggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcetga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca cogctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cotgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc ga acgactcgct cacgttcaag g ccctccacga acacatcgcc a agacggtcaa ggtcgtcgac g tcgtcataga gatggccagg g
agcggatgaa acggatcgag g accccgtgga aatacccag c gccgcgacat gtacgtggac c accacatcgt gccgcagtcg t ggtcggataa aatcggggc aa tgaaaaacta ctggcgccag ct acctgacgaa ggcggaacgc g ggcagctggt cgagacgcgc c tgaatactaa gtacgatgaa a agtccaagct cgtgtcggac t acaactacca ccacgcccac g agaagtaccc gcaaaatgat cgccaagtcc g actcgaacat catgaacttc ttcaagaccg agcgcccgct catcgaaacc aacggcgaga cgggcgagat atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt ca aggtccagac gggcgggttc agcaaggagt ccatcctccc ga tcatcgcgag gaagaaggat tgggacccga aaaaatatgg ca tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg c ccgtgaagga gctgctcggg atcacgatta tggagcggtc c tcgacttcct agaggccaag ggatataagg aggtcaagaa g cgaagtactc gctcttcgag ctggaaaacg gccgcaagag g ctagccacta tgaaaagctc aagggcagcc cggaggacaa tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact

2760
\begin{tabular}{llllll} 
ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga & 6540 \\
aagagatcat ccatatttct tatcctaaat gaatgtcacg & tgtctttata attctttgat & 6600 \\
gaaccagatg catttcatta accaatcca tatacatata aatattaatc atatataatt & 6660 \\
aatatcaatt gggttagcaa aacaaatcta & gtctaggtgt gttttgcgaa tgcggccggg & 6720 \\
ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag & 6780 \\
tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc & 6840 \\
ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat & 6900 \\
agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa & 6960 \\
ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag & 7020 \\
gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt & 7080 \\
ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt & 7140 \\
aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag & 7200 \\
ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat & 7260 \\
cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg & 7320 \\
ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca & 7380 \\
gttgtaaaag ctaaaatgct attcgaattt ctactagcag & taagtcgtgt ttagaaatta & 7440 \\
ttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg & 7500 \\
acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact & 7560 \\
tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga & 7620 \\
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc & 7680 \\
caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt & 7740 \\
gcaggacagg gaggtaaaag gagttttaga gctagaaata gcaagttaaa ataaggctag & 7800 \\
tccgttatca acttgaaaaa gtggcaccga gtcggtgctt ttttttt & 7847
\end{tabular}
```

<210> 112
<211> 7845
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 112

```


EP 3191595 B1
taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg 2040 acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca 2100 cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggctcaa gaggaccgcc aggagacggt acactaggcg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2400 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat 2460 tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa 2520 ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc 2640 ggaagaaact ggtggacagc acagacaagg cggacctccg g cgcatatgat caagttccgc ggccacttcc tcatcgaggg gctcatctac cttgccctcg 2700 2760 2820 ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600
accccgtgga aatacccag c gccgcgacat gtacgtggac c accacatcgt gccgcagtcg t ggtcggataa aatcggggc a tgaaaaacta ctggcgccag c acctgacgaa ggcggaacgc
ggcagctggt cgagacgcgc tgaatactaa gtacgatgaa agtccaagct cgtgtcggac t acaactacca ccacgcccac g agaagtaccc gaagctggag tcggagttcg tgtacggcga c gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc ca actcgaacat catgaacttc ttcaagaccg agatcaccct agcgcccgct catcgaaacc aacggcgaga cgggcgagat c atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt c aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaag
tcatcgcgag gaagaaggat tgggaccega aaaatatgg cggcttcgac agcccgaccg 5640 tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt 5700 ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga 5760 tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccea gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc caccttgact aatcacaaga gtggagcgta ccttataac cgagccgcaa gcaccgaatt 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 6540 6600 6660 6720 6780 6840 6900 6960 7020
```

<210> 113
<211> }784
<212> DNA
<213> Artificial
<220>
<223> artificial

```
<400> 113
\begin{tabular}{llllll} 
gtgcagcgtg & acccggtcgt & gcccctctct & agagataatg & agcattgcat & gtctaagtta
\end{tabular}\(\quad 60\)
caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt cggcacctcc gcttcaaggt acgccgctcg tcctcccccc cccccctctc taccttctct agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttg cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc g cggacgaata taaggtcccg tcgaagaagt tcaaggtcct gcatcaagaa aaacttgatc ggcgccoctcc tgttcgatag ccaggctcaa gaggaccgcc aggagacggt acactaggcg c tgcaggagat cttcagcaac gagatggcga aggtggacga aggaatcatt cctggtggag gaggacaaga agcatgagcg g tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta ca accccataaa cgctagcggc gtggacgcca aggccatcct c caagaaggct ggagaacctt atcgcgcagt tgccaggcga a gean caatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cetgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat c ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc g ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga g tcctgagcgg cgagcagaag aaggcgatag tggacctcct tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat a
agatctcggg cgtggaggat cggttcaacg cctcactcgg c agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cotgaccetg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa acgactcgct cacgttcaag gaagacatcc agaaggcaca ccctccacga acacatcgcc aacctggccg gctcgccggc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg c agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aaatacccag ctccagaatg aaaagctcta c

1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg

4740
```

<210> 114
<211> }784
<212> DNA
<213> Artificial
<220>
<223> artificial

```
```

<400> 114

```

5

10

15
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta
ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg 3900 tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactco ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta c gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcgggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact

4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
```

tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc }768
caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt }774
gcacaataat ggtcctcctt gttttagagc tagaaatagc aagttaaaat aaggctagtc
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt ttttt
<210> 115
<211> 7844
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 115

```
taaaaaatta ccacatattt atacatatat ttaaacttta gtgttttaga gaatcatata ttgacaacag gactctacag caaatagctt cacctatata gggttaatgg tttttataga ctaaattaag aaaactaaaa tagaataaaa taaagtgact aggaaacatt tttcttgttt ctaacggaca ccaaccagcg cggcatctct gtcgctgcct ctccgctgtc ggcatccaga gcggcctcct cctcctctca ttcgctttcc cttcctcgcc caacctcgtg ttgttcggag cggcacctcc gcttcaaggt agatcggcgt tccggtccat gtgttagatc cgtgtttgtg gtacgtcaga cacgttctga tggetctagc cgttccgcag ggtttggttt gcccttttcc cttttcatgc ttttttttgt gatcggagta gaattctgtt tgtgtgccat acatattcat gataggtata catgttgatg cttggttgtg atgatgtggt atactgtttc aaactacctg atcttcatag ttacgagttt tgatgtgggt tttactgatg taaccttgag t atatacttgg atgatggcat tacgctattt atttgcttgg tacttctgca ggtcgactct acaagaagta cagcatcggc cggacgaata taaggtcccg gcatcaagaa aaacttgatc ccaggctcaa gaggaccgcc tgcaggagat cttcagcaac aggaatcatt cctggtggag g tcgtcgacga ggtaagtttc tagtagtaat ataatatttc ttgcttttct gtagtttata caaaacatgg tgatgtgcag ggaagaaact ggtggacagc cgcatatgat caagttccgc ccgacgtgga caagctgttc accccataaa cgctagcggc
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta
gcccctctct agagataatg agcattgcat gtctaagtta tttttgtcac acttgtttga agtgcagttt atctatcttt
caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg
2940 gcaaccttat tgcgctcagc ctcggcetga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca cogctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa 3120 3180 3240 tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc 3420 tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga 3480 agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

<210> 116
<211> 7845
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 116
gggttaatgg tttttataga ctaaattaag aaaactaaaa tagaataaaa taaagtgact aa aggaaacatt tttcttgttt ctaacggaca ccaaccagcg cggcatctct gtcgctgcct ctccgctgtc ggcatccaga gcggcctcct cctcctctca ttcgctttcc cttcctcgcc caacctcgtg ttgttcggag cggcacctcc gettcaaggt agatcggcgt tccggtccat gtgttagatc cgtgtttgtg t gtacgtcaga cacgttctga t tggctctagc cgttccgcag a ggtttggttt gcccttttcc cttttcatgc ttttttttgt gatcggagta gaattctgtt t tgtgtgccat acatattcat a gataggtata catgttgatg cttggttgtg atgatgtggt g atactgtttc aaactacctg atcttcatag ttacgagttt
tgatgtgggt tttactgatg tgatgtgggt tttactgatg
taaccttgag tacctatcta
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 420 atatact tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt
cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600
aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660
ctggacccct ctcgagagtt ccgctccacc gttggacttg 720
aattgcgtgg cggagcggca gacgtgagcc ggcacggcag 780
cggcaccggc agctacgggg gattcctttc ccaccgctcc 840
cgccgtaata aatagacacc coctccacac cctctttccc 900
cgcacacaca cacaaccaga tctcccccaa atccacccgt 960
acgecgctcg tcctcccccc cccccctctc taccttctct 1020
gcatggttag ggcccggtag ttctacttct gttcatgttt
ttagatccgt gctgctagcg ttcgtacacg gatgcgacct
1080

EP 3191595 B1
tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg
2040
2100 acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gecgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca

2160 gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggega 2220 ccaggctcaa gaggaccgcc aggagacggt acactaggeg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg 2280 aggaatcatt cetggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2400 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat 2460 tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa 2520 ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc 2640 ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccetcg cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac coggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaagget ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcceagat aggagaccag tacgeggacc tcttcctcge cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cetgcggcgc caggaggact tctacccgtt cetgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggccogctg gctcgcggca actcccggtt cgcctggatg acceggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccetg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgetga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccetgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga

2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
\begin{tabular}{|c|c|c|c|}
\hline & & & 5820 \\
\hline & ag & gccgcaagag gatgctcgec tcc & 5880 \\
\hline ttgcagaa & & cgagcaaata cgtcaatttc ctgtacctcg & 5940 \\
\hline agccac & tgaaaagctc aagggcag & cggaggacaa cgagcagaag cagctcttcg & 600 \\
\hline ggagcagca & caagcattac ctggacgaga & tcatcgagca gatcagcgag ttctcgaagc & 6060 \\
\hline gggtga & cgccgacgcg aacctggaca & aggtgctgtc ggcatataac aagcaccgeg & 6120 \\
\hline aaa & acgcgagcag & tcatccacct cttcaccctc accaacctcg & 6180 \\
\hline gctec & agcettcaag ta & ccacgattga ccggaagcgg tacacgag & 6240 \\
\hline gaagga & gctcgatgcg acgetgat & accagagcat cacagggctc tatgaaacac & 6300 \\
\hline catcga & gagccagctg ggcggagaca & agagaccacg ggaccgccac gatggcgagc & 60 \\
\hline gga & caagcgggca aggtaggta & cgttaaccta gacttgtcca tcttctggat & 20 \\
\hline co & aattaatgta tgaaataa & ggatgcacac atagtgacat gcta & \\
\hline aatgt & catcaaagtt gtgtgtta & tgtaattact agttatctga ataaaagaga & 6540 \\
\hline gagatcat & ccatatttct tatcctaaat & gaatgtcacg tgtctttata attctttgat & 6600 \\
\hline accagatg & tcatta & tatacatata aatattaatc atatataatt & 6660 \\
\hline & gggttagcaa aacaaatc & gtctaggtgt gttttgcgaa tgcggccggg & 6720 \\
\hline gc & tcgatagctt tgagagta & atgatgaacc tagattaatc aatgccaaag & 6780 \\
\hline tgaaa & gcaccotcag tc & agaaaatcaa gattgcttga ggcectgttc & 840 \\
\hline gttgttccg & gattagagcc coggattaat & tcctagccgg attacttctc taatttatat & 00 \\
\hline agattttga & gagctggaat gaatcctggc & ttattccggt acaaccgaac aggccctgaa & 60 \\
\hline 号 & aatcgctgag ctaaattggc & atgctgtcag agtgtcagta ttgcagcaag & 7020 \\
\hline agtgagat & aaccggcatc atggtgcc & tttgatggca ccattagggt tagagatggt & 7080 \\
\hline gccatgggc & gcatgtcctg gccaacttt & tatgatatat ggcagggtga ataggaaagt & 7140 \\
\hline aattgtat & tgtaaaaagg gatttcttct & gtttgttagc gcatgtacaa ggaatgcaag & 7200 \\
\hline gagcga & gggggcatca aagatctggc & tgtgtttcca gctgtttttg ttagccecat & 7260 \\
\hline aatccttg & acataatgat cocgcttaa & taagcaacct cgcttgtata gttccttgtg & 320 \\
\hline etaacaca & cgatgatgat aagtcgta & atagtggtgt ccaaagaatt tccaggceca & 7380 \\
\hline tgtaaaag & ctaaaatgct attcgaattt & ctactagcag taagtcgtgt ttagaaatta & 7440 \\
\hline tttttata & tacctttttt cottctatgt & acagtaggac acagtgtcag cgccgcgttg & 7500 \\
\hline ggaga & tttgcaaaaa agtaaaagag & aaagtcatag cggcgtatgt gccaaaaact & 7560 \\
\hline tcacaga & gagggceata agaaacatgg & cccacggccc aatacgaagc accgcgacga & 7620 \\
\hline agcccaaaca & gcagtccgta ggtggagca & agcgctgggt aatacgcaaa cgttttgtcc & 7680 \\
\hline tgact & aatcacaaga gtggagcgta & ccttataaac cgagccgcaa gcaccgaatt & 7740 \\
\hline & cagcatcgac gttttagagc & tagaaatagc aagttaaaat aaggctagtc & 7800 \\
\hline & ttgaaaaagt ggcaccg & cggtgctttt ttt & \[
7845
\] \\
\hline
\end{tabular}
```

<210> 117
<211> 7845
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 117

```
\(\left.\begin{array}{llllll}\text { gtgcagcgtg } & \text { acccggtcgt } \\ \text { taaaaaatta } & \text { ccacatattt } & \text { tttttgtcac } & \text { acttgtttga } & \text { agtgcagttt } & \text { atctatcttt }\end{array}\right] 1200\)
gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct
1140 gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cetgccttca tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggctcaa gaggaccgcc aggagacggt acactaggcg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc ggaagaaact ggtggacagc acagacaagg cggacctccg g cgcatatgat caagttccgc ggccacttcc tcatcgaggg c ccgacgtgga caagctgttc atccagctcg tgcagacgta c accccataaa cgctagcggc gtggacgcca aggccatcct c caagaaggct ggagaacctt atcgcgcagt tgccaggcga a cggaggacgc caagctccag ctctcaaagg acacctacga c tggcccagat aggagaccag tacgcggacc tcttcctcgc c ctatcctgct cagcgacatc cttcgggtca acaccgaaat t ccagcatgat taaacgctac gacgagcacc atcaggacct ca tccgccagca gctccccgag aagtacaagg agatcttctt c acgcgggata tatcgacggc ggtgccagcc aggaagagtt c tcctggagaa gatggacggc accgaggagt tgctggtcaa g
tcaggaagca gaggaccttc gacaacggct ccatcccgca tgcatgccat cotgcggcgc caggaggact tctacccgtt c agatcgagaa gatcttgacg ttccgcatcc catactacgt g actcccggtt cgcctggatg acccggaagt cggaggagac c aggaggtggt cgataagggc gctagcgctc agagcttcat o
ataaaacct gcccaatgaa aaagtcctcc ccaagcactc ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga g tcctgagcgg cgagcagaag aa tgaccgtgaa gcaattaaaa g agatctcggg cqtggaggat agatcattaa agacaaggac ttcctcgaca acgaggagaa tcgtcctcac cotgaccetg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g ggggaaggct gtcccgcaag ctcattaatg gcatcaggga c
tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa c ccctccacga acacatcgcc aacctggccg gctcgccggc c agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg c tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aaatacccag ctccagaatg aaaagctcta accacatcgt gccgcagtcg ttcctcaagg acgatagcat ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc

1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca

4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480
6540
6600
6660
6720
6780
6840
6900
6960
7020
7080
7140
7200
7260
7320
7380
7440
7500
7560
7620
7680
7740
7800
7845
```

<210> }11
<211> 7846
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 118

```
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta ..... 60
taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt ..... 120
atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca ..... 180

EP 3191595 B1
gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc ttcgetttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cctctttccc caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt cggcacctcc gettcaaggt acgccgctcg tcctcccccc cccccctctc taccttctct agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt t ggtttggttt gccettttcc tttatttcaa tatatgccgt g cttttcatgc t gatcggagta gaattctgtt tgtgtgccat gataggtata cttggttgtg atactgtttc a atcttcatag tgatgtgggt taaccttgag atatacttgg tacgctattt tacttctgca cggacgaata gcatcaagaa ccaggctcaa tgcaggagat aggaatcatt tcgtcgacga tagtagtaat ttgcttttct 9 caaaacatgg t ggaagaaact cgcatatgat ccgacgtgga accccataaa caagaaggct gcaaccttat t cggaggacgc tggcccagat ctatcctgct cagcgacag ccagcatgat taaacgctac tccgccagca gctccccgag a acgcgggata tatcgacggc g tcctggagaa gatggacggc tcaggaagca tgcatgccat cctgcggcgc agatcgagaa actcccggtt cgcctggatg aggaggtggt cgataagggc g ataaaaacct gcccaatgaa a ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga tcctgagcgg cgagcagaag aaggcgatag tggacctcct tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agal
agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca
4020 agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt
```

gagacatcct cattctagag cgttttagag ctagaaatag caagttaaaa taaggctagt 7800
ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt tttttt 7846
<210> 119
<211> 7847
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 119

```
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 120 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 180 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg
caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 240 300 gggttaatgg tttttataga c ctaaattaag aaaactaaaa tagaataaaa taaagtgact aggaaacatt tttcttgttt c ctaacggaca ccaaccagcg cggcatctct gtcgctgcct ctccgctgtc \(g\) gcggcctcct cct ttcgetttcc cttcctcgcc caacctcgtg t cggcacctcc agatcggcgt t gtgttagatc gtacgtcaga tggctctagc ggtttggttt cttttcatgc t gatcggagta tgtgtgccat gataggtata cttggttgtg atgatgagt atactgtttc a atcttcatag t tgatgtgggt t taaccttgag t atatacttgg a tacgctattt tacttctgca acaagaagta cggacgaata taagatcge gcatcaagaa ccaggctcaa tgcaggagat cttcaccgcc aggaatcatt tcgtcgacga tagtagtaat ttgcttttct caaaacatgg tgatgtgcag ggaagaaact ggtggacagc cgcatatgat caagttccgc ccgacgtgga caagctgttc a accccataaa cgctagcggc caagaaggct ggagaacctt gcaaccttat tgcgctcagc ctcggcetga cggaggacgc caagctccag ctctcaaagg a
ctaatttttt t
tctatttta gttacatct attttattct attttagcct 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg
3120 ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc 3360
\begin{tabular}{llllll} 
ggttgttccg gattagagcc ccggattaat tcctagccgg & attacttctc & taatttatat & 6900 \\
agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa & 6960 \\
ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag & 7020 \\
gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt & 7080 \\
ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt & 7140 \\
aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag & 7200 \\
ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat & 7260 \\
cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg & 7320 \\
ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca & 7380 \\
gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta & 7440 \\
tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg & 7500 \\
acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact & 7560 \\
tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga & 7620 \\
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc & 7680 \\
caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt & 7740 \\
gcctcagtca tagttccact ctgttttaga gctagaaata gcaagttaaa ataaggctag & 7800 \\
tccgttatca acttgaaaaa gtggcaccga gtcggtgctt ttttttt & 7847
\end{tabular}
```

<210> 120
<211> 7845
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 120

```
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct 420 ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa 480 tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660 cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg ctccgctgtc ggcatccaga a gcggectcct cctcctctca ttcgetttcc cttcctcgec caacctcgtg t cggcacctcc gcttcaagt agatcggcgt tccggtccat gtgttagatc cgtgtttgtg t gtacgtcaga cacgttctga t tggctctagc egttccgcag ggtttggttt gcccttttcc t cttttcatgc ttttttttgt gatcggagta gaattctgtt tcaaactacc tgtgtgccat acatattcat a gataggtata catgttgatg cgggttttac t cttggttgtg atgatgtggt otggttggoc atactgtttc aaactacctg 9 atcttcatag ttacgagttt tgatgtgggt tttactgatg taaccttgag tacctatcta t atatacttgg atgatggcat atgcagcagc ta tacgctattt atttgcttgg tactgtttct t tacttctgca ggtcgactct a acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca

540

EP 3191595 B1
gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga
2220 ccaggctcaa gaggaccgcc aggagacggt acactaggcg caagaacagg atctgctacc 2280 tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg 2340 aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2400 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac coggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcetga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga c tggcccagat aggagaccag tacgcggace tcttcctcgc c ctatcctgct cagcgacatc cttcgggtca acaccgaaat t cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cctgaccetg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g ggggaaggct gtcccgcaag ctcattaatg gcatcaggga c tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa c acgactcgct cacgttcaag gaagacatcc agaaggcaca g ccctccacga acacatcgcc aacctggccg gctcgecggc c agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aaatacccag ctccagaatg aaaagctcta gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat ggtcggataa aatcggggc aagagcgaca acgtgcccag c tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat c acctgacgaa ggcggaacgc ggtggcttga gcgaactcga t ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ca tgaatactaa gtacgatgaa aacgacaagc tgatccggga g agtccaagct cgtgtcggac ttccgcaagg acttccagtt acaactacca ccacgcccac gacgcctacc tgaatgcggt agaagtaccc gaagctggag tcggagttcg tgtacggcga c gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cac actcgaacat catgaacttc ttcaagaccg agatcaccct c agcgcccgct catcgaaacc aacggcgaga cgggcgagat c atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt c aggtccagac gggcgggttc agcaaggagt ccatcctccc g tcatcgcgag gaagaaggat tgggacccga aaaaatatgg c tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg ca ccgtgaagga gctgctcggg atcacgatta tggagcggtc c tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg

2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940

```

<210> 121
<211> 7844
<212> DNA
<213> Artificial
<220>
<223> artificial

```
<400> 121


EP 3191595 B1
ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga atactgtttc aactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat at tacgctattt atttgcttgg t acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtggctgg gccgtcatca cggacgaata taaggtcceg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggctcaa gaggaccgcc aggagacggt acactaggcg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg cgcatatgat caacttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaac ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaagget ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca cogctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cetgcggcge caggaggact tctaccegtt cetgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaacct gcccaatgaa aaagtcctcc ccaagcactc getgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac a ggggaaggct gtcccgcaag c tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa acgactcgct ccctccacga agacggtcaa tcgtcataga agcggatgaa acggatcgag accccgtgga gccgcgacat accacatcgt ggtcggataa tgaaaaacta ctggcgccag acctgacgaa ggcggaacgc g ggcagctggt
cacgttcaag ga acacatcgcc a gatggccagg gtacgtggac caggagctgg acattaatcg \(g\) gccgcagtcg ttcctcaagg acgatagcat aagagcgaca acgtgcccag c ctcctcaacg cgaaactgat cacccagcgc aagttcgaca gtggcttga gcgaactcga taaggcgggc ttcataaaaa cagatcacga agcatgtcgc ccagatcctg gacagccgca

1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga
5100 agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca 5160 acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccetgatca 5220 agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg a tcgacttcct agaggccaag cgaagtactc gctcttcgag agttgcagaa gggcaacgag ctagccacta tgaaaagctc tggagcagca caagcattac gggtgatcct cgccgacgcg acaaaccaat acgcgagcag gcgctccggc agccttcaag cgaaggaggt gctcgatgcg gcatcgacct gagccagctg tgggaggccg caagcgggca tggccaactt aattaatgta ataatgtggg catcaaagtt aagagatcat ccatatttct ta gaaccagatg catttcatta aatatcaatt gggttagcaa ctgcaggaat tcgatagctt tctgaaaaat gcaccctcag ggttgttccg gattagagcc agattttgat gagctggaat ggataccagt aatcgctgag gtagtgagat aaccggcatc ggccatgggc gcatgtcctg aaaattgtat tgtaaaagg ttttgagcga gggggcatca cgaatccttg acataatgat ctctaacaca cgatgatgat gttgtaaaag ctaaaatgct tttttttata tacctttttt acggagaata tttgcaaaaa tcgtcacaga gagggccata agcccaaaca gcagtccgta caccttgact aatcacaaga gagctatacc tagtgataag t
gttatcaact tgaaaaagtg

\footnotetext{
<210> 122
<211> 7849
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 122
}
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta ..... 60
taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt ..... 120
atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca ..... 180
gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ..... 240
ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg ..... 300
caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta ..... 360

EP 3191595 B1
gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct

420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc acgactcgct cacgttcaag ccctccacga acacatcgcc agacggtcaa ggtcgtcgac tcgtcataga gatggccagg agcggatgaa acggatcgag accccgtgga aaatacccag gccgcgacat gtacgtggac accacatcgt gccgcagtcg ggtcggataa aaatcggggc tgaaaaacta ctggcgccag acctgacgaa ggcggaacgc ggcagctggt cgagacgcgc tgaatactaa gtacgatgaa agtccaagct cgtgtcggac acaactacca ccacgcccac agaagtaccc gaagctggag gcaaaatgat cgccaagtcc actcgaacat catgaacttc agcgcccgct catcgaaacc atttcgcgac ggtccgcaag aggtccagac gggcgggttc tcatcgcgag gaagaaggat tcgcatacag cgtcctcgtc ccgtgaagga gctgctcggg tcgacttcct agaggccaag cgaagtactc gctcttcgag agttgcagaa gggcaacgag ctagccacta tgaaaagctc tggagcagca caagcattac gggtgatcct cgccgacgcg acaaaccaat acgcgagcag gcgctccggc agccttcaag cgaaggaggt gctcgatgcg gcatcgacct gagccagctg tgggaggccg caagcgggca tggccaactt aattaatgta ataatgtggg catcaaagtt aagagatcat ccatatttct gaaccagatg catttcatta aatatcaatt gggttagcaa ctgcaggaat tcgatagctt tctgaaaaat gcaccctcag ggttgttccg gattagagcc agattttgat gagctggaat ggataccagt aatcgctgag gtagtgagat aaccggcatc ggccatgggc gcatgtcctg aaaattgtat tgtaaaaagg ttttgagcga gggggcatca cgaatccttg acataatgat ctctaacaca cgatgatgat gttgtaaaag ctaaaatgct tttttttata tacctttttt acggagaata tttgcaaaa tcgtcacaga gagggccata agcccaaaca gcagtccgta caccttgact aatcacaaga
gaatatccct ttctacgaaa agtccgttat caacttgaaa
gacgggttcg ccaaccgcaa gaagacatcc agaaggcaca aacctggccg gctcgccggc gagctcgtga aggtgatggg gagaaccaga ccacccaaaa a gagggcatta aagagctcgg ctccagaatg aaaagctcta caggagctgg acattaatcg ttcctcaagg acgatagcat aagagcgaca acgtgcccag c ctcctcaacg cgaaactgat ggtggcttga gcgaactcga t cagatcacga agcatgtcgc c aacgacaagc tgatccggga ttccgcaagg acttccagtt c gacgcctacc tgaatgcggt tcggagttcg tgtacggcga gagcaggaga tcggcaaggc c ttcaagaccg agatcaccct aacggcgaga cgggcgagat c gtgctctcca tgccgcaagt ca agcaaggagt ccatcctccc tgggacccga aaaaatatgg gtggcgaagg tggagaaggg atcacgatta tggagcggtc ggatataagg aggtcaagaa ctggaaaacg gccgcaagag ctcgccctcc cgagcaaata aagggcagcc cggaggacaa ctggacgaga tcatcgagca aacctggaca aggtgctgtc gccgaaaata tcatccacct tacttcgaca ccacgattga acgctgatcc accagagcat ca ggcggagaca agagaccacg aggtaggtac cgttaaccta tgaaataaaa ggatgcacac gtgtgttatg tgtaattact tatcctaaat gaatgtcacg t accaaatcca tatacatata aacaaatcta gtctaggtgt tgagagtaca atgatgaacc tctatgatcc agaaaatcaa ccggattaat tcctagccgg gaatcctggc ttattccggt ctaaattggc atgctgtcag atggtgccag tttgatggca c gccaactttg tatgatatat gatttcttct gtttgttagc aagatctggc tgtgtttcca cccgcttaaa taagcaacct aagtcgtaaa atagtggtgt attcgaattt ctactagcag ccttctatgt acagtaggac a agtaaaagag aaagtcatag c agaaacatgg cccacggccc a ggtggagcaa agcgctgggt gtggagcgta ccttataac gaatgtttta gagctagaaa t aagtggcacc gagtcggtgc t

4200
<210> 123
<211> 7847
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 123
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca240300
tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa 3360 tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc 3420 tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac 3480 tgcatgccat cotgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga 3540 agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 3660 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca 3780 ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccotgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag

3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 6540 6600 6660 6720 6780 6840 6900 6960 7020
```

gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt 7080
ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 7140
aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag 7200
ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat }726
cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg 7320
ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca }738
gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta 7440
tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg 7500
acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact }756
tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga }762
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttggtcc }768
caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt }774
gtcaatggag aattctctgt tagttttaga gctagaaata gcaagttaaa ataaggctag }780
tccgttatca acttgaaaaa gtggcaccga gtcggtgctt ttttttt }784

```
```

<210> 124
<211> 7842
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 124

```
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg \(\begin{array}{lll}\text { caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta } & 360 \\ \text { gggttaatgg ttttataga ctaattttt tagtacatct atttattct attttagcct } & 420\end{array}\) gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg 720 ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc ttcgetttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cotctttccc 900 caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt cggcacctcc gcttcaaggt acgccgctcg tcctcccccc cccccctctc taccttctct agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc t cttttcatgc ttttttttgt c gatcggagta gaattctgtt tcagttgtg tgtgtgccat acatattcat agttacgaat t gataggtata catgttgatg cgggttttac t cttggttgtg atgatgtggt gtggttgggc g atactgtttc aaactacctg gtgtatttat t atcttcatag ttacgagttt a tgatgtgggt tttactgatg catatacatg taaccttgag tacctatcta ttataataaa atatacttgg atgatggcat tacgctattt atttgcttgg t tacttctgca ggtcgactct acaagaagta cagcatcggc c cggacgaata taaggtcccg tcgaagaagt t gcatcaagaa aaacttgatc ggcgccctcc t ccaggctcaa gaggaccgcc aggagacggt a tgcaggagat cttcagcaac gagatggcga a

240 300 420 480 660

0

780
840
960
1020
1080
1140
1200
1260
1320
1380
1440
aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2400 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat 2460 tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa 2520 ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc 2640 ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccetcg 2700 cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcceagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaacggct acgegggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccetg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgegcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaajg ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagcegca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgetga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc
gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccget catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggeg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg

2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120

```

<210> 125
<211> 7846
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 125

```

tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca tacgetattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgecaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggctcaa gaggaccgec aggagacggt acactaggcg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga c aggaatcatt cctggtggag gaggacaaga agcatgagcg g tcgtcgacga ggtaagtttc tgcttctacc tttgatatat a tagtagtaat ataatatttc aaatattttt ttcaaaataa a ttgcttttct gtagtttata agtgtgtata ttttaattta t caaaacatgg tgatgtgcag gtggcctacc acgagaagta c ggaagaaact ggtggacagc acagacaagg cggacctccg g cgcatatgat caagttccgc ggccacttcc tcatcgaggg c ccgacgtgga caagctgttc atccagctcg tgcagacgta c accccataaa cgctagcggc gtggacgcca aggccatcct c caagaaggct ggagaacctt atcgcgcagt tgccaggcga a gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caan tggcccagat aggagaccag tacgcggacc tcttcctcgc c ctatcctgct cagcgacatc cttcgggtca acaccgaaat t ccagcatgat taaacgctac gacgagcacc atcaggacct c tccgccagca gctccccgag aagtacaagg agatcttctt c acgcgggata tatcgacggc ggtgccagcc aggaagagtt c tcctggagaa gatggacggc accgaggagt tgctggtcaa g tcaggaagca gaggaccttc gacaacggct ccatcccgca t tgcatgccat cctgcggcgc caggaggact tctacccgtt c agatcgagaa gatcttgacg ttccgcatcc catactacgt g actcccggtt cgcctggatg acccggaagt cggaggagac c aggaggtggt cgataagggc gctagcgctc agagcttcat c ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc g ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga g tcctgagcgg cgagcagaag aaggcgatag tggacctcct c tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat a agatctcggg cgtggaggat cggttcaacg cctcactcgg c agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g ggggaaggct gtcccgcaag ctcattaatg gcatcaggga c tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa acgactcgct cacgttcaag gaagacatcc agaaggcaca g ccctccacga acacatcgcc aacctggccg gctcgccggc c agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg c tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aaatacccag ctccagaatg aaaagctcta c gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat cga ggtcggataa aatcggggc aagagcgaca acgtgcccag c tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat ca
acctgacgaa ggcggaacgc ggtggcttga gcgaactcga ta ggcagctggt cgagacgcgc cagatcacga agcatgtcgc c tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca
agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga t gggtgatcct cgccgacgcg aacctggaca a acaaaccaat acgcgagcag gccgaaaata t gcgctccggc agccttcaag tacttcgaca cgaaggaggt gctcgatgcg acgctgatcc a gcatcgacct gagccagctg ggcggagaca a tgggaggccg caagcgggca aggtaggtac tggccaactt aattaatgta tgaaataaaa g ataatgtggg catcaaagtt gtgtgttatg t aagagatcat ccatatttct tatcctaat g gaaccagatg catttcatta accaaatcca t aatatcaatt gggttagcaa aacaaatcta g ctgcaggaat tcgatagctt tgagagtaca tctgaaaaat gcaccctcag tctatgatcc a ggttgttccg gattagagcc ccggattaat t agattttgat gagctggaat gaatcctggc t ggataccagt aatcgctgag ctaaattggc a gtagtgagat aaccggcatc atggtgccag t ggccatgggc gcatgtcctg gccaactttg ta aaaattgtat tgtaaaagg gatttcttct g ttttgagcga gggggcatca aagatctggc t cgaatccttg acataatgat cccgcttaaa ta ctctaacaca cgatgatgat aagtcgtaaa a gttgtaaaag ctaaaatgct attcgaattt tttttttata tacctttttt ccttctatgt acggagaata tttgcaaaaa agtaaaagag a tcgtcacaga gagggccata agaaacatgg c agcccaaaca gcagtccgta ggtggagcaa caccttgact aatcacaaga gtggagcgta c gtgctccctg ctactgcgaa cgttttagag c ccgttatcaa cttgaaaaag t
```

<210> 126
<211> 7843
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 126

```
\begin{tabular}{llrl} 
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta & 60 \\
taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt & 120 \\
atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca & 180 \\
gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt & 240 \\
ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg & 300 \\
caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta & 360 \\
gggttaatgg tttttataga ctaattttt tagtacatct attttattct attttagcct & 420 \\
ctaaattaag aaaactaaaa ctctattta gttttttat ttaataattt agatataaaa & 480 \\
tagaataaaa taaagtgact aaaattaaa caaataccct ttaagaaatt aaaaaacta & 540
\end{tabular}
aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcggcctcct cctcctctca cggcaccggc agctacgggg g ttcgetttcc cttcctcgcc cgccgtaata aatagacacc c caacctcgtg ttgttcggag cgcacacaca cacaaccaga t cggcacctcc gcttcaaggt acgccgctcg tcctcccccc c agatcggcgt tccggtccat gcatggttag ggcccggtag t gtgttagatc gtacgtcaga tggctctagc ggtttggttt cttttcatgc t gatcggagta tgtgtgccat gataggtata cttggttgtg a atactgtttc a atcttcatag t tgatgtgggt taaccttgag atatacttgg tacgctattt tacttctgca acaagaagta cggacgaata gcatcaagaa ccaggctcaa tgcaggagat aggaatcatt tcgtcgacga tagtagtaat ttgcttttct caaaacatgg t ggaagaaact cgcatatgat ccgacgtgga accccataaa caagaaggct gcaaccttat t cggaggacgc tggcccagat ctatcctgct ccagcatgat taaacgotac tccgccagca gctccccgag aagtacaagg agatcttctt acgcgggata tcctggagaa tcaggaagca tgcatgccat cctgcgg agatcgagaa gatcttgacg ttccgcatcc catactacgt actcceggtt aggaggtggt ataaaaacct tcctgagcgg tgaccgtgaa agatctcggg agatcattaa a tcgtcctcac acgcgcacct gttcgacgac aaggtcatga aacagctcaa ggggaaggct gtcccgcaag ctcattaatg gcatcaggga ca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa

600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact coctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggceagg gagaaccaga ccacccaaaa agggcagaag aactcgcgeg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg t ggtcggataa aaatcggggc aagagcgaca tgaaaaacta ctggcgecag ctcctcaacg acctgacgaa ggcggaacgc ggtggcttga ggcagctggt cgagacgcgc c tgaatactaa gtacgatgaa aacgacaagc agtccaagct cgtgtcggac acaactacca agaagtaccc gaagctggag t gcaaaatgat cgccaagtcc actcgaacat catgaacttc agcgeccgct catcgaaacc atttcgcgac ggtccgcaag aggtccagac gggcgggttc agcaaggagt tcatcgcgag gaagaaggat tgggaccoga tcgcatacag cgtcctcgtc gtggcgaagg t ccgtgaagga gctgctcggg a tcgacttcct agaggccaag cgaagtactc gctcttcgag agttgcagaa gggcaacgag ctagccacta tgaaaagctc a tggagcagca caagcattac
gggtgatcct cgccgacgcg acaaaccaat acgcgagcag gcgctccggc agccttcaag cgaaggaggt gctcgatgcg a gcatcgacct gagccagctg tgggaggecg caagcgggca tggccaactt a ataatgtggg aagagatcat gaaccagatg aatatcaatt ctgcaggaat tcgatagctt tctgaaaaat ggttgttccg g agattttgat gagctggaat ggataccagt a gtagtgagat ggccatgggc gcatgtcctg aaaattgtat tgtaaaaagg ttttgagcga gggggcatca cgaatccttg acataatgat ctctaacaca cgatgatgat gttgtaaaag ctaaaatgct tttttttata tacctttttt acggagaata tttgcaaaaa tcgtcacaga gagggccata agcccaaaca gcagtccgta ggtggagcaa caccttgact aatcacaaga gtggagcgta ggtgcaggca ggagaattgt tttagagcta ttatcaactt gaaaaagtgg caccgagtcg
cgatagcat acgtgcccag ca gaaactgat cacccagcgc gtgaagaaga gcgaactcga taaggcgggc ttcataaaaa agcatgtcgc ccagatcctg gacagccgca tgatccggga ggtgaaggtg atcacgctga acttccagtt ctacaaggtc egcgagatca tgaatgcggt ggtcgggacc gccctgatca tgtacggcga ctacaaggtc tacgacgtgc tcggcaagge cacggcaaaa tacttcttct agatcaccct cgcgaacggc gagatccgca cgggcgagat cgtctgggat aagggccggg tgccgcaagt caatatcgtg aaaaagacgg ccatcctccc gaagcgcaac tccgacaagc aaaatatgg cggcttcgac agcccgaccg tggagaaggg caagtcaaag aagctcaagt tggagcggtc ctccttcgag aagaaccoga aggtcaagaa ggacctgatt attaaactgc gccgcaagag gatgctcgcc tccgcaggeg cgagcaaata cgtcaatttc ctgtacctcg cggaggacaa cgagcagaag cagctcttcg tcatcgagca gatcagcgag ttctcgaagc aggtgctgtc ggcatataac aagcaccgcg tcatccacct cttcaccctc accaacctcg ccacgattga ccggaagcgg tacacgagca accagagcat cacagggctc tatgaaacac agagaccacg ggaccgccac gatggcgagc cgttaaccta gacttgtcca tcttctggat ggatgcacac atagtgacat gctaatcact tgtaattact agttatctga ataaaagaga gaatgtcacg tgtctttata attctttgat tatacatata aatattaatc atatataatt gtctaggtgt gttttgcgaa tgcggccggg atgatgaacc tagattaatc aatgccaaag gattgcttga ggccetgttc attacttctc taatttatat acaaccgaac aggccctgaa agtgtcagta ttgcagcaag ccattagggt tagagatggt ggcagggtga ataggaaagt gcatgtacaa ggaatgcaag gctgtttttg ttagccccat cgcttgtata gttccttgtg ccaaagaatt tccaggecca taagtcgtgt ttagaaatta acagtgtcag cgecgegttg cggcgtatgt gccaaaaact aatacgaagc accgcgacga aatacgcaaa cgttttgtcc cgagccgcaa gcaccgaatt gttaaaataa ggctagtccg ttt

4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940

\section*{6000}

6060
6120
6180
6240
6300
6360
6420
6480
6540
6600
6660
6720
6780
6840
6900
6960
7020
7080
7140
7200
7260
7320
7380
7440
7500
7560
7620
7680
7740
7800
7843
```

<211> 7847
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 127

```
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata a ttgacaacag gactctacag t caaatagctt cacctatata gggttaatgg ctaaattaag tagaataaaa aggaaacatt ctaacggaca cggcatctct gcggcctcct cctcctctca ttcgctttcc caacctcgtg cggcacctcc agatcggcgt gtgttagatc gtacgtcaga tggctctagc ggtttggttt g cttttcatgc t gatcggagta tgtgtgccat gataggtata cttggttgtg atactgtttc atcttcatag t tgatgtgggt t taaccttgag t atatacttgg tacgctattt tacttctgca ggtcocg acaagaagta cagcatcggc cggacgaata ta gcatcaagaa aaacttgatc ccaggctcaa gaggaccgcc tgcaggagat cttcagcaac aggaatcatt cctggtggag tcgtcgacga ggtaagtttc tagtagtaat ttgcttttct gtagtttata caaaacatgg tgatgtgcag ggaagaaact cgcatatgat caagttccgc ccgacgtgga caagctgttc accccataaa caagaaggct ggagaacctt gcaaccttat tgcgctcagc cggaggacgc caagctccag tggcccagat aggagaccag ctatcctgct cagcgacatc ccagcatgat taaacgctac tccgccagca gctccccgag acgcgggata tatcgacggc tcctggagaa gatggacggc
aatgaacagt tagacatggt ctaaaggaca attgagtatt ttttatcttt ttagtgtgca tgtgttctcc tttttttttg atacttcatc cattttatta gtacatccat ttagggttta ctaatttttt tagtacatct attttattct attttagcct ctctatttta gtttttttat ttaataattt agatataaa aaaaattaaa caaataccct ttaagaaatt aaaaaaacta cgagtagata atgccagcct gttaaacgcc gtcgacgagt aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca ctggacccct ctcgagagtt ccgctccacc gttggacttg aattgcgtgg cggagcggca gacgtgagcc ggcacggcag cggcaccggc agctacgggg gattcctttc ccaccgctcc cgccgtaata aatagacacc ccctccacac cctctttccc cgcacacaca cacaaccaga tctcccccaa atccaccegt acgecgetcg tcctcccccc cccccctctc taccttctct gcatggttag ggcccggtag ttctacttct gttcatgttt ttagatccgt gctgctagcg ttcgtacacg gatgcgacct ttgctaactt gccagtgttt ctctttgggg aatcctggga acgggatcga tttcatgatt ttttttgttt cgttgcatag tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttggttgtg atgatgtggt ctggttgggc ggtcgttcta tcaaactacc tggtggattt attaattttg gatctgtatg agttacgaat tgaagatgat ggatggaaat atcgatctag cgggttttac tgatgcatat acagagatgc tttttgttcg gtggttgggc ggtcgttcat tcgttctaga tcggagtaga gtgtatttat taattttgga actgtatgtg tgtgtcatac aagatggatg gaaatatcga tctaggatag gtatacatgt catatacatg atggcatatg cagcatctat tcatatgctc ttataataaa caagtatgtt ttataattat tttgatcttg atgcagcagc tatatgtgga tttttttagc cctgccttca tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca tcgaagaagt tcaaggtcct cggcaataca gaccgccaca cggcgagacc gcggaggcga caagaacagg atctgctacc aggagacggt acactaggcg caagaacagg atctgctacc gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tgcttctacc tttgatatat atataataat tatcattaat aaatattttt ttcaaaataa aagaatgtag tatatagcaa agtgtgtata ttttaattta taacttttct aatatatgac gtggcctacc acgagaagta cccgacaatc taccacctcc acagacaagg cggacctccg gctcatctac cttgccctcg ggccacttcc tcatcgaggg cgacctgaac ccggacaact atccagctcg tgcagacgta caatcaactg ttcgaggaga gtggacgcca aggccatcct ctcggccagg ctctcgaaat atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg ctcggcctga cgccgaactt caaatcaaac ttcgacctcg ctctcaaagg acacctacga cgacgacctc gacaacctcc tacgcggacc tcttcctcgc cgccaagaac ctctccgacg cttcgggtca acaccgaaat taccaaggca ccgctgtccg gacgagcacc atcaggacct cacgctgctc aaggcactcg aagtacaagg agatcttctt cgaccaatca aaaaacggct ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa accgaggagt tgctggtcaa gctcaacagg gaggacctcc
tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac 3480 tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga 3540 agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca 3600 actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg 3660 aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca 3780 ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt 3840 tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg 3900 tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg 3960 agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca 4020 agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca 4080 tcgtcctcac cotgaccetg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct 4140 acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt 4200 ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca 4260 tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccogaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgeg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag ta cgaaggaggt gctcgatgcg ac acttcgaca ccacgattga ccggaagcgg tacacgagca acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccetgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag

4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480
6540
6600
6660
6720
6780
6840
6900
6960
7020
7080
7140
7200
\begin{tabular}{|c|c|c|}
\hline & & 7260 \\
\hline & at cccgcttaaa taagcaacct cgettgtata gttccttgtg & 7320 \\
\hline ctaaca & cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccea & 7380 \\
\hline tgtaaaa & ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta & 7440 \\
\hline ttttta & tacctttttt cottctatgt acagtaggac acagtgtcag cgccgcgttg & 7500 \\
\hline gggagaat & tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact & 7560 \\
\hline gtcacag & gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga & 7620 \\
\hline gcccaaa & gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc & 7680 \\
\hline cc & aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt & 7740 \\
\hline ata & catacacttg cagttttaga gctagaaata gcaagttaaa ataaggctag & 7800 \\
\hline cogttat & acttgaaaa gtggcaccga gtcggtgctt tttt & 784 \\
\hline
\end{tabular}
```

<210> 128
<211> 7849
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 128

```
gtgcagcgtg acceggtcgt gccectctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg tagaataaaa taaagtgact aggaaacatt tttcttgttt ctaacggaca ccaaccagcg a cggcatctct gtcgctgcct c ctccgctgtc ggcatccaga gcggcctcct cctcctctca ttcgctttcc cttcctcgcc caacctcgtg ttgttcggag cggcacctcc gcttcaaggt agatcggcgt tccggtccat gtgttagatc cgtgtttgtg t gtacgtcaga cacgttctga t tggctctagc cgttccgcag ggtttggttt gcccttttcc t cttttcatgc ttttttttgt gatcggagta tgtgtgccat acatatg gataggtata catgttgatg cttggttgtg atgatgtggt atactgtttc aaactacctg atcttcatag ttacgagttt tgatgtgggt tttactgatg taaccttgag tacctatcta atatacttgg atgatggcat tacgctattt atttgcttgg ta tacttctgca ggtcgactct acaagaagta cagcatcggc cggacgaata taaggtcccg t gcatcaagaa aaacttgatc ccaggctcaa gaggaccgcc tgcaggagat cttcagcaac g aggaatcatt cctggtggag tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa
ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc 2640 ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg 2700 cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact 2760 ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat 2820 caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg 3000 cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc 3060 tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg 3120 ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg 3180 ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga
agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac
\begin{tabular}{|c|c|c|}
\hline & & 6360 \\
\hline & caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat & 6420 \\
\hline & & 6480 \\
\hline atgtg & catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga & 6540 \\
\hline gagatc & ccatatttct tatcctaat gaatgtcacg tgtctttata attctttgat & 6600 \\
\hline aaccaga & \(a\) accaaatcca tatacatata aatattaatc atatataatt & 6660 \\
\hline tatca & gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg & 6720 \\
\hline gcaggaa & tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag & 6780 \\
\hline tgaaaaa & gcaccetcag tctatgatcc agaaaatcaa gattgcttga ggccetgttc & 6840 \\
\hline ttgttc & gattagagcc coggattaat tcctagccgg attacttctc taatttatat & 6900 \\
\hline gattttg & gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa & 6960 \\
\hline gataccagt & aatcgctgag ctaattggc atgctgtcag agtgtcagta ttgcagcaag & 7020 \\
\hline agtgaga & aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt & 7080 \\
\hline gccatgggc & gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt & 7140 \\
\hline aattgta & tgtaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag & 7200 \\
\hline ttgagcga & gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat & 7260 \\
\hline gaatcctt & acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg & 7320 \\
\hline tctaacaca & cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca & 7380 \\
\hline ttgtaaaag & ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta & 7440 \\
\hline tttttat & tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg & 7500 \\
\hline cggagaat & tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact & 7560 \\
\hline cgtcacag & gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga & 7620 \\
\hline gcccaaaca & gcagtccgta ggtggagcaa agcgetgggt aatacgcaaa cgttttgtcc & 7680 \\
\hline caccttgact & tcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt & 7740 \\
\hline cataata & tgaggagata atctgtttta gagctagaaa tagcaagtta aaataaggct & 7800 \\
\hline tt & caacttgaaa aagtggcacc gagtcggtgc ttt & 7849 \\
\hline
\end{tabular}
<210> 129
<211> 7844
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 129
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct 420 ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa 480 tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660 cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg 720 ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag 780 gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc 840 ttcgetttcc cttcctcgec cgccgtaata aatagacacc ccctccacac cotctttccc 900 caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt 960 cggcacctcc gcttcaaggt acgecgetcg tcctcccccc ccccoctctc taccttctct agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga

EP 3191595 B1
atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac
1680 atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc

1740 taaccttgag tacctatcta ttataataaa caagtatgtt t atatacttgg atgatggcat atgcagcagc tatatgtgga t tacgctattt atttgcttgg tactgtttct tttgtcgatg tacttctgca ggtcgactct agaggatcca tggcaccgaa gaa acaagaagta cagcatcggc ctcgacatcg gcaccaactc cggacgaata taaggtcccg tcgaagaagt tcaaggtcct gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag ccaggctcaa gaggaccgcc aggagacggt acactaggcg tgcaggagat cttcagcaac gagatggcga aggtggacga aggaatcatt cctggtggag gaggacaaga agcatgagcg tcgtcgacga ggtaagtttc tgcttctacc tttgatatat tagtagtaat ataatatttc aaatattttt ttcaaaataa ttgcttttct gtagtttata agtgtgtata ttttaattta ta caaaacatgg tgatgtgcag gtggcctacc acgagaagta ggaagaaact ggtggacagc acagacaagg cggacctccg cgcatatgat caagttccgc ggccacttcc tcatcgaggg ccgacgtgga caagctgttc atccagctcg tgcagacgta ca accccataaa cgctagcggc gtggacgcca aggccatcct caagaaggct ggagaacctt atcgcgcagt tgccaggcga gcaaccttat tgcgctcagc ctcggcctga cgccgaactt cggaggacgc caagctccag ctctcaaagg acacctacga c tggcccagat aggagaccag tacgcggacc tcttcctcgc ctatcctgct cagcgacatc cttcgggtca acaccgaaat tccgccagca gctccccgag aagtacaagg agatcttctt acgcgggata tatcgacggc ggtgccagcc aggaagagtt c tcctggagaa gatggacggc accgaggagt tgctggtcaa g tcaggaagca gaggaccttc gacaacggct ccatcccgca t tgcatgccat cotgcggcgc caggaggact tctacccgtt c agatcgagaa gatcttgacg ttccgcatcc catactacgt actcccggtt cgcctggatg acccggaagt cggaggagac c aggaggtggt cgataagggc gctagcgctc agagcttcat c ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga g tcctgagcgg cgagcagaag aaggcgatag tggacctcct tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat a agatctcggg cgtggaggat cggttcaacg cctcactcgg c agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cotgaccetg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g ggggaaggct gtcccgcaag ctcattaatg gcatcaggga
tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa acgactcgct cacgttcaag gaagacatcc agaaggcaca ccctccacga acacatcgcc aacctggecg gctcgccggc c agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg c tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aatacccag ctccagaatg aaaagctcta c gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat c ggtcggataa aaatcggggc aagagcgaca acgtgcccag
tgaaaacta ctggcgccag ctcctcaacg cgaaactgat acctgacgaa ggcggaacgc ggtggcttga gcgaactcga t ggcagctggt cgagacgcgc cagatcacga agcatgtcgc c tgaatactaa gtacgatgaa aacgacaagc tgatccggga g agtccaagct cgtgtcggac ttccgcaagg acttccagtt c acaactacca ccacgcccac gacgcctacc tgaatgcggt g agaagtaccc gaagctggag tcggagttcg tgtacggcga c gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc c actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca

1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg 5520 aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc 5580 tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc caccttgact aatcacaaga gtggagcgta ccttataac cgagccgcaa gcaccgaatt gcaatttgta tcttgcgcag ttttagagct agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tttt
```

<210> 130
<211> 7845
<212> DNA
<213> Artificial

```
<220>
<223> artificial
<400> 130
\begin{tabular}{llllll} 
gtgcagcgtg & acccggtcgt & gcccctctct & agagataatg & agcattgcat & gtctaagtta
\end{tabular}\(\quad 60\)
ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcggcctcct cetcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc840 ttcgetttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cctctttccc 900 caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt  agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt 960 1020 gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg c taaccttgag tacctatcta ttataataaa caagtatgtt t atatacttgg atgatggcat atgcagcagc tatatgtgga t tacgctattt atttgcttgg tactgtttct tttgtcgatg c tacttctgca ggtcgactct agaggatcca tggcaccgaa g acaagaagta cagcatcggc ctcgacatcg gcaccaactc g cggacgaata taaggtcccg tcgaagaagt tcaaggtcct
gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag ccaggctcaa gaggaccgcc aggagacggt acactaggcg tgcaggagat cttcagcaac gagatggcga aggtggacga aggaatcatt cctggtggag gaggacaaga agcatgagcg g tcgtcgacga ggtaagtttc tgcttctacc tttgatatat tagtagtaat ataatatttc aaatattttt ttcaaaataa a ttgcttttct gtagtttata agtgtgtata ttttaattta ta caaacatgg tgatgtgcag gtggcctacc acgagaagta c ggaagaaact ggtggacagc acagacaagg cggacctccg g cgcatatgat caagttccgc ggccacttcc tcatcgaggg c ccgacgtgga caagctgttc atccagctcg tgcagacgta c accccataaa cgctagcggc gtggacgcca aggccatcct c caagaaggct ggagaacctt atcgcgcagt tgccaggcga a gcaaccttat tgcgctcagc ctcggcctga cgccgaactt c cggaggacgc caagctccag ctctcaaagg acacctacga c tggcccagat aggagaccag tacgcggacc tcttcctcge c ctatcctgct cagcgacatc cttcgggtca acaccgaaat t ccagcatgat taaacgctac gacgagcacc atcaggacct c tccgccagca gctccccgag aagtacaagg agatcttctt c acgcgggata tatcgacggc ggtgccagcc aggaagagtt c tcctggagaa gatggacggc accgaggagt tgctggtcaa g tcaggaagca gaggaccttc gacaacggct ccatcccgca tgcatgccat cetgcggcgc caggaggact tctacccgtt c agatcgagaa gatcttgacg ttccgcatcc catactacgt actcccggtt cgcctggatg acccggaagt cggaggagac c aggaggtggt cgataagggc gctagcgctc agagcttcat c ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc g ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga g tcctgagcgg cgagcagaag aaggcgatag tggacctcct c agatctcggg cgtggaggat cggttcaacg cctcactcgg c agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa c acgactcgct cacgttcaag gaagacatcc agaaggcaca g ccctccacga acacatcgcc aacctggccg gctcgccggc c agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg c
cagcatctat tcatatgctc tataattat tttgatcttg tttttttagc cctgccttca ctcaccctgt tgtttggtgt gaagaagcgc aaggtgatgg ggtgggctgg gccgtcatca ggcaataca gaccgccaca cggcgagacc gcggaggcga caagaacagg atctgctacc ctccttcttc caccgcctgg gcacccaatc ttcggcaaca 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500
tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgeg

4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480

\section*{6540}

6600
6660
6720
6780
6840
6900
6960
7020
7080
7140
7200
7260
7320
7380
7440
7500
7560
7620
7680
7740
7800
7845
\(<210>131\)
\(<211>7848\)
\(<212>\) DNA
\(<213>\) Artificial
<223> artificial
<400> 131
taaaaaatta ccacatattt atacatatat ttaaacttta gtgttttaga gaatcatata ttgacaacag gactctacag caaatagctt cacctatata gggttaatgg tttttataga ctaaattaag aaaactaaaa tagaataaaa taaagtgact aggaaacatt tttcttgttt ctaacggaca ccaaccagcg cggcatctct gtcgctgcct ctccgctgtc ggcatccaga gcggcctcct cctcctctca ttcgctttcc cttcctcgcc caacctcgtg ttgttcggag cggcacctcc gcttcaaggt agatcggcgt tccggtccat gtgttagatc cgtgtttgtg gtacgtcaga cacgttctga tggctctagc cgttccgcag ggtttggttt gcccttttcc cttttcatgc ttttttttgt gatcggagta gaattctgtt tgtgtgccat acatattcat gataggtata catgttgatg cttggttgtg atgatgtggt atactgtttc aaactacctg atcttcatag ttacgagttt tgatgtgggt tttactgatg taaccttgag tacctatcta atatacttgg atgatggcat tacgetattt atttgcttgg tacttctgca ggtcgactct acaagaagta cagcatcggc cggacgaata taaggtcccg gcatcaagaa aaacttgatc ccaggctcaa gaggaccgcc tgcaggagat cttcagcaac aggaatcatt cctggtggag tcgtcgacga ggtaagtttc tagtagtaat ataatatttc ttgcttttct gtagtttata caaaacatgg tgatgtgcag ggaagaaact ggtggacagc cgcatatgat caagttccgc ccgacgtgga caagctgttc accccataaa cgctagcggc caagaaggct ggagaacctt gcaaccttat tgcgctcagc cggaggacgc caagctccag tggcccagat aggagaccag ctatcctgct cagcgacatc ccagcatgat taaacgctac tccgccagca gctccccgag acgcgggata tatcgacggc tcctggagaa gatggacggc tcaggaagca gaggaccttc tgcatgccat cctgcggcgc agatcgagaa gatcttgacg
gtgcagcgtg acccggtcgt gccectctct agagataatg agcattgcat gtctaagtta agtgcagttt atctatcttt ctctacgaat aatataatct atagtactac aataatatca aatgaacagt tagacatggt ctaaaggaca attgagtatt ttttatcttt ttagtgtgca tgtgttctcc tttttttttg atacttcatc cattttatta gtacatccat ttagggttta ctaatttttt tagtacatct attttattct attttagcct ctctatttta gtttttttat ttaataattt agatataaaa aaaaattaaa caaataccet ttaagaaatt aaaaaacta cgagtagata atgccagcct gttaaacgcc gtcgacgagt aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca ctggacccct ctcgagagtt ccgctccacc gttggacttg aattgcgtgg cggagcggca gacgtgagcc ggcacggcag cggcaccggc agctacgggg gattcctttc ccaccgctcc cgecgtaata aatagacacc ccctccacac cctctttccc cgcacacaca cacaaccaga tctcccccaa atccaccogt acgecgetcg tcctcccccc cccccctctc taccttctct gcatggttag ggcccggtag ttctacttct gttcatgttt ttagatccgt gctgctagcg ttcgtacacg gatgcgacct ttgctaactt gccagtgttt ctctttgggg aatcctggga acgggatcga tttcatgatt ttttttgttt cgttgcatag tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttggttgtg atgatgtggt ctggttgggc ggtcgttcta tcaaactacc tggtggattt attaattttg gatctgtatg agttacgaat tgaagatgat ggatggaaat atcgatctag cgggttttac tgatgcatat acagagatgc tttttgttcg gtggttgggc ggtcgttcat tcgttctaga tcggagtaga gtgtatttat taattttgga actgtatgtg tgtgtcatac aagatggatg gaaatatcga tctaggatag gtatacatgt catatacatg atggcatatg cagcatctat tcatatgctc ttataataaa caagtatgtt ttataattat tttgatcttg atgcagcagc tatatgtgga tttttttagc cctgccttca tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca tcgaagaagt tcaaggtcct cggcaataca gaccgccaca ggcgccctcc tgttcgatag cggcgagacc gcggaggcga aggagacggt acactaggeg caagaacagg atctgctacc gagatggcga aggtggacga ctccttcttc caccgcctgg gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tgcttctacc tttgatatat atataataat tatcattaat aaatattttt ttcaaaataa aagaatgtag tatatagcaa agtgtgtata ttttaattta taacttttct aatatatgac gtggcctacc acgagaagta cccgacaatc taccacctcc acagacaagg cggacctccg gctcatctac cttgccctcg ggccacttcc tcatcgaggg cgacctgaac ccggacaact atccagctcg tgcagacgta caatcaactg ttcgaggaga gtggacgcca aggccatcct ctcggccagg ctctcgaaat atcgcgcagt tgccaggcga aaagaagaac ggcetcttcg ctcggcctga cgccgaactt caaatcaaac ttcgacctcg ctctcaaagg acacctacga cgacgacctc gacaacctcc tacgcggacc tcttcctcgc cgccaagaac ctctccgacg cttcgggtca acaccgaaat taccaaggca ccgctgtccg gacgagcacc atcaggacct cacgetgctc aaggcactcg aagtacaagg agatcttctt cgaccaatca aaaacggct ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa accgaggagt tgctggtcaa gctcaacagg gaggacctcc gacaacggct ccatcccgca tcagatccac ctgggcgaac caggaggact tctacccgtt cctgaaggat aaccgggaga gggcccgctg gctcgcggca
actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg
3660
aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt 3780 cegtgtacaa egagctcace aaggtcaaat acgtcaccga gggcatgegg aagecggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga c gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cac actcgaacat catgaacttc ttcaagaccg agatcaccct agcgcccgct catcgaaacc aacggcgaga cgggcgagat atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt c aggtccagac gggcgggttc agcaaggagt ccatcctccc g tcatcgcgag gaagaaggat tgggacccga aaaaatatgg ca tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg c ccgtgaagga gctgctcggg atcacgatta tggagcggtc c tcgacttcct agaggccaag ggatataagg aggtcaagaa g cgaagtactc gctcttcgag ctggaaaacg gccgcaagag g agttgcagaa gggcaacgag ctcgccctcc cgagcaaata
ctagccacta tgaaaagctc aagggcagcc cggaggacaa tggagcagca caagcattac ctggacgaga tcatcgagca g gggtgatcct cgccgacgcg aacctggaca aggtgctgtc acaaaccaat acgcgagcag gccgaaaata tcatccacct gcgctccggc agccttcaag tacttcgaca ccacgattga cgaaggaggt gctcgatgcg acgctgatcc accagagcat c gcatcgacct gagccagctg ggcggagaca agagaccacg g
tgggaggcc
caagcgggca aggtaggtac cgttaaccta tggccaactt aattaatgta tgaaataaaa ggatgcacac a ataatgtggg catcaaagtt gtgtgttatg tgtaattact a aagagatcat ccatatttct tatcctaaat gaatgtcacg t gaaccagatg catttcatta accaaatcca tatacatata a aatatcaatt gggttagcaa aacaaatcta gtctaggtgt g ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa ggttgttccg gattagagcc ccggattaat tcctagccgg a agattttgat gagctggaat gaatcctggc ttattccggt a ggataccagt aatcgctgag ctaaattggc atgctgtcag agt gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca
```

gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta
tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg
acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact
tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc
caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt
gtacttgctc actgtctaaa tacgttttag agctagaaat agcaagttaa aataaggcta
gtccgttatc aacttgaaaa agtggcaccg agtcggtgct tttttttt

```
```

<210> 132

```
<210> 132
<211> }784
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 132
```

gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 360 420 480

EP 3191595 B1
cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac coggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcetga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca cogctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cotgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc ga acgactcgct cacgttcaag g ccctccacga acacatcgcc a agacggtcaa ggtcgtcgac g tcgtcataga gatggccagg g
agcggatgaa acggatcgag g accccgtgga aatacccag c gccgcgacat gtacgtggac c accacatcgt gccgcagtcg t ggtcggataa aatcggggc aa tgaaaaacta ctggcgccag ct acctgacgaa ggcggaacgc g ggcagctggt cgagacgcgc c tgaatactaa gtacgatgaa a agtccaagct cgtgtcggac t acaactacca ccacgcccac g agaagtaccc gcaaaatgat cgccaagtcc g actcgaacat catgaacttc ttcaagaccg agcgcccgct catcgaaacc aacggcgaga cgggcgagat atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt ca aggtccagac gggcgggttc agcaaggagt ccatcctccc ga tcatcgcgag gaagaaggat tgggacccga aaaaatatgg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg c ccgtgaagga gctgctcggg atcacgatta tggagcggtc c tcgacttcct agaggccaag ggatataagg aggtcaagaa g cgaagtactc gctcttcgag ctggaaaacg gccgcaagag g ctagccacta tgaaaagctc aagggcagcc cggaggacaa tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact

2760

| ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga | 6540 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| aagagatcat ccatatttct tatcctaaat gaatgtcacg | tgtctttata attctttgat | 6600 |
| gaaccagatg catttcatta accaatcca tatacatata aatattaatc atatataatt | 6660 | |
| aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg | 6720 | |
| ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag | 6780 | |
| tctgaaaaat gcaccctcag tctatgatcc agaaatcaa gattgcttga ggccctgttc | 6840 | |
| ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat | 6900 | |
| agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa | 6960 | |
| ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag | 7020 | |
| gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt | 7080 | |
| ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt | 7140 | |
| aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag | 7200 | |
| ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat | 7260 | |
| cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg | 7320 | |
| ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca | 7380 | |
| gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta | 7440 | |
| tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg | 7500 | |
| acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact | 7560 | |
| tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga | 7620 | |
| agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc | 7680 | |
| caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt | 7740 | |
| gcataatgag gatcgaggat ggttttagag ctagaaatag caagttaaaa taaggctagt | 7800 | |
| ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt tttttt | 7846 | |

```
<210> 133
<211> 7843
<212> DNA
<213> Artificial
<220>
<223> artificial
<400> 133
```


taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggctcaa gaggaccgcc aggagacggt acactaggcg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2400 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat 2460 tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa 2520 ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc 2640 ggaagaaact ggtggacagc acagacaagg cggacctccg g cgcatatgat caagttccgc ggccacttcc tcatcgaggg c gctcatctac cttgccctcg 2700 2760 2820 ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600
accccgtgga aatacccag c gccgcgacat gtacgtggac c accacatcgt gccgcagtcg t ggtcggataa aatcggggc a tgaaaaacta ctggcgccag c acctgacgaa ggcggaacgc ggcagctggt cgagacgcgc
tgaatactaa gtacgatgaa agtccaagct cgtgtcggac t acaactacca ccacgcccac g agaagtaccc gaagctggag tcggagttcg tgtacggcga gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cac actcgaacat catgaacttc ttcaagaccg agatcaccct c agcgcccgct catcgaaacc aacggcgaga cgggcgagat c atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt c aggtccagac gqgcgggttc agcaaggagt ccatcctccc gaagcgcaac tcc
tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg 5640 tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt 5700 ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga 5760 tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg 5820 5880 agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg 5940 ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat 6000 6060 6120 6180 6240 6300 6360 6420 tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga 6480 6540 6600 6660 6720 6780 6840 6900 6960 7020


```
<210> 134
<211> }784
<212> DNA
<213> Artificial
<220>
<223> artificial
```

<400> 134

| gtgcagcgtg | acccggtcgt | gcccctctct | agagataatg | agcattgcat | gtctaagtta |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad 60$

caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt cggcacctcc gcttcaaggt acgccgctcg tcctcccccc cccccctctc taccttctct agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttg cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc g cggacgaata taaggtcccg tcgaagaagt tcaaggtcct gcatcaagaa aaacttgatc ggcgccoctcc tgttcgatag ccaggctcaa gaggaccgcc aggagacggt acactaggcg c tgcaggagat cttcagcaac gagatggcga aggtggacga aggaatcatt cctggtggag gaggacaaga agcatgagcg g tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta ca accccataaa cgctagcggc gtggacgcca aggccatcct c caagaaggct ggagaacctt atcgcgcagt tgccaggcga a gean caatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cetgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat c ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc g ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga g tcctgagcgg cgagcagaag aaggcgatag tggacctcct tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat a
agatctcggg cgtggaggat cggttcaacg cctcactcgg c agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cctgaccetg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa acgactcgct cacgttcaag gaagacatcc agaaggcaca ccctccacga acacatcgcc aacctggccg gctcgccggc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg c agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aaatacccag ctccagaatg aaaagctcta c

1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
gccgegacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg

4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340

[^0]gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta
ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg 3900 tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactco ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta c gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcgggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact

4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400

```
tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc }768
caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt }774
gttgatcaaa gcgatggcac gttttagagc tagaaatagc aagttaaaat aaggctagtc
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt ttttt
<210> 136
<211> 7845
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> }13
```

gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta c gtgttttaga gaatcatata a ttgacaacag gactctacag t caaatagctt cacctatata gggttaatgg tttttataga ctaaattaag aaaactaaaa tagaataaaa taaagtgact aggaaacatt tttcttgttt ctaacggaca ccaaccagcg cggcatctct gtcgctgcct ctccgctgtc ggcatccaga gcggcctcct cctcctctca c ttcgctttcc cttcctcgcc caacctcgtg ttgttcggag cggcacctcc gcttcaaggt agatcggcgt tccggtccat gtgttagatc gtacgtcaga cacgttctga tggctctagc cgttccgcag ggtttggttt gcccttttcc cttttcatgc ttttttttgt gatcggagta gaattctgtt t tgtgtgccat acatattcat gataggtata catgttgatg cttggttgtg atgatgtggt atactgtttc aaactacctg atcttcatag ttacgagttt tgatgtgggt tttactgatg taaccttgag tacctatcta t atatacttgg atgatggcat tacgctattt atttgcttgg ta tacttctgca ggtcgactct acaagaagta cagcatcggc cggacgaata taaggtcccg gcatcaagaa aaacttgatc ccaggctcaa gaggaccgcc tgcaggagat cttcagcaac aggaatcatt cctggtggag tcgtcgacga ggtaagtttc t tagtagtaat ataatatttc
ttgcttttct gtagtttata caaaacatgg tgatgtgcag ggaagaaact ggtggacagc cgcatatgat caagttccgc ccgacgtgga caagctgttc accccataaa cgctagcggc
ctctacgaat aatgaacagt tagacatggt ctaaaggaca attgagtatt
ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 atacttcatc cattttatta gtacatccat ttagggttta 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880
caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg
2940 gcaaccttat tgcgctcagc ctcggcetga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca cogctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa 3120 3180 3240 tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc 3420 tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga 3480 agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

<210> 137
<211> 7847
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> 137
gggttaatgg tttttataga ctaaattaag aaaactaaaa tagaataaaa taaagtgact aa aggaaacatt tttcttgttt ctaacggaca ccaaccagcg cggcatctct gtcgctgcct ctccgctgtc ggcatccaga gcggcctcct cctcctctca ttcgctttcc cttcctcgcc caacctcgtg ttgttcggag cggcacctcc gettcaaggt agatcggcgt tccggtccat gtgttagatc cgtgtttgtg t gtacgtcaga cacgttctga tggctctagc cgttccgcag a ggtttggttt gcccttttcc cttttcatgc ttttttttgt gatcggagta gaattctgtt t tgtgtgccat acatattcat a gataggtata catgttgatg cttggttgtg atgatgtggt atactgtttc aaactacctg atcttcatag ttacgagttt
tgatgtgggt tttactgatg tgatgtgggt tttactgatg
taaccttgag tacctatcta
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 420 atatact tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt
cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600
aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660
ctggacccct ctcgagagtt ccgctccacc gttggacttg 720
aattgcgtgg cggagcggca gacgtgagcc ggcacggcag 780
cggcaccggc agctacgggg gattcctttc ccaccgctcc 840
cgccgtaata aatagacacc coctccacac cctctttccc 900
cgcacacaca cacaaccaga tctcccccaa atccacccgt 960
acgecgctcg tcctcccccc cccccctctc taccttctct 1020
gcatggttag ggcccggtag ttctacttct gttcatgttt
ttagatccgt gctgctagcg ttcgtacacg gatgcgacct
1080

EP 3191595 B1
tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg
2040
2100 acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gecgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca

2160 gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggega 2220 ccaggctcaa gaggaccgcc aggagacggt acactaggeg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg 2280 aggaatcatt cetggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2400 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat 2460 tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa 2520 ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc

2640
2700
2760 cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ceggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaagget ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580
5640
5700
5760
tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc 5820 cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg 5880 agttgcagaa gggcaacgag ctcgccetcc cgagcaaata cgtcaatttc ctgtacctcg 5940 ctagccacta tgaaaagctc aagggcagce cggaggacaa cgagcagaag cagctcttcg 6000 tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc 6060 gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggatagattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggccatgggc gcatgtcctg aaaattgtat tgtaaaaagg ttttgagcga gggggcatca cgaatccttg acataatgat ctctaacaca cgatgatgat gttgtaaaag ctaaaatgct tttttttata tacctttttt acggagaata tttgcaaaaa tcgtcacaga gagggccata agcccaaaca gcagtccgta gccaactttg t gatttcttct tatgatatat ggcagggtga ataggaaagt 7080 7140 7200 7260 7320

```
<210> 138
<211> 7844
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> 138
```

$\left.\begin{array}{llllll}\text { gtgcagcgtg } & \text { acccggtcgt } \\ \text { taaaaaatta } & \text { ccacatattt } & \text { tttttgtcac } & \text { acttgtttga } & \text { agtgcagttt } & \text { atctatcttt }\end{array}\right] 1200$
gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct
1140 gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cetgccttca tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggctcaa gaggaccgcc aggagacggt acactaggcg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc ggaagaaact ggtggacagc acagacaagg cggacctccg g cgcatatgat caagttccgc ggccacttcc tcatcgaggg c ccgacgtgga caagctgttc atccagctcg tgcagacgta c accccataaa cgctagcggc gtggacgcca aggccatcct c caagaaggct ggagaacctt atcgcgcagt tgccaggcga a cggaggacgc caagctccag ctctcaaagg acacctacga c tggcccagat aggagaccag tacgcggacc tcttcctcgc c ctatcctgct cagcgacatc cttcgggtca acaccgaaat t ccagcatgat taaacgctac gacgagcacc atcaggacct c tccgccagca gctccccgag aagtacaagg agatcttctt c acgcgggata tatcgacggc ggtgccagcc aggaagagtt c tcctggagaa gatggacggc accgaggagt tgctggtcaa g
tcaggaagca gaggaccttc gacaacggct ccatcccgca tgcatgccat cotgcggcgc caggaggact tctacccgtt c agatcgagaa gatcttgacg ttccgcatcc catactacgt g actcccggtt cgcctggatg acccggaagt cggaggagac c aggaggtggt cgataagggc gctagcgctc agagcttcat co
ataaaacct gcccaatgaa aaagtcctcc ccaagcactc ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga g tcctgagcgg cgagcagaag aa tgaccgtgaa gcaattaaaa g agatctcggg cqtggaggat agatcattaa agacaaggac ttcctcgaca acgaggagaa tcgtcctcac cotgaccetg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g ggggaaggct gtcccgcaag ctcattaatg gcatcaggga c
tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa c ccctccacga acacatcgcc aacctggccg gctcgccggc c agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg c tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aaatacccag ctccagaatg aaaagctcta accacatcgt gccgcagtcg ttcctcaagg acgatagcat ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gt

1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca
4920
4980
5040
5100 ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga

```
<210> 139
<211> }784
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> 139
```

gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60
taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120
atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180

EP 3191595 B1
gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc ttcgetttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cctctttccc caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt cggcacctcc gettcaaggt acgccgctcg tcctcccccc cccccctctc taccttctct agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt t ggtttggttt gccettttcc tttatttcaa tatatgccgt g cttttcatgc t gatcggagta gaattctgtt tgtgtgccat gataggtata cttggttgtg atactgtttc a atcttcatag tgatgtgggt taaccttgag atatacttgg tacgetattt a tacttctgca cggacgaata gcatcaagaa ccaggctcaa tgcaggagat aggaatcatt tcgtcgacga tagtagtaat ttgcttttct 9 caaaacatgg t ggaagaaact cgcatatgat ccgacgtgga accccataaa caagaaggct gcaaccttat t cggaggacgc tggcccagat ctatcctgct cagcgacag ccagcatgat taaacgctac tccgccagca gctccccgag a acgcgggata tatcgacggc g tcctggagaa gatggacggc tcaggaagca tgcatgccat cctgcggcgc agatcgagaa actcccggtt cgcctggatg aggaggtggt cgataagggc g ataaaaacct gcccaatgaa a ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga tcctgagcgg cgagcagaag aaggcgatag tggacctcct tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agal
agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca
4020 agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt

```
gcatgtacat gcaatgcaat cagttttaga gctagaaata gcaagttaaa ataaggctag }780
tccgttatca acttgaaaaa gtggcaccga gtcggtgctt ttttttt }784
```

<210> 140
<211> 7847
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> 140
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 120 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 180 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg
caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 240 300 gggttaatgg tttttataga c ctaaattaag aaaactaaaa tagaataaaa taaagtgact aggaaacatt tttcttgttt c ctaacggaca ccaaccagcg cggcatctct gtcgctgcct ctccgctgtc gcggcctcct cct ttcgetttcc cttcctcgcc caacctcgtg t cggcacctcc agatcggcgt t gtgttagatc gtacgtcaga tggctctagc ggtttggttt cttttcatgc t gatcggagta tgtgtgccat gataggtata cttggttgtg atgatgagt atactgtttc a atcttcatag t tgatgtgggt t taaccttgag t atatacttgg a tacgctattt a tacttctgca acaagaagta cggacgaata taagatcge gcatcaagaa ccaggctcaa tgcaggagat cttcaccgcc aggaatcatt tcgtcgacga tagtagtaat ttgcttttct caaaacatgg tgatgtgcag g ggaagaaact ggtggacagc cgcatatgat caagttccgc ccgacgtgga caagctgttc a accccataaa cgctagcggc caagaaggct ggagaacctt gcaaccttat tgcgctcagc ctcggcetga cggaggacgc caagctccag ctctcaaagg a
ctaatttttt t
tctatttta gttacatct attttattct attttagcct 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg
3120 ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc 3360 tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga 3540 agatcgagaa gatcttgacg ttccgcatcc catactacgt gggccegctg gctcgcggca 3600 actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg 3660 aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa ga agatctcggg cgtggaggat cggttcaacg cctcactcgg agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg accccgtgga aaatacccag ctccagaatg aaaagctcta c gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat c ggtcggataa aaatcggggc aagagcgaca acgtgcccag c tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat c
acctgacgaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc c tgaatactaa gtacgatgaa aacgacaagc tgatccggga g agtccaagct cgtgtcggac ttccgcaagg acttccagtt c acaactacca ccacgcccac gacgcctacc tgaatgcggt g agaagtaccc gaagctggag tcggagttcg tgtacggcga c gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc c actcgaacat catgaacttc ttcaagaccg agatcaccct c agcgcccgct catcgaaacc aaccgcgaga cgcoccagat atttcgcgac gotccgcaag gtgctctcca tgccgcaagt aggtccagac gggcgggttc agcaaggagt ccatcctccc g tcatcgcgag gaagaaggat tgggacccga aaaaatatgg c tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggcco caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc

| ggttgttccg gattagagcc ccggattaat tcctagccgg | attacttctc | taatttatat | 6900 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| agattttgat | gagctggaat gaatcctggc | ttattccggt acaaccgaac aggccctgaa | 6960 |
| ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag | 7020 | | |
| gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt | 7080 | | |
| ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt | 7140 | | |
| aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag | 7200 | | |
| ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat | 7260 | | |
| cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg | 7320 | | |
| ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca | 7380 | | |
| gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta | 7440 | | |
| tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg | 7500 | | |
| acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact | 7560 | | |
| tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga | 7620 | | |
| agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc | 7680 | | |
| caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt | 7740 | | |
| gacctgtaca ggaaggcaac gagttttaga gctagaaata gcaagttaaa ataaggctag | 7800 | | |
| tccgttatca acttgaaaaa gtggcaccga gtcggtgctt ttttttt | 7847 | | |

<210> 141
<211> 7847
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> 141

gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct 420 ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa 480 tagaataaaa taaagtgact aaaattaaa caaataccct ttaagaaatt aaaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660 cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg 720 ctccgctgtc ggcatccaga a gcggcctcct cctcctctca ttcgetttcc cttcctcgec caacctcgtg ttgttcggag cggcacctcc gcttcaaggt agatcggcgt tccggtccat gtgttagatc cgtgtttgtg t
gtacgtcaga cacgttctga t tggctctagc cgttccgcag ggtttggttt gcccttttcc t cttttcatgc ttttttttgt gatcggagta gaattctgtt
tgtgtgccat acatattcat tgtgtgccat acatattcat a gataggtata catgttgatg c cttggttgtg atgatgtggt
atactgtttc aactacctg atactgtttc aactacctg tgatgtgggt tttactgatg taaccttgag tacctatcta t atatacttgg atgatggcat a tacgctattt atttgcttgg t tacttctgca ggtcgactct a acaagaagta cagcatcggc c cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca

EP 3191595 B1
gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga
2220 ccaggctcaa gaggaccgcc aggagacggt acactaggcg caagaacagg atctgctacc 2280 tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg 2340 aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2400 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac coggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcetga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga c tggcccagat aggagaccag tacgcggace tcttcctcgc c ctatcctgct cagcgacatc cttcgggtca acaccgaaat t cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cctgaccetg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g ggggaaggct gtcccgcaag ctcattaatg gcatcaggga c tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa c acgactcgct cacgttcaag gaagacatcc agaaggcaca g ccctccacga acacatcgcc aacctggccg gctcgecggc c agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aaatacccag ctccagaatg aaaagctcta gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat ggtcggataa aatcggggc aagagcgaca acgtgcccag c tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat c acctgacgaa ggcggaacgc ggtggcttga gcgaactcga t ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ca tgaatactaa gtacgatgaa aacgacaagc tgatccggga g agtccaagct cgtgtcggac ttccgcaagg acttccagtt acaactacca ccacgcccac gacgcctacc tgaatgcggt agaagtaccc gaagctggag tcggagttcg tgtacggcga c gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cac actcgaacat catgaacttc ttcaagaccg agatcaccct c agcgcccgct catcgaaacc aacggcgaga cgggcgagat c atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt c aggtccagac gggcgggttc agcaaggagt ccatcctccc g tcatcgcgag gaagaaggat tgggacccga aaaaatatgg c tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg ca ccgtgaagga gctgctcggg atcacgatta tggagcggtc c tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg

2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940

<210> 142
<211> 7848
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence

<400> 142

EP 3191595 B1
ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga atactgtttc aactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat at tacgctattt atttgcttgg t acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca cggacgaata taaggtcceg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggctcaa gaggaccgcc aggagacggt acactaggeg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaagget ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca cogctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cg tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac a ggggaaggct gtcccgcaag c tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa acgactcgct ccctccacga agacggtcaa tcgtcataga agcggatgaa acggatcgag accccgtgga gccgcgacat accacatcgt ggtcggataa tgaaaaacta ctggcgccag acctgacgaa ggcggaacgc g ggcagctggt
cacgttcaag g acacatcgcc a gatggccagg gtacgtggac caggagctgg acattaatcg g gccgcagtcg ttcctcaagg acgatagcat c aagagcgaca acgtgcccag c ctcctcaacg cgaaactgat cacccagcgc aagttcgaca ggtggcttga gcgaactcga taaggcgggc ttcataaaaa cagatcacga agcatgtcgc ccagatcctg gacagccgca

1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga
5100 agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca 5160 acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccetgatca 5220 agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc 5280
5340 gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccet cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg a tcgacttcct agaggccaag cgaagtactc gctcttcgag agttgcagaa gggcaacgag ctagccacta tgaaaagctc tggagcagca caagcattac gggtgatcct cgccgacgcg a acaaaccaat acgcgagcag gcgctccggc agccttcaag cgaaggaggt gctcgatgcg gcatcgacct gagccagctg tgggaggccg caagcgggca tggccaactt aattaatgta t ataatgtggg ca aagagatcat ccatatttct gaaccagatg catttcatta aatatcaatt gggttagcaa ctgcaggaat tcgatagctt tctgaaaaat gcaccctcag ggttgttccg gattagagcc agattttgat gagctggaat ggataccagt aatcgctgag gtagtgagat aaccggcatc ggccatgggc gcatgtcctg aaaattgtat tgtaaaaagg ttttgagcga gggggcatca cgaatccttg acataatgat ctctaacaca cgatgatgat gttgtaaaag ctaaaatgct tttttttata tacctttttt acggagaata tttgcaaaaa tcgtcacaga gagggccata agcccaaaca gcagtccgta caccttgact aatcacaaga gaactcgagg aagacggttc tagg gtccgttatc aacttgaaaa agtggcaccg agtcggtgct tttttttt

5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480
6540
6600
6660
6720
6780
6840
6900
6960
7020
7080
7140
7200
7260
7320
7380
7440
7500
7560
7620
7680
7740
7800
7848

```
<210> 143
<211> 7844
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
```

<400> 143
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60
taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120
atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180
gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240
ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300
caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360

EP 3191595 B1
gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct
420
480 ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc ttcgetttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cotctttccc caacctcgtg t cggcacctcc agatcggcgt gtgttagatc gtacgtcaga tggctctagc ggtttggttt cttttcatgc gatcggagta tgtgtgccat gataggtata cttggttgtg a atactgtttc a atcttcatag t tgatgtgggt taaccttgag t atatacttgg tacgctattt tacttctgca acaagaagta cggacgaata gcatcaagaa ccaggctcaa tgcaggagat aggaatcatt tcgtcgacga tagtagtaat ttgcttttct 9 caaaacatgg t ggaagaaact cgcatatgat ccgacgtgga accccataaa caagaaggct gcaaccttat ggagaacctt cggaggacgc tggcccagat ctatcctgct ccagcatgat tccgccagca acgcgggata tcctggagaa
tcaggaagca tgcatgccat agatcgagaa actcccggtt aggaggtggt ataaaaacct ccgtgtacaa tcctgagcgg tgaccgtgaa agatctcggg agatcattaa tcgtcctcac
acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc acgactcgct cacgttcaag ccctccacga acacatcgcc agacggtcaa ggtcgtcgac tcgtcataga gatggccagg agcggatgaa acggatcgag accccgtgga aaatacccag gccgcgacat gtacgtggac accacatcgt gccgcagtcg ggtcggataa aaatcggggc tgaaaaacta ctggcgccag acctgacgaa ggcggaacgc ggcagctggt cgagacgcgc tgaatactaa gtacgatgaa agtccaagct cgtgtcggac acaactacca ccacgcccac agaagtaccc gaagctggag gcaaaatgat cgccaagtcc actcgaacat catgaacttc agcgcccgct catcgaaacc atttcgcgac ggtccgcaag aggtccagac gggcgggttc tcatcgcgag gaagaaggat tcgcatacag cgtcctcgtc ccgtgaagga gctgctcggg tcgacttcct agaggccaag cgaagtactc gctcttcgag agttgcagaa gggcaacgag ctagccacta tgaaaagctc tggagcagca caagcattac gggtgatcct cgccgacgcg acaaaccaat acgcgagcag gcgctccggc agccttcaag cgaaggaggt gctcgatgcg gcatcgacct gagccagctg tgggaggccg caagcgggca tggccaactt aattaatgta ataatgtggg catcaaagtt aagagatcat ccatatttct gaaccagatg catttcatta aatatcaatt gggttagcaa ctgcaggaat tcgatagctt tctgaaaaat gcaccctcag ggttgttccg gattagagcc agattttgat gagctggaat ggataccagt aatcgctgag gtagtgagat aaccggcatc ggccatgggc gcatgtcctg aaaattgtat tgtaaaaagg ttttgagcga gggggcatca cgaatccttg acataatgat ctctaacaca cgatgatgat gttgtaaaag ctaaaatgct tttttttata taccttttt acggagaata tttgcaaaaa agtaaaagag aaagtcatag tcgtcacaga gagggccata agaaacatgg cccacggccc a agcccaaaca gcagtccgta ggtggagcaa agcgctgggt caccttgact aatcacaaga gtggagcgta ccttataaac c gcagcggaac tgtgagtgag ttttagagct agaaatagca gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tttt

4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480
6540
6600
6660
6720
6780
6840
6900
6960
7020
7080
7140
7200
7260
7320
7380
7440
7500
7560
7620
7680
7740
7800
7844
<210> 144
<211> 7845
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> 144
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 240 300 caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 gggttaatgg tttttataga ctaaattaag a tagaataaaa taaagtgact aggaaacatt tttcttgttt ctaacggaca cggcatctct gtcgctgcct ctccgctgtc ggcatccaga gcggcctcct cctcctctca ttcgctttcc cttcctcgcc caacctcgtg cggcacctcc

agatcggcgt

 gtgttagatc gtacgtcaga tggctctagc ggtttggttt cttttcatgc t gatcggagta tgtgtgccat gataggtata cttggttgtg atactgtttc atcttcatag t tgatgtgggt t taaccttgag t atatacttgg tacgctattt tacttctgca acaagaagta cggacgaata taaggtcccg gcatcaagaa aaacttgatc ccaggctcaa gaggaccgcc tgcaggagat aggaatcatt cctggtggag tcgtcgacga ggtaagtttc t tagtagtaat ttgcttttct caaaacatgg t ggaagaaact cgcatatgat caagttccgc ccgacgtgga accccataaa cgctagcggc caagaaggct ggagaacctt gcaaccttat tgcgctcagc cggaggacgc caagctccag tggcccagat aggagaccag ctatcctgct cagcgacatc ccagcatgat taaacgctac gacgagcacc actaatttttt tagtacatct attttattct attttagcct 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260
tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa 3360 tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc 3420 tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac 3480 tgcatgccat cotgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga 3540 agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 3660 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca 3780 ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccotgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag

3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 6540 6600 6660 6720 6780 6840 6900 6960 7020

```
gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt 7080
ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 7140
aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag 7200
ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat }726
cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg 7320
ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca }738
gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta }744
tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg 7500
acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact }756
tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga }762
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc }768
caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt }774
gtacgtgtgc gctatcaaag gttttagagc tagaaatagc aagttaaaat aaggctagtc }780
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt ttttt 7845
```

<210> 145
<211> 7845
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> 145
gtgcagcgtg acccggtcgt gccectctct agagataatg agcattgcat gtctaagtta 60 taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg $\begin{array}{lll}\text { caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta } & 360 \\ \text { gggttaatgg ttttataga ctaattttt tagtacatct atttattct attttagcct } & 420\end{array}$ gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg $\quad 720$ ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag gcggcetcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc
ttcgetttcc cttcctcgcc cgccgtaata a caacctcgtg ttgttcggag cgcacacaca cggcacctcc gcttcaaggt acgecgctcg t gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc t cttttcatgc ttttttttgt c gatcggagta gaattctgtt tcagttgtg tgtgtgccat acatattcat agttacgaat t gataggtata catgttgatg cgggttttac t cttggttgtg atgatgtggt gtggttgggc g atactgtttc aaactacctg gtgtatttat t atcttcatag ttacgagttt a tgatgtgggt tttactgatg catatacatg taaccttgag tacctatcta ttataataaa atatacttgg atgatggcat tacgctattt atttgcttgg t tacttctgca ggtcgactct acaagaagta cagcatcggc c cggacgaata taaggtcccg tcgaagaagt t gcatcaagaa aaacttgatc ggcgccctcc t ccaggctcaa gaggaccgcc aggagacggt a tgcaggagat cttcagcaac gagatggcga a

240 300 420 480 660 20

0

80

780
840
900
960
aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2400 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat 2460 tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa 2520 ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc 2640 ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg 2700 cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagctccag ctctcaaagg acacctacga cgacgacctc gacaacctcc tggcceagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaacggct acgegggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac tgcatgccat cctgcggcge caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agatctcggg cgtggaggat cggttcaacg cctcactcgg cacgtatcac gacctcctca agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaajg ggcatcctgc agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aaatacccag ctccagaatg aaaagctcta c gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat c
ggtcggataa aatcggggc aagagcgaca acgtgcccag tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat c acctgacgaa ggcggaacgc ggtggcttga gcgaactcga t ggcagctggt cgagacgcgc cagatcacga agcatgtcgc cca tgaatactaa gtacgatgaa aacgacaagc tgatccggga g agtccaagct cgtgtcggac ttccgcaagg acttccagtt c acaactacca ccacgcccac gacgcctacc tgaatgcggt g agaagtaccc gaagctggag tcggagttcg tgtacggcga
gcaaaatgat cgccaagtcc gagcaggaga tcggcaagge actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccget catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg

2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120


```
<210> 146
<211> }784
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> 146
```


tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca tacgetattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgecaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggctcaa gaggaccgec aggagacggt acactaggcg caagaacagg atctgctacc tgcaggagat cttcagcaac gagatggcga aggtggacga c aggaatcatt cctggtggag gaggacaaga agcatgagcg g tcgtcgacga ggtaagtttc tgcttctacc tttgatatat a tagtagtaat ataatatttc aaatattttt ttcaaaataa a ttgcttttct gtagtttata agtgtgtata ttttaattta t caaaacatgg tgatgtgcag gtggcctacc acgagaagta c ggaagaaact ggtggacagc acagacaagg cggacctccg cgcatatgat caagttccgc ggccacttcc tcatcgaggg c ccgacgtgga caagctgttc atccagctcg tgcagacgta c accccataaa cgctagcggc gtggacgcca aggccatcct c caagaaggct ggagaacctt atcgcgcagt tgccaggcga a gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caan tggcccagat aggagaccag tacgcggacc tcttcctcgc c ctatcctgct cagcgacatc cttcgggtca acaccgaaat t ccagcatgat taaacgctac gacgagcacc atcaggacct c tccgccagca gctccccgag aagtacaagg agatcttctt c acgcgggata tatcgacggc ggtgccagcc aggaagagtt c tcctggagaa gatggacggc accgaggagt tgctggtcaa g tcaggaagca gaggaccttc gacaacggct ccatcccgca t tgcatgccat cotgcggcgc caggaggact tctacccgtt c agatcgagaa gatcttgacg ttccgcatcc catactacgt g actcccggtt cgcctggatg acccggaagt cggaggagac c aggaggtggt cgataagggc gctagcgctc agagcttcat c ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc g ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga g tcctgagcgg cgagcagaag aaggcgatag tggacctcct c tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat a agatctcggg cgtggaggat cggttcaacg cctcactcgg c agatcattaa agacaaggac ttcctcgaca acgaggagaa c tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat c acgcgcacct gttcgacgac aaggtcatga aacagctcaa g ggggaaggct gtcccgcaag ctcattaatg gcatcaggga c tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa c acgactcgct cacgttcaag gaagacatcc agaaggcaca g ccctccacga acacatcgcc aacctggccg gctcgccggc c agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg c tcgtcataga gatggccagg gagaaccaga ccacccaaaa a agcggatgaa acggatcgag gagggcatta aagagctcgg g accccgtgga aaatacccag ctccagaatg aaaagctcta c gccgcgacat gtacgtggac caggagctgg acattaatcg g accacatcgt gccgcagtcg ttcctcaagg acgatagcat cga ggtcggataa aatcggggc aagagcgaca acgtgcccag c tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat ca
acctgacgaa ggcggaacgc ggtggcttga gcgaactcga ta ggcagctggt cgagacgcgc cagatcacga agcatgtcgc c tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca
agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca 5340 atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc

```
<210> 147
<211> 13
<212> DNA
<213> Artificial
```

<220>
<223> Artificial Sequence
<400> 147
agcgcccagc acc 13
<210> 148
<211> 18
<212> DNA
<213> Artificial

```
<220>
<223> Artificial Sequence
<400> 148
gattggacgt gcggctgt 18
<210> 149
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }14
tagccatcgc gtgccc 16
<210> 150
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }15
ctgccgttgt tgttca 16
<210> 151
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }15
tgtgtgaatc ccatttctcc taga 24
<210> 152
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 152
tagccatcgc gtgccc 16
<210> 153
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
```

```
<400> 153
taggtagaaa tgtgaaggtc 20
<210> 154
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 154
agaggttgag acgctccacg 20
<210> 155
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 155
gtgcgtgctt tgttgtttc tt 22
<210> 156
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }15
cccaagtagc aattaca 17
<210> 157
<211> 29
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 157
ggctaggtaa tggttgaatc tacatatta 29
<210> 158
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 158
ttctgcgttt gctcgcct 18
```

```
<210> 159
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }15
actctccaa tgcgtcaca 19
<210> 160
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 160
agaagcaggc tcgccagaa 19
<210> 161
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 161
gcaacccctc cctcgtct 18
<210> 162
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 162
cctccatcct tttacctc 18
<210> 163
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 163
cagttgctgg tatgccttgc t 21
<210> 164
<211> 21
<212> DNA
```

```
<213> Artificial
<220>
<223> Artificial Sequence
<400> 164
gcacaggagc aaccagaatc a 21
<210> 165
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 165
ttgctgatgg atcaat 16
<210> 166
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 166
ggagaagagg tgccttggc 19
<210> 167
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 167
tatgttagcc ctaatctcga ccgt 24
<210> 168
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 168
tagtccagtc ttgtcatcgt 20
<210> 169
<211> 25
<212> DNA
<213> Artificial
<220>
```

```
<223> Artificial Sequence
<400> }16
cttaccatct ttcatccttc gtctt 25
<210> 170
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 170
tccagtgcat atcgcagttc c 21
<210> 171
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 171
caaatcctaa ggaggaccat 20
<210> 172
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 172
tccgacataa atctgtggtc acat 24
<210> 173
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 173
cgcttctacc atatgtagtt gttgc 25
<210> 174
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 174
```

```
tactccatgt ggtcattgt 19
<210> 175
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }17
tctgtcgctc gtccaaatcc 20
<210> 176
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 176
caggtgggga agcacgac 18
<210> 177
<211> 15
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 177
ttgccggtcg atgct 15
<210> 178
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }17
cgctttttc tcctgctatt ctg 23
<210> 179
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 179
aagacaggca gtgccagagg 20
<210> 180
```

```
<211> }2
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 180
cctaaaccta ctctcttgag c 21
<210> 181
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 181
tgacactttg tattggtgct cttg 24
<210> 182
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }18
caaaggaaag gggagtaacc aac 23
<210> 183
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 183
tctgaatacc cgctctag 18
<210> 184
<211> 27
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 184
ttcatctatc ctaatgagac atcctca 27
<210> 185
<211> 24
<212> DNA
<213> Artificial
```

```
<220>
<223> Artificial Sequence
<400> 185
agggtcataa tgcaagactc gaat 24
<210> 186
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }18
tagttccact ctcggcaac 19
<210> 187
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 187
tggtgagaga agaggcttt gg 22
<210> 188
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 188
acacctagcc tagatgcctc agtc 24
<210> 189
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }18
ccaagcctct gcatct 16
<210> 190
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
```

```
<400> }19
cgaaccttgt ccgcgtc 17
<210> 191
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 191
caaagtccca gagagcttgt tatc 24
<210> 192
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 192
tgctccttta tcactaggta t 21
<210> 193
<211> 29
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }19
gaataaacta gacgaaaaat gaggttgac 29
<210> 194
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 194
aggactgatg agacttgtct tgagc 25
<210> 195
<211> 15
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 195
tttgccaatt ctttc 15
```

```
<210> 196
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }19
gcaaaagctc ttagaatatc ccttc 26
<210> 197
<211> 28
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 197
agctataata aagtcttccc ctctagtt 28
<210> 198
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }19
attctctgtt aaggaatgac t 21
<210> 199
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 199
cggagcattt ttctcccca 19
<210> 200
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 200
tgactacgga tgtcaatgga gaa 23
<210> 201
<211> 16
<212> DNA
```

```
<213> Artificial
<220>
<223> Artificial Sequence
<400> 201
cctgctactg cgaacc 16
<210> 202
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 202
ccaaccagcg gcagagg 17
<210> 203
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 203
gcagcgtaca tggctcatg 19
<210> 204
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 204
tgttccaaat tctcctgcct 20
<210> 205
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 205
gttcttatat ctggcgataa ccactt 26
<210> 206
<211> 26
<212> DNA
<213> Artificial
<220>
```

```
<223> Artificial Sequence
<400> 206
ttgtagcact tgcacgtagt tacata 26
<210> 207
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 207
cacatacact tgcacggca 19
<210> 208
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 208
tgggagtagt agtgaacgga atacg 25
<210> 209
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 209
tccaaaaatt atatagcacg cacg 24
<210> 210
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 210
cgtccaagat tatctcct 18
<210> 211
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 211
```

```
ccaccactct cgcataataa gtga
                24
<210> 212
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 212
gcttggaatc agtagaatgg aacac 25
<210> 213
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>213
taggcaattt gtatcttgcg c 21
<210> 214
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 214
acacctccag tagccacatc c 21
<210> 215
<211> 27
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 215
tgcttacgc taggtgtgta tcttaca 27
<210> 216
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 216
aaacacagac aagttgg 17
<210> 217
```

```
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 217
gaatcacatt ctctcctccc tctt 24
<210> 218
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 218
cgcagaatcg gcgagg 16
<210> 219
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 219
actgtctaaa tactggtatc tt 22
<210> 220
<211> 29
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 220
gatggaggat agaattgtat ctttagga 29
<210> 221
<211> 29
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 221
actgtcttaa tttactcgac tcttctta 29
<210> 222
<211> 18
<212> DNA
<213> Artificial
```

```
<220>
<223> Artificial Sequence
<400> 222
attgctcctc atcctcga 18
<210> 223
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 223
ccacggactg gattagatag tggt 24
<210> 224
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 224
tctagctttg catcatgtct tgaac 25
<210> 225
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 225
tgtccctgta tctccaac 18
<210> 226
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 226
ggcaggaatc aaggctcgt 19
<210> 227
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
```

```
<400> 227
gcctcgcctt cgctagttaa 20
<210> 228
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 228
agcctgagcc catgca 16
<210> 229
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 229
agccaccgca ctccacc 17
<210> 230
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 230
gcttctgcga tctgcggt 18
<210> 231
<211> 14
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>231
cctgtgccat cgct 14
<210> 232
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 232
catgtggcga aggttggat 19
```

```
<210> 233
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 233
ggaagaaaaa agatgttatc gaaagc 26
<210> 234
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 234
agttggatat gtctagccg 19
<210> 235
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 235
tgagggagaa attaaacatc cagc 24
<210>236
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 236
ttggcgtgaa acggagct 18
<210> 237
<211> 14
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 237
tgcaccccgt cgtc 14
<210> 238
<211> 22
<212> DNA
```

```
<213> Artificial
<220>
<223> Artificial Sequence
<400>238
agagaaagca gatgacacgc ac 22
<210> 239
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 239
caaatccgat taccacacat tagc 24
<210> 240
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 240
agcttacatc agcttggt 19
<210> 241
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 241
tcgagataac cctagaaaaa atggtt 26
<210> 242
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 242
gtggtccacc atcgagcaa 19
<210> 243
<211> 16
<212> DNA
<213> Artificial
<220>
```

```
<223> Artificial Sequence
<400> 243
accgtgattg cattgc 16
<210> 244
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 244
tggaaacgct tcatattcgg a 21
<210> 245
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 245
tctctccgat gccattgaac tag 23
<210> 246
<211> 15
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 246
aggaaggcaa cgatg 15
<210> 247
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 247
atgttcgcca ccttatttg c 21
<210> 248
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 248
```

```
catcaacccg ttctgtccct 20
<210> 249
<211> 15
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>249
tctcggccat ggatt 15
<210> 250
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 250
tggtcgaact cttgcacgg 19
<210> 251
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 251
atttttgaa caagaaccgt ggac 24
<210> 252
<211> 14
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 252
ctggccgcta gaac 14
<210> 253
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 253
cggaaaagga acagtcttga ttg 23
<210> 254
```

```
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 254
tgtgctctct accttgcat gtg 23
<210> 255
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 255
cggaactgtg agtgacg 17
<210> 256
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 256
ctagcctagc aggagtacga gttgt 25
<210> 257
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 257
tgtcctagtt ttcatctgc aatctg 26
<210> 258
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 258
atggtccact ttgatagc 18
<210> 259
<211> 20
<212> DNA
<213> Artificial
```

```
<220>
<223> Artificial Sequence
<400> 259
ggtcgtagtg ccgttgatgg 20
<210> 260
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 260
ccagtccctg tgtacgtgtg c 21
<210> 261
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 261
acacacgtac tgcggcgt 18
<210> 262
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 262
tgtcttctt gtcgctgtgg at 22
<210> 263
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 263
ccacacgtcg tccgagttc 19
<210> 264
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
```

```
<400> 264
aactcgtaaa cctagcgct 19
<210> 265
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 265
tagccgaaac atgacctctt tga 23
<210> 266
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 266
accccaataa aaccccctag c 21
<210> 267
<211> 96
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 267
gcuguggacg uggggugcug uuuuagagcu agaaauagca aguuaaaaua aggcuagucc }6
guuaucaacu ugaaaaagug gcaccgaguc ggugcu
<210> 268
<211> 96
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 268
gaaccacacu gaacaacaag uuuuagagcu agaaauagca aguuaaaaua aggcuagucc }6
guuaucaacu ugaaaaagug gcaccgaguc ggugcu 96
<210> 269
<211> 98
<212> RNA
<213> artificial
```

```
<220>
<223> Artificial Sequence
<400> 269
```60
```

gccgccuagg uagaaaugug aguuuuagag cuagaaauag caaguuaaaa uaaggcuagu

```
gccgccuagg uagaaaugug aguuuuagag cuagaaauag caaguuaaaa uaaggcuagu
ccguuaucaa cuugaaaaag uggcaccgag ucggugcu 98
ccguuaucaa cuugaaaaag uggcaccgag ucggugcu 98
<210> 270
<210> 270
<211> }9
<211> }9
<212> RNA
<212> RNA
<213> artificial
<213> artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> 270
<400> 270
gacuaaaugu aauugcuacu uguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 6
ccguuaucaa cuugaaaaag uggcaccgag ucggugcu
98
<210> 271
<211> }9
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 271
gagggaggcc ugugacgcau guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }6
cguuaucaac uugaaaaagu ggcaccgagu cggugcu
```

<210> 272

```
<210> 272
<211> 99
<211> 99
<212> RNA
<212> RNA
<213> artificial
<213> artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> 272
<400> 272
gcaggacagg gagguaaaag gaguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag }6
uccguuauca acuugaaaaa guggcaccga gucggugcu
<210> 273
<211> }9
<212> RNA
<213> artificia
<220>
<223> Artificial Sequence
```

```
<400> 273
```

$\begin{array}{lll}\text { gaccguugcu gauggaucaa guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc } & 60 \\ \text { cguuaucaac uugaaaaagu ggcaccgagu cggugcu } & 97\end{array}$
<210> 274
<211> 96
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 274
guuccaacga ugacaagacg uuuuagagcu agaaauagca aguuaaaaua aggcuagucc 60
guuaucaacu ugaaaaagug gcaccgaguc ggugcu

```
<210> 275
<211> 97
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 275
```

gcacaauaau gguccuccuu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcu
<210> 276
<211> 96
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 276
gaugaugaca augaccacag uuuuagagcu agaaauagca aguuaaaaua aggcuagucc 60
guuaucaacu ugaaaaagug gcaccgaguc ggugcu 96
<210> 277
<211> 97
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 277

```
gugccagagg cagcaucgac guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
cguuaucaac uugaaaaagu ggcaccgagu cggugcu
<210> 278
<211> 97
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 278
gcucuugggc ucaagagagu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcu 97
<210> 279
<211> 98
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 279
gagacauccu cauucuagag cguuuuagag cuagaaauag caaguuaaaa uaaggcuagu
ccguuaucaa cuugaaaaag uggcaccgag ucggugcu
<210> 280
<211> 99
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 280
gccucaguca uaguuccacu cuguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag
uccguuauca acuugaaaaa guggcaccga gucggugcu
<210> 281
<211> 97
<212> RNA
<213> artificia
<220>
<223> Artificial Sequence
<400> 281
```

```
gagcuuguua ucagaugcag guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc60
cguuaucaac uugaaaaagu ggcaccgagu cggugcu 97
<210>282
<211> 96
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 282
gagcuauacc uagugauaag uuuuagagcu agaaauagca aguuaaaaua aggcuagucc }6
guuaucaacu ugaaaaagug gcaccgaguc ggugcu 96
<210> 283
<211> 101
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 283
gaauaucccu uucuacgaaa gaauguuuua gagcuagaaa uagcaaguua aaauaaggcu 60
aguccguuau caacuugaaa aaguggcacc gagucggugc u 101
<210> 284
<211> 98
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 284
gucaauggag aauucucugu uguuuuagag cuagaaauag caaguuaaaa uaaggcuagu }6
ccguuaucaa cuugaaaaag uggcaccgag ucggugcu
98
<210> 285
<211> }9
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 285
```

```
guacguaacg ugcaguacgu uuuagagcua gaaauagcaa guuaaaauaa ggcuaguccg 60
uuaucaacuu gaaaaagugg caccgagucg gugcu 95
<210> 286
<211> 98
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 286
gugcucccug cuacugcgaa cguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 6
ccguuaucaa cuugaaaaag uggcaccgag ucggugcu 98
<210> 287
<211> 95
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 287
ggugcaggca ggagaauugu uuuagagcua gaaauagcaa guuaaaauaa ggcuaguccg
uuaucaacuu gaaaaagugg caccgagucg gugcu
95
<210> 288
<211> 99
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 288
gaucgauaca cauacacuug caguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag }6
uccguuauca acuugaaaaa guggcaccga gucggugcu
99
<210> 289
<211> 101
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 289
```

```
gcauaauaag ugaggagaua aucuguuuua gagcuagaaa uagcaaguua aaauaaggcu 60
aguccguuau caacuugaaa aaguggcacc gagucggugc u101
```

```
<210> 290
```

<210> 290
<211> 96
<211> 96
<212> RNA
<212> RNA
<213> artificial
<213> artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> 290
<400> 290
gcaauuugua ucuugcgcag uuuuagagcu agaaauagca aguuaaaaua aggcuagucc 60
guuaucaacu ugaaaaagug gcaccgaguc ggugcu 96
<210> 291
<211> 97
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 291
gaggaaacac agacaaguug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }
cguuaucaac uugaaaaagu ggcaccgagu cggugcu
97
<210> 292
<211> 100
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 292
guacuugcuc acugucuaaa uacguuuuag agcuagaaau agcaaguuaa aauaaggcua ( 60
guccguuauc aacuugaaaa aguggcaccg agucggugcu 100
<210> 293
<211> 98
<212> RNA
<213> artificia
<220>
<223> Artificial Sequence
<400> 293

```
```

gcauaaugag gaucgaggau gguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 60
ccguuaucaa cuugaaaaag uggcaccgag ucggugcu 98
<210> 294
<211> 95
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 294
gcucguguug gagauacagu uuuagagcua gaaauagcaa guuaaaauaa ggcuaguccg
uuaucaacuu gaaaaagugg caccgagucg gugcu 95
<210> 295
<211> 96
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 295
gugagccuga gcccaugcag uuuuagagcu agaaauagca aguuaaaaua aggcuagucc
guuaucaacu ugaaaaagug gcaccgaguc ggugcu
96
<210> 296
<211> 97
<212> RNA
<213> artificial
<220>
<223> Artificial Sequence
<400> 296
guugaucaaa gcgauggcac guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }6
cguuaucaac uugaaaaagu ggcaccgagu cggugcu
97
<210> 297
<211> }9
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 297

```
```

gcaguuggau augucuagcc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc60
cguuaucaac uugaaaaagu ggcaccgagu cggugcu 97
<210> 298
<211> 99
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 298
gacacgcacu gcaccccguc guguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag
<210> 299
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 299
gcacagcuua caucagcuug uuuuagagcu agaaauagca aguuaaaaua aggcuagucc 60
guuaucaacu ugaaaaagug gcaccgaguc ggugcu 96
<210> 300
<211> 99
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 300
gcauguacau gcaaugcaau caguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag 60
uccguuauca acuugaaaaa guggcaccga gucggugcu
99
<210> 301
<211> 99
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 301

```
```

gaccuguaca ggaaggcaac gaguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag 60
uccguuauca acuugaaaaa guggcaccga gucggugcu
<210> 302
<211> 99
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 302
gaacucuugc acggccaauc caguuuuaga gcuagaaaua gcaaguuaaa auaaggcuagg 60
uccguuauca acuugaaaaa guggcaccga gucggugcu 99
<210> 303
<211> 100
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 303
gaacucgagg aagacgguuc uagguuuuag agcuagaaau agcaaguuaa aauaaggcua
guccguuauc aacuugaaaa aguggcaccg agucggugcu100
<210> 304
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 304
gcagcggaac ugugagugag uuuuagagcu agaaauagca aguuaaaaua aggcuagucc 60
guuaucaacu ugaaaaagug gcaccgaguc ggugcu
96

```
```

<210> 305

```
<210> 305
<211> 97
<211> 97
<212> RNA
<212> RNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> 305
```

<400> 305

```
```

guacgugugc gcuaucaaag guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
cguuaucaac uugaaaaagu ggcaccgagu cggugcu
<210> 306
<211>}9
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 306
gccgugcgac acacguacug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcu
<210> 307
<211> 99
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 307
gaccacggcc agcuguagcg cuguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag
uccguuauca acuugaaaaa guggcaccga gucggugcu
99
<210> 308
<211> 4107
<212> DNA
<213> Streptococcus pyogenes M1 GAS (SF370)
<400> 308

```

tcaggtgaac agaagaaagc cattgttgat ttactcttca aaacaaatcg aaaagtaacc 1680 gttaagcaat taaaagaaga ttatttcaaa aaaatagaat gttttgatag tgttgaaatt 1740 tcaggagttg aagatagatt taatgcttca ttaggtacct accatgattt gctaaaaatt attaaagata aagatttttt ggataatgaa gaaaatgaag atatcttaga ggatattgtt ttaacattga ccttatttga agatagggag atgattgagg aaagacttaa aacatatgct cacctctttg atgataaggt gatgaaacag cttaaacgtc gccgttatac tggttgggga 1920 ant gaaattgat taatggtatt agggataagc aatctggcaa aacaatatta gattttttga aatcagatgg ttttgccaat cgcaatttta tgcagctgat ccatgatgat agtttgacat ttaaagaaga cattcaaaaa gcacaagtgt ctggacaagg cgatagttta 2100 2160 gaacata ttgcaaattt agctggtagc cctgctatta aaaaaggtat tttacagact atgaaacgaa tcgaagaagg tatcaaagaa ttaggaagtc agattcttaa agagcatcct attgttccac aaagtttcct taaagacgat tcaatagaca ataaggtctt aacgcgttct aaattagttt ctgacttccg aaaagatttc caattctata aagtacgtga gattaacaat taccatcatg cccatgatgc gtatctaaat gccgtcgttg gaactgcttt gattaagaaa tatccaaaac ttgaatcgga gtttgtctat ggtgattata aagtttatga tgttcgtaaa atgattgcta agtctgagca agaaataggc aaagcaaccg caaaatattt cttttactct aatatcatga acttcttcaa aacagaaatt acacttgcaa atggagagat tcgcaaacgc cctctaatcg aaactaatgg ggaaactgga gaaattgtct gggataaagg gcgagatttt gccacagtgc gcaaagtatt gtccatgccc caagtcaata ttgtcaagaa aacagaagta cagacaggcg gattctccaa ggagtcaatt ttaccaaaaa gaaattcgga caagcttatt gctcgtaaaa aagactggga tccaaaaaaa tatggtggtt ttgatagtcc aacggtagct tattcagtcc tagtggttgc taaggtggaa aaagggaaat cgaagaagtt aaaatccgtt aaagagttac tagggatcac aattatggaa agaagttcct ttgaaaaaaa tccgattgac tttttagaag ctaaaggata taaggaagtt aaaaaagact taatcattaa actacctaaa 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 tatagtcttt ttgagttaga cattatgaaa agttgaaggg t cagcataagc attatttaga attttagcag atgccaattt ccaatacgtg aacaagcaga a cccgctgctt ttaaatattt tgatacaaca attgatcgta aacgatatac gtctacaaaa 3720 3780 3840 gaagttttag atgccactct tatccatcaa tccatcactg gtctttatga aacacgcatt gatttgagtc agctaggagg tgactga
```

<210> 309
<211>9
<212> PRT
<213> Simian virus 40

```
<400> 309

Met Ala Pro Lys Lys Lys Arg Lys Val 1

5
<210> 310
\(<211>18\)
\(<212>\) PRT
\(<213>\) Agrobacterium tumefaciens
<400> 310
```

<210> }31
<211> }671
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial Sequence
<400> }31

```
gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta taaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca240300
tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct
<210> 312
<211> 1000
```

<212> DNA
<213> Zea mays
<400> 312

```
\(\left.\begin{array}{llllll}\text { tgagagtaca } a t g a t g a a c c ~ t a g a t t a a t c ~ a a t g c c a a a g ~ & \text { tctgaaaaat } & \text { gcaccctcag } & 60 \\ \text { tctatgatcc } & \text { agaaaatcaa } & \text { gattgcttga } & \text { ggccctgttc } & \text { ggttgttccg } & \text { gattagagcc }\end{array}\right] 1200\)
<210> 313
<211> 4104
<212> DNA
<213> Artificial sequence
<220>
<223> Artificial Sequence
<400> 313
atggacaaaa agtactcaat agggctcgac atagggacta actccgttgg atgggccgtc \(\quad 60\) atcaccgacg agtacaaggt gccctccaag aagttcaagg tgttgggaaa caccgacagg 120 cacagcataa agaagaattt gatcggtgcc ctcctcttcg actccggaga gaccgctgag 180 gctaccaggc tcaagaggac cgctagaagg cgctacacca gaaggaagaa cagaatctgc 240 tacctgcagg agatcttctc caacgagatg gccaaggtgg acgactcctt cttccaccgc 300 cttgaggaat cattcctggt ggaggaggat aaaaagcacg agagacaccc aatcttcggg 360 aacatcgtcg acgaggtggc ctaccatgaa aagtacccta ccatctacca cotgaggaag 420 aagctggtcg actctaccga caaggctgac ttgcgcttga tttacctggc tctcgctcac 480 atgataaagt tccgcggaca cttcctcatt gagggagacc tgaacccaga caactccgac 540 gtggacaagc tcttcatcca gctcgttcag acctacaacc agcttttcga ggagaaccca 600 atcaacgcca gtggagttga cgccaaggct atcctctctg ctcgtctgtc aaagtccagg 660 aggcttgaga acttgattgc ccagctgcct ggcgaaaaga agaacggact gttcggaaac 720 ttgatcgctc tctccctggg attgactccc aacttcaagt ccaacttcga cotcgccgag 780 gacgctaagt tgcagttgtc taaagacacc tacgacgatg acctcgacaa cttgctggcc 840 cagataggcg accaatacgc cgatctcttc ctcgccgcta agaacttgtc cgacgcaatc ctgctgtccg acatcctgag agtcaacact gagattacca aagctcctct gtctgcttcc atgattaagc gctacgacga gcaccaccaa gatctgaccc tgctcaaggc cotggtgaga cagcagctgc ccgagaagta caaggagatc tttttcgacc agtccaagaa cggctacgec ggatacattg acggaggcgc ctcccaggaa gagttctaca agttcatcaa gcccatcctt gagaagatgg acggtaccga ggagctgttg gtgaagttga acagagagga cctgttgagg aagcagagaa ccttcgacaa cggaagcatc cctcaccaaa tccacctggg agagctccac gccatcttga ggaggcagga gagaagatct tgaccttcag aggttcgcct ggatgacccg gtcgtggaca agggcgcttc aatctgccca acgagaaggt tacaacgagc tcaccaaggt tccggagagc agaagaaggc gtcaagcagc tgaaggagga tctggtgtcg aggacaggtt attaaagaca aggacttcct ctcaccctga ccttgttcga cacctcttcg acgacaaggt
aggctctccc gcaaattgat ggatttctat cccttcctga aggacaaccg cgagaagatt aattccttac tacgtcgggc cactcgccag aggaaactct caatctgaa gagaccatta ctccctggaa cttcgaggaa cgctcagtct ttcatcgaga ggatgaccaa cttcgataaa gctgcccaag cactccctgt tgtacgagta tttcacagtg gaagtacgtc acagagggaa tgaggaagcc tgccttcttg catcgtcgac ctgctcttca agaccaacag gaaggtgact ctacttcaag aagatcgagt gcttcgactc cgtcgagatc 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560
gacttcctga agtccgacgg attcgccaac aggaacttca tgcagctcat tcacgacgac 2100 tccttgacct tcaaggagga catccagaag gctcaggtgt ctggacaggg tgactccttg catgagcaca ttgctaactt ggccggctct cccgctatta agaagggcat tttgcagacc gtgaaggtcg ttgacgagct cgtgaaggtg atgggacgcc acaagccaga gaacatcgtt attgagatgg ctcgcgagaa ccaaactacc cagaaagggc agaagaattc ccgcgagagg atgaagcgca ttgaggaggg cataaaagag cttggctctc agatcctcaa ggagcacccc gtcgagaaca ctcagctgca gaacgagaag ctgtacctgt actacctcca aaacggaagg gacatgtacg tggaccagga gctggacatc aacaggttgt ccgactacga cgtcgaccac atcgtgcetc agtccttcct gaaggatgac tccatcgaca ataaagtgct gacacgetcc gataaaata gaggcaagtc cgacaacgtc ccctccgagg aggtcgtgaa gaagatgaaa aactactgga gacagctctt gaacgccaag ctcatcaccc agcgtaagtt cgacaacctg actaaggctg agagaggagg attgtccgag ctcgataagg ccggattcat caagagacag ctcgtcgaaa cccgccaaat taccaagcac gtggcccaaa ttctggattc ccgcatgaac accaagtacg atgaaaatga caagctgatc cgcgaggtca aggtgatcac cttgaagtcc aagctggtct ccgacttccg caaggacttc cagttctaca aggtgaggga gatcaacaac taccaccacg cacacgacgc ctacctcaac gctgtcgttg gaaccgccct catcaaaaaa tatcctaagc tggagtctga gttcgtctac ggcgactaca aggtgtacga cgtgaggaag atgatcgcta agtctgagca ggagatcggc aaggccaccg ccaagtactt cttctactcc aacatcatga acttcttcaa gaccgagatc actctcgcca acggtgagat caggaagcgc ccactgatcg agaccaacgg tgagactgga gagatcgtgt gggacaaagg gagggatttc gctactgtga ggaaggtgct ctccatgcct caggtgaaca tcgtcaagaa gaccgaagtt cagaccggag gattctccaa gctagaaaga aagactggga tactctgtgc tggtcgtggc aaggagctcc tcgggattac ttcctggagg ccaagggata t tactccctct tcgagttgga cagaagggaa atgagctcgc cactatgaaa agttgaaggg cagcacaagc actacctgga atattggccg acgccaacct cccattcgcg agcaggctga cctgctgcct tcaagtactt gaggtgctcg acgcaacact gacttgtccc agctgggagg cgac
```

<210> 314
<211> 11
<212> PRT
<213> Simian virus 40

```
<400> 314

\section*{Ser Arg Ala Asp Pro Lys Lys Lys Arg Lys Val 150}
<210> 315
<211> 434
<212> DNA
<213> Glycine max
<400> 315
```

ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta }6
cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc 120
tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt 180
catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa 240
atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac 300
taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct 360
cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag 420
atgcacaaca acaa 434
<210> 316
<211> 121
<212> DNA
<213> Glycine max
<400> 316
laaattgctt tgcgattttt ccatttgtgt ggatacagga tatatgaatg aataaaacat

```
<210> 317
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 317
acgagcacac atgtcgattt gg 22
<210> 318
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 318
gtgctcgttc tcgtgagaat gg 22
<210> 319
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 319
gccacttcat ttactcaact tgg 23
<210> 320
<211> 22
<212> DNA
<213> Artificial
```

<220>
<223> Artificial Sequence
<400> }32
actcaaagtc atattttca gg 22
<210> }32
<211> 121
<212> DNA
<213> Glycine max
<400> 321
aacttcatac ttgacaccat acaaatgatg actccacaac tgggagctta agatcatgga }6
ytggataatg tttctcatgt aatattagtt gtctattagc acaataacaa atattttttc 120
a
<210> 322
<211> 121
<212> DNA
<213> Glycine max
<400> 322
attattagtg ctttgttttt acaaaatatg tcttataaca tgtagggaaa agcaaagaag
rttgtccagg cacagaacct ctggtttgaa attctgaagt cacagataga aactggaacc 120
c20121
<210> 323
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 323
gtcccttgta cttgtacgta cgg 23
<210> 324
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }32
gtattctaga aaagaggaat tgg 23
<210> 325
<211> 121
<212> DNA
<213> Glycine max
<400> 325

```
```

ttctgtaaga ggcacttggc atttccaccg gcgtttgtag accctcacca gtcaccacca }6
mctttgtttg cctctgtcgt gcatcatgac tggcccctca ctcattgtca attttatata 120
t

```
<210> 326
```

<210> 326
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
<213> Glycine max
<400> 326
<400> 326
tcttgacgct accaatggtt ttcacaacga cagtctcatt ggctctggcg ggtttgggga }6
ygtgtacaag gctcagttga aggatggaag tgttgtggct atcaagaagc tgattcatgt 120
t
<210> 327
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 327
gtgctaagca cgacatccat gg 22
<210> 328
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>328
acgtgatgca tcatagatgc gg 22
<210> }32
<211> 121
<212> DNA
<213> Glycine max
<400> 329

```
agagagtccg gtggtgagaa aggggagcgt aaacctgcgc caccagacat agttggccgg 60
ygcactcggc gcagcgaagc aaatcggtgt ttatgggaag gggccagtcc tgtcatcaaa 120
t
<210> 330
<211> 121
<212> DNA
<213> Glycine max
<400> 330
\begin{tabular}{llr}
cgcatgcggt catccaactc gacaacctct acacctctga caatgatacg taactcgaca & 60 \\
rttgtttcgt taagtaagat aatgttactt tcatcgggtc gaggacatga cgatgatgtc & 120 \\
a & & 121
\end{tabular}
```

<210> }33
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }33
aggaaatgac tgtggcacat gg 22
<210> 332
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }33
acatggcact gtaacatcac gg 22
<210> 333
<211> 121
<212> DNA
<213> Glycine max
<400> 333
lagaacctgcc agacggagca acccgagtgg tggagccagt cgatgaaacg gaacgcctcg
C
<210> }33
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }33
ggaactgaca cacgacatga tgg 23
<210> 335
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 335
gacatgatgg aacgtgacta agg 23
<210> 336
<211> 22
<212> DNA

```
```

<213> Artificial
<220>
<223> Artificial Sequence
<400>336
tgtgtgaggt acacaattat gg 22
<210> }33
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 337
gtaatgtacg ttgttgtgtg agg 23
<210> }33
<211> 121
<212> DNA
<213> Glycine max
<400> }33
ggtctaatta ttacatctta ggagagagta acataggtgc caaagccaaa gtggctatcc }6
mgtgtctgta cagtacaaag actattaatt gtatttaacc catctaaaag attggctctt 120
g121
<210> }33
<211> 121
<212> DNA
<213> Glycine max
<400> 339
ccaatatatt tcagtttcta ttggagcatt gaagatatct atggttgctt caacatgatg 60
ktgtttaccg tatgaatgac ttcttgtgtt gaccttgtgt gcaggctcag aagctatgtt 120
t20

```
121
```

<210> 340
<211> 121
<212> DNA
<213> Glycine max
<400> 340
ctcacatacg cagaaatcat gctaaacacg attttccttt tgaatttttt atgaagaaat 60
ygtgcacatg ctgatgattt agtattttga ttttatttta tgtaaatcta attagatttt 120
g
<211> 121
<212> DNA
<213> Glycine max

```
<400> 341
```

ccatagaatg tctacctcag ctttttgggt ctgcggctgg tcaactcagg gtttgaaaac
kttgcatatt ataagtatgt taataatgtt acacatttta agataaatat aaaaggacag
t
<210> 342
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 342
ggaaactttt gtgagcaagt agg 23
<210> 343
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 343
gaccaaagac ttcattaatt gg 22
<210> }34
<211> 121
<212> DNA
<213> Glycine max
<400> 344

```
 aattttttg taggactaat ttgttgcact ttttgaatat tcaaggactg gatttgaatt \(\quad 60\)
ytttatcttt caaagaccaa tttgtcattg tttcatgttt ttatggatga atttaactat 120
t
<210> 345
<211> 121
<212> DNA
<213> Glycine max
<400> 345
\(\begin{array}{llr}\text { ttgctagcta agcgaatatg gctcgcttag ccaatctgtc tcgctaagcg attccttcag } & 60 \\ \text { yagcatttca cacattctct tctttagcct acaaactgag ttaaattcaa tattaattca } & 120\end{array}\)
c

C
<210> 346
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
```

<400> 346
gcaacgacaa tgaagtgcat gg 22
<210> 347
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 347
ccatgcactc acataatcgt gg 22
<210> }34
<211> 121
<212> DNA
<213> Glycine max
<400> }34
lttaataaag agggcttgta gtttttactt ttgttttcca aacagaaaat ggaagatcta }rra\mp@code{60
<210> 349
<211> 121
<212> DNA
<213> Glycine max
<400> 349
attagcagta gtaacaaacc aagttctgca tttcttattg gatagttttt actaaataat 60
ytttattgta acttttaaac tgtacttaca ggatgaagag atatagttta gttagttgaa 120
g20
g 121
<210> 350
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 350
acacaattta gttgcctgac gg 22
<210> }35
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }35
gaaataaaag gcctataaaa ggg 23

```
```

<210> 352
<211> 121
<212> DNA
<213> Glycine max
<400> 352
ttctgcactc acttttcccc ttttgggaat ggtcaatcaa aaatgtaatt ttacattatg
g
<210> 353
<211> 121
<212> DNA
<213> Glycine max
<400> 353
gagaaatgtt actttacgga gtaacatgca ttctcaaatt ctgtaggaag aatcctcacg 60
mtgaagtggt ctccccttct acgatggtgt agaatggcat aggcaattgg gaagatatga 120
t
<210> 354
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 354
gttcaggttg ttgtacgaca tgg 23
<210>355
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 355
atgaagacat gaatcattga gg 22
<210> 356
<211> 121
<212> DNA
<213> Glycine max
<400> 356
taccacgata agacaatttt tgagtcaatt cttcactgga ataaacccaa taagatttaa }6
rattccttcg agatgtagca ttgagcaagt tgcgtctgta gagactttcc ttatggaatt 120
c121
<210> 357
<211> 121

```
```

<212> DNA
<213> Glycine max
<400> 357

```
```

ctacatgctt aaagagagag agataccggc atttacctaa ttgcaaggag atgaatgagg 60

```
ctacatgctt aaagagagag agataccggc atttacctaa ttgcaaggag atgaatgagg 60
kttcgatctt ataatctgtt agatgttaaa ccttgttccc ttcaactttt gggttggagt 120
kttcgatctt ataatctgtt agatgttaaa ccttgttccc ttcaactttt gggttggagt 120
g
g
<210> 358
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 358
gcaagttggg ttatgaaatt gg 22
<210> 359
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 359
attatgtatg atgcaagttg gg 22
<210> 360
<211> 121
<212> DNA
<213> Glycine max
<400> 360
tattttattg tggagtgtgt gaattaatat ttttttaata cttattttaa ttaattgata }\quad6
rtataaaact ttttactcta acattacaaa tgtattttgt ttttcaattt ttttattaat 120
a
<210> 361
<211> 121
<212> DNA
<213> Glycine max
<400> 361
ttcgaaggtg cataactgca tggataagct cacactaacc cgttaatttg tgatccaatt 60
yggttcctta ggaggtatcg ggaaggaatt ttagaatgta ataatatcga ttcatacaga 120
t
<211> 121
<212> DNA
<213> Glycine max
```

```
<400> 362
```

```
ggcaagagcc aactgctggt tgtttgcatc agatgcgttg tcagtttttt taggatctgt60
```

kgtgggtgac gacctctcct cattggactg tgaatggctg gaggaagatg attctttctg ..... 120

```
a
<210> 363
<211> 121
<212> DNA
<213> Glycine max
<400> 363
lgaaagcaac caaatatctt gttctttctt tcatggctag agatatactt gcccttccag
<210> }36
<211> 121
<212> DNA
<213> Glycine max
<400> 364
tttaggtgtc ctattagtga agaaggtgtc aggtaaaggc ttggtttctt gttagcaaaa }6
raggtgtcac tctgatggtc tccacccttg cttcttgttt acaaaggagg tgcctcccta }12
g
<210> 365
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 365
accaaaggca cgtacgtaaa gg 22
<210> 366
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 366
gccttacgt acgtgcctt gg 22
<210> 367
<211> 121
<212> DNA
<213> Glycine max
<400> 367
```

t

```
```

<210> }36

```
<210> }36
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
<213> Glycine max
<400> 368
```

<400> 368

```
agtgggttaa ataaatcacc ccattctata gttggtttgg ttcgacccga cccgtttcga60 maaaaaaaa agtagggacc tgaatattca gtgacccatt tcgccccgca ctgcgtactc 120
```

ataaatagca ttatcctttc aatatttttt gcttctaaat tcttaattag ttattcaaat 60
rttaatacaa taccccaact ttttttggac tgattattag tcttgtaaaa ctttgtcact 120
a
<210> }36
<211> 121
<212> DNA
<213> Glycine max
<400> }36

```
accatcatga ccaccatctc tccaccgcaa gcaaccacac cetgctcgat acctttgcct 60
ytctcattca tggagcttta gagactccaa gatcagagcc tctcctcgcg aaaaggaaaa 120
a
<210> 370
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 370
gatagtcatc ctagttagtg tgg 23
<210> 371
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 371
gatgtagtac cacactaact agg 23
<210> 372
<211> 121
<212> DNA
<213> Glycine max
<400> 372
\(\begin{array}{llr}\text { cagcacattt aactcagatg gattaaattt tcccattcac cttgaagcaa ctccttgagg } & 60 \\ \text { ycgacttttt ctgtttcttt tttattaata tgatttctca aagtacaaca ctaaaccaaa } & 120 \\ \text { c } & & 121\end{array}\)
```

<210> 373
<211> 121
<212> DNA
<213> Glycine max
<400> 373

```
```

tgacaatggc gagtttgctg tgcgaaagcc acgtggcctg gaaaccgtca gtggtgatgg60
mgatttggta gcaggtgcaa gttgccagtt cctctagcga gtctggtcac aggtaagtaa120 a
<210> 374
<211> 121
<212> DNA
<213> Glycine max
<400> 374

```
tatagaagag gatttgagaa aataaaagag ttcttggttg gcttggaaac agatctttgc 60
ygagtacgat ctcttgccct cgagactaga gttggaactc gtcgtcatca tagggtaatg 120
a
121
<210> 375
<211> 121
<212> DNA
<213> Glycine max
<400> 375
\(\begin{array}{llr}\text { aattggctgc cccaatcgtt cttgatcttg atgagcacac tgaggctcac acaaattcca } & 60 \\ \text { ycacgtcgcc gccgttactt gtgcttccac caccaagtcg ttgtcgcccc gagaagagga } & 120 \\ t & & 121\end{array}\)
<210> 376
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 376
ctgtaacttc tgeactcacc gg 22
<210> 377
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 377
ttattggaga gtacttgcc gg 22
<210> 378
<211> 121
<212> DNA
```

<213> Glycine max
<400> 378

```60
```

120
kttggttttt ggtttatcaa ttactagaaa ctatggttca tgtgcccatt tcataaggct

```121
```60
```

rttgcctaca tgtaggtgct gtgggctttc gctgctgggg tccttcatcg acatcacgac 120

```
tagttagcat ttgtccttca gcatgtgcat gtcctagttt tatacctcta attattataa
```

tagttagcat ttgtccttca gcatgtgcat gtcctagttt tatacctcta attattataa
<210> }37
<210> }37
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
<213> Glycine max
<400> }37
<400> }37
ggacctcgtc atttgcatga tccacatact aaacatcctt agcaacaagt acaacttctc
ggacctcgtc atttgcatga tccacatact aaacatcctt agcaacaagt acaacttctc
t
t
<210> 380
<210> 380
<210> 380
<211> 23
<211> 23
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> 380
<400> 380
gtgagatgtg gtgcgtacgt agg 23
gtgagatgtg gtgcgtacgt agg 23
<210> }38
<210> }38
<211> 22
<211> 22
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> }38
<400> }38
gattcttaaa aaagatcgaa gg 22
gattcttaaa aaagatcgaa gg 22
<210> 382
<210> 382
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
<213> Glycine max
<400> 382
<400> 382
tgatgacata cagttggtac acttggggat ggtttcaact aatgttataa aaaccggatc }6
tgatgacata cagttggtac acttggggat ggtttcaact aatgttataa aaaccggatc }6
rgattggttt gatcgggagt taagacctac accggtccga gctagtagtt ggatcaatca 120
rgattggttt gatcgggagt taagacctac accggtccga gctagtagtt ggatcaatca 120
t
t
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
<213> Glycine max
<400> 383

```
<400> 383
```

```
cagcaccgcc cgatgcagtc gcgtatcttc gttaaccacc tcccccgcga tcccttcctc 60
rctccttggt agctcttgct cacggacgat tgcgcgaaaa tccctttcta aacaatagaa 120
c20121
```

<210> 384

```
<210> 384
<211> 23
<211> 23
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> 384
<400> 384
gtgctatggt gctcgtgtaa ggg 23
gtgctatggt gctcgtgtaa ggg 23
<210> }38
<210> }38
<211> 23
<211> 23
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> 385
<400> 385
gatccaagat attgagtgat cgg 23
gatccaagat attgagtgat cgg 23
<210> 386
<210> 386
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
<213> Glycine max
<400> 386
<400> 386
    ttgccaccca ccaaccctct ctacgcaccc tccacttcac ccccacccgc tcocttctcc }6
    ttgccaccca ccaaccctct ctacgcaccc tccacttcac ccccacccgc tcocttctcc }6
    rcacatcgct cccctctcta ctccccccct ccccgtgcgg ccatctctta tgcgccgaca 120
    rcacatcgct cccctctcta ctccccccct ccccgtgcgg ccatctctta tgcgccgaca 120
a
a
<210> 387
<210> 387
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
<213> Glycine max
<400> 387
<400> 387
cgaaggaaga tgtatagaca acaaaaaagt ctgtatcacc ctatctactt ctctctctcg }6
cgaaggaaga tgtatagaca acaaaaaagt ctgtatcacc ctatctactt ctctctctcg }6
rcaacggagt ggaacgcggg ggaaaggaac agacgtgagg ggatgacatg gagagaaggg 120
rcaacggagt ggaacgcggg ggaaaggaac agacgtgagg ggatgacatg gagagaaggg 120
a
a
121
121
<210> }38
<210> }38
<211> 23
<211> 23
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> 388
<400> 388
ggcttgtac atgcctgcac ggg 23
```

ggcttgtac atgcctgcac ggg 23

```
```

<210> }38
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>389
tttggaaggc cccccgtgca gg 22
<210> 390
<211> 121
<212> DNA
<213> Glycine max
<400> 390
ccctcatgtt caaactaggt caaaaaggct ttgcacccat catcgggtat ggaacggttg }6
rcattccacc gttcttgtga aaaaactcac gttccataac tgttcctcat catctctgat 120
c 121
<210> }39
<211> 121
<212> DNA
<213> Glycine max
<400> }39
gttgtgggga ctgagctgga gtggtctcct tctctgttgt tgctaatgat ggtgctggtg }\quad6
ytggtggctc ctcagtcaca ggctcctagg ctgtggaggc cccaccctct ccagaggaag 120
a
<210> 392
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }39
ggttcgtac aacaatggca cgg 23
<210> 393
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> }39
gtgccattgt tgtacgaaac cgg 23
<210> 394
<211> 121
<212> DNA

```
```

<213> Glycine max
<400> 394

```20121
```

tacggtttcg cgattttctc caaatttcat tttcaaattc aatagactag gctatgacaa 60

```
tacggtttcg cgattttctc caaatttcat tttcaaattc aatagactag gctatgacaa 60
ygctaggttg taggcctcgg aggtcacgtc attgaagctc atcttcaaag acccgcgctg 120
ygctaggttg taggcctcgg aggtcacgtc attgaagctc atcttcaaag acccgcgctg 120
a
a
<210> 395
<210> 395
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
<213> Glycine max
<400> 395
<400> 395
caagacgtgt ccatgcaaga agaaagcaaa ttgtaacaac aaggcatgaa tcaagctaaa 60
caagacgtgt ccatgcaaga agaaagcaaa ttgtaacaac aaggcatgaa tcaagctaaa 60
rcttagttgc acaatgtaaa ataggatcaa aggatcataa aaggaactga gagagccgta 120
rcttagttgc acaatgtaaa ataggatcaa aggatcataa aaggaactga gagagccgta 120
g
g
<210> 396
<210> 396
<211> 22
<211> 22
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> }39
<400> }39
tatatgacta ggaaaattca gg 22
tatatgacta ggaaaattca gg 22
<210> 397
<210> 397
<211> 23
<211> 23
<212> DNA
<212> DNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> }39
<400> }39
gaattcgatt ggaccattag tgg 23
gaattcgatt ggaccattag tgg 23
<210> }39
<210> }39
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
<213> Glycine max
<400> }39
<400> }39
ggtctggtga ggtcctattt cactttctag tctctccttc ccaaagtatt tctttctgtg }\quad6
ggtctggtga ggtcctattt cactttctag tctctccttc ccaaagtatt tctttctgtg }\quad6
ygcacgtata tgataacttg aatgcaaaac caaggaacca aaataacaca aagcaattcc 120
ygcacgtata tgataacttg aatgcaaaac caaggaacca aaataacaca aagcaattcc 120
a
a
121
121
<210> }39
<210> }39
<211> 121
<211> 121
<212> DNA
<212> DNA
<213> Glycine max
```

<213> Glycine max

```
<400> 399
```

 ggctgaaact tgtggaccaa tctagtccac aacgggtttg ggttgagtta ggttgataca }6
 raatattaac catttaagtt atttcaaaag tttgacccga tccactaggt tgaactagtg120 a121
 <210>400
<211> 6518
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>400

```
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaagtgta aacgaagta
gaggatgacc aacttcgata aaaatctgcc caacgagaag gtgctgccca agcactccct

3600
```

<210>401
<211>6518
<212> DNA
<213> Artificial

```
<220>
<223> Artificial Sequence
<400> 401
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaagtgta aaacgaagta 60
cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaataggc
tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt

EP 3191595 B1
catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag 420 atgcacaaca acaaagcttg gtgctcgttc tcgtgagaag t agttaaaata aggctagtcc gttatcaact tgaaaaagtg g tttgcggccg caattggatc gggtttactt attttgtggg t ttttaatcag gctcctgatt tctttttatt tcgattgaat t gtagatcgaa taaattataa aaagataaaa tcataaaata atattttatc ctatcaatca tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaaat catataggtt tagtattttt ttaaaaataa agataggatt agttttacta ttcactgctt attactttta aaaaaatcat aaaggtttag tattttttta aaataaatat aggaatagtt ttactattca ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcgt cataatatcg aatcaaatc cgagtagagc acagtaacct t acctaggggc a agt atcactctgt aggattccga tcttcgattc ttatttatgc gttttttagg ggtgtgttgg catgcgactt tgttgagaca acaggattaa gtttttttgt tatctggatc gaaattttgt tattaagc tttggctttg tgatagttta ctataaalgt gtgaagttgg ttgattctag t taactccgtt ggtgttggga cgactccgga cagaaggaag aacaccgctg ggacgactcc ttcttccacc cgagagacac taccatctac gatttacctg cctgaaccca gactcgctc ccagcttttc tgctcgtctg tcaaagtcca g gaagaacgga ctgttcggaa gtccaacttc gacctcgecg tgacctcgac aacttgctgg c taagaacttg tccgacgcaa t caaagctcct ctgtctgctt cctgctcaag gccctggtga ccagtccaag aacggctacg caagttcatc aagcccatcc t gaacagagag gacctgttga g aatccacctg ggagagctcc a gaaggacaac 9 gcgagaaga gccactcgec agaggaaact ctaggttcgc ctggatgacc c tactccctgg aacttcgagg aagtcgtgga caagggcgct t gaggatgacc aacttcgata aaaatctgcc caacgagaag g gttgtacgag tatttcacag tgtacaacga gctcaccaag g aatgaggaag cctgccttct tgtccggaga gcagaagaag caagaccaac aggaaggtga ctgtcaagca gctgaaggag g gtgcttcgac tccgtcgaga tctctggtgt cgaggacagg ttcaacgcct cccttgggac ttaccacgat ctgctcaaga ttattaaaga caaggacttc ctggacaacg aggagaacga ggacatcctt gaggacatcg tgctcaccct gaccttgttc gaagacaggg aaatgatcga

480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
agagaggctc aagacctacg cccacctctt cgacgacaag gtgatgaaac agctgaagag 4020 acgcagatat accggctggg gaaggctctc ccgcaaattg atcaacggga tcagggacaa 4080 gcagtcaggg aagactatac tcgacttcct gaagtccgac ggattcgcca acaggaactt 4140 catgcagctc attcacgacg actccttgac cttcaaggag gacatccaga aggctcaggt 4200 gtctggacag ggtgactcct tgcatgagca taagaagggc attttgcaga ccgtgaaggt ccacaagcca gagaacatcg t gcagaagaat tccogcgaga tcagatcctc aaggagcacc gtactacctc caaaacggaa gtccgactac gacgtcgacc caataaagtg ctgacacgct ggaggtcgtg aagaagatga ccagcgtaag ttcgacaacc t ggccggattc atcaagagac aattctggat tcccgcatga caaggtgatc accttgaagt caaggtgagg gagatcaaca tggaaccgcc ctcatcaaaa caaggtgtac gacgtgagga cgccaagtac ttcttctact caacggtgag atcaggaagc gtgggacaaa gggagggatt catcgtcaag aagaccgaag gagaaactcc gacaagctga cttcgattct cctaccgtgg gtccaagaag ctgaaatccg cttcgagaag aaccctatcg cctcatcatc aagctgccca gctggcttct gccggagagt t gaacttcctg tacctcgcct gcagaagcag ctcttcgtgg ctctgagttc tccaagcgeg t ctacaacaag cacagggata taccctcaca aacttgggag gaagagatac acctccacca cggcctctat gaaacaagga caagaagaag agaaaggtgt taattaatgt atgaaataaa gcatcaaagt tgtgtgttat tccatatttc ttatcctaaa gcatttcatt aaccaaatcc tgggttagca aaacaaatct
```

<210> 402
<211> 6518
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence

```
<400> 402
\begin{tabular}{lllll} 
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta & 60 \\
cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc & 120 \\
tttaataaaa ggaagaaaaa aaccaacaa aaaataggtt gcaatggggc agagcagagt & 180 \\
catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa & 240 \\
atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac & 300 \\
taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct & 360 \\
cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag & 420 \\
atgcacaaca acaaagcttg ccacttcatt tactcaactg ttttagagct agaaatagca & 480 \\
agttaaaata aggctagtcc gttatcaact tgaaaagtg gcaccgagtc ggtgctttt & 540 \\
tttgcggccg caattggatc gggtttactt atttgtggg tatctatact tttattagat & 600
\end{tabular}
ttttaatcag gctcctgatt tctttttatt tcgattgaat tcctgaactt gtattattca gtagatcgaa taaattataa aaagataaaa tcataaaata atattttatc ctatcaatca tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaat catataggtt
gcagaagaat tcccgcgaga ggatgaagcg cattgaggag ggcataaaag agcttggctc ..... 4440
tcagatcctc aaggagcacc ccgtcgagaa cactcagctg cagaacgaga agctgtacct ..... 4500
gtactacctc caaaacggaa gggacatgta cgtggaccag gagctggaca tcaacaggtt ..... 4560
gtccgactac gacgtcgacc acatcgtgcc tcagtccttc ctgaaggatg actccatcga ..... 4620
caataaagtg ctgacacgct ccgataaaaa tagaggcaag tccgacaacg tcccctccga ..... 4680
ggaggtcgtg aagaagatga aaaactactg gagacagctc ttgaacgcca agctcatcac ..... 4740
ccagcgtaag ttcgacaacc tgactaaggc tgagagagga ggattgtccg agctcgataa ..... 4800
ggccggattc atcaagagac agctcgtcga aacccgccaa attaccaagc acgtggccca ..... 4860
aattctggat tcccgcatga acaccaagta cgatgaaaat gacaagctga tccgcgaggt ..... 4920
caaggtgatc accttgaagt ccaagctggt ctccgacttc cgcaaggact tccagttcta ..... 4980
caaggtgagg gagatcaaca actaccacca cgcacacgac gcctacctca acgctgtcgt ..... 5040
tggaaccgcc ctcatcaaaa aatatcctaa gctggagtct gagttcgtct acggcgacta ..... 5100
caaggtgtac gacgtgagga agatgatcgc taagtctgag caggagatcg gcaaggccac ..... 5160
cgccaagtac ttcttctact ccaacatcat gaacttcttc aagaccgaga tcactctcgc ..... 5220
caacggtgag atcaggaagc gcccactgat cgagaccaac ggtgagactg gagagatcgt ..... 5280
gtgggacaaa gggagggatt tcgctactgt gaggaaggtg ctctccatgc ctcaggtgaa ..... 5340catcgtcaag aagaccgaag ttcagaccgg aggattctcc aaggagtcca tcctccccaa
gagaaactcc gacaagctga tcgctagaaa gaaagactgg gaccctaaga agtacggagg ..... 5460
cttcgattct cctaccgtgg c ..... 5520gtccaagaag ctgaaatccgcttcgagaag aaccctatcgcctcatcatc aagctgcccagctggcttct gccggagagt tgaacttcctg tacctcgcctgcagaagcag ctcttcgtggctctgagttc tccaagcgeg t5580tacaacaag cacagggata agcccattcg cgagcaggct gaaaacatta tccacctgt6060
gaagagatac acctccacca aggaggtgct cgacgcaaca ctcatccacc aatccatcac
\(\begin{array}{lll}\text { cggcctctat gaaacaagga ttgacttgtc ccagctggga ggcgactcta gagccgatcc } & 6180 \\ \text { caagaagaag agaaaggtgt aggttaacct agacttgtcc atcttctgga ttggccaact } & 6240\end{array}\)
taattaatgt atgaaataaa aggatgcaca catagtgaca tgctaatcac tataatgtgg
6300
gcatcaaagt tgtgtgttat gtgtaattac tagttatctg aataaaagag aaagagatca
6420
6480
6518 tccatatttc ttatcctaaa tgaatgtcac gtgtctttat aattctttga tgaaccagat gcatttcatt aaccaaatcc atatacatat aaatattaat catatataat taatatcaat
```

<210>403
<211> 6518
<212> DNA
<213> Artificial

```
<220>
<223> Artificial Sequence
<400>403

cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg
1080 aaatcaaatc gctcaaacca caaaaagaa caacgcgttt gttacacgct caatcccacg cgagtagagc acagtaacct tcaaataagc gaatggggca taatcagaaa tccgaaataa acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct agttttcgtt atcactctgt gctccctcgc tctatttctc agtctctgtg tttgcggctg tcttcgattc gatctatgcc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca
\(\left.\begin{array}{llllll}\text { ggccggattc } & \text { atcaagagac } & \text { agctcgtcga } & \text { aacccgccaa } & \text { attaccaagc } & \text { acgtggccca }\end{array}\right] 4860\)
```

<210>404
<211>6550
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>404

```
ccgggttaag agaattgtaa gtgtgctttt atatatttaa aattaatata ttttgaaatg ..... 60
ttaaaatata aagaaaatt caatgtaaat taaaaataaa taaatgttta ataaagataa ..... 120
attttaaaac ataaaagaaa atgtctaaca agaggattaa gatcctgtgc tcttaaattt ..... 180
ttaggtgttg aaatcttagc catacaaaat atattttatt aaaaccaagc atgaaaaaag ..... 240
tcactaaaga gctatataac tcatgcagct agaaatgaag tgaagggaat ccagtttgtt ..... 300
ctcagtcgaa agagtgtcta tctttgttct tttctgcaac cgagttaagc aaaatgggaa ..... 360
tgcgaggtat cttcctttcg t ..... 420
aatataacaa gagcttcaca gaatatatag cccaggccac agtaaaagct tgtcccttgt ..... 480
acttgtacgt agttttagag ctagaaatag caagttaaaa taaggctagt ccgttatcaa ..... 540
cttgaaaaag tggcaccgag tcggtgcttt tttttgcggc cgcaattgga tcgggtttac ..... 600
ttattttgtg ggtatctata cttttattag atttttaatc aggctcctga tttctttta ..... 660
tttcgattga attcctgaac ttgtattatt cagtagatcg aataaattat aaaagataa ..... 720
aatcataaaa taatatttta t tcctatcaat catattaaag caatgaatat gtaaaattaa ..... 780
tcttatcttt attttaaaaa atcatatagg tttagtattt ttttaaaaat aaagatagga ..... 840
ttagttttac tattcactgc ttattacttt taaaaaatc ataaaggttt agtatttttt ..... 900
taaaataaat ataggaatag ttttactatt cactgcttta atagaaaaat agtttaaaat ..... 960
ttaagatagt tttaatccca gcatttgcca cgtttgaacg tgagccgaaa cgatgtcgtt ..... 1020
acattatctt aacctagctg a aaacgatgtc gtcataatat cgccaaatgc caactggact ..... 1080
acgtcgaacc cacaaatccc a acaaagcgcg tgaaatcaaa tcgctcaaac cacaaaaaag ..... 1140
aacaacgcgt ttgttacacg c ctcaatccca cgcgagtaga gcacagtaac cttcaaataa ..... 1200gcgaatgggg cataatcaga1260
tagctcactc aatataaaaa tctaggaacc ctagttttcg ttatcactct gtgctccctc ..... 1320
13801440
atttacgatg atgtttcttc ggttatgttt ttttatttat gctttatgct gttgatgttc ggttgtttgt ttcgctttgt ttttgtggtt cagtttttta ggattctttt ggtttttgaa tcgattaatc ggaagagatt ttcgagttat ttggtgtgtt ggaggtgaat cttttttttg aggtcataga tctgttgtat ttgtgttata aacatgcgac tttgtatgat tttttacgag gttatgatgt tctggttgtt ttattatgaa tctgttgaga cagaaccatg atttttgttg atgttcgttt acactattaa aggtttgttt taacaggatt aaaagttttt taagcatgtt gaaggagtct tgtagatatg taaccgtcga tagttttttt gtgggtttgt tcacatgtta tcaagcttaa tcttttacta tgtatgcgac catatctgga tccagcaaag gcgatttttt aattccttgt gaaacttttg taatatgaag ttgaaatttt gttattggta aactataaat gtgtgaagtt ggagtatacc tttaccttct tatttggctt tgtgatagtt taatttatat gtattttgag ttctgacttg tatttctttg aattgattct agtttaagta atccatggac aaaaagtact caatagggct cgacataggg actaactccg ttggatgggc cgtcatcacc gacgagtaca aggtgccctc caagaagttc aaggtgttgg gaaacaccga caggcacagc ataaagaaga atttgatcgg tgccctcctc ttcgactccg gagagaccgc tgaggctacc aggctcaaga ggaccgctag aaggcgctac accagaagga agaacagaat ctgctacctg caggagatct tctccaacga gatggccaag gtggacgact ccttcttcca ccgccttgag gaatcattcc tggtggagga ggataaaaag cacgagagac acccaatctt cgggaacatc gtcgacgagg tggcctacca tgaaaagtac cctaccatct accacctgag gaagaagctg gtcgactcta ccgacaaggc tgacttgcgc ttgatttacc tggctctcgc tcacatgata aagttccgcg gacacttcct cattgaggga gacctgaacc cagacaactc cgacgtggac aagctcttca tccagctcgt tcagacctac aaccagcttt tcgaggagaa cccaatcaac gccagtggag ttgacgccaa ggctatcctc tctgctcgtc tgtcaaagtc caggaggctt gagaacttga ttgcccagct gcctggcgaa aagaagaacg gactgttcgg aaacttgatc gctctctccc tgggattgac tcccaacttc aagtccaact tcgacctcgc cgaggacget aagttgcagt tgtctaaaga cacctacgac gatgacctcg acaacttgct ggcccagata ggcgaccaat acgccgatct cttcctcgcc gctaagaact tgtccgacgc aatcctgctg tccgacatcc tgagagtcaa cactgagatt accaaagctc ctctgtctgc ttccatgatt aagcgctacg acgagcacca ccaagatctg accctgctca aggccctggt gagacagcag ctgcccgaga agtacaagga gatctttttc gaccagtcca agaacggcta cgccggatac attgacggag gcgcctccca ggaagagttc tacaagttca tcaagcccat cottgagaag atggacggta ccgaggagct gttggtgaag ttgaacagag aggacctgtt gaggaagcag agaaccttcg acaacggaag catccctcac caaatccacc tgggagagct ccacgccatc ttgaggaggc aggaggattt ctatcccttc ctgaaggaca accgcgagaa gattgagaag atcttgacct tcagaattcc ttactacgtc gggccactcg ccagaggaaa ctctaggttc gcctggatga cccgcaaatc tgaagagacc attactccct ggaacttcga ggaagtcgtg gacaagggcg cttccgctca gtctttcatc gagaggatga ccaacttcga taaaaatctg cccaacgaga aggtgctgcc caagcactcc ctgttgtacg agtatttcac agtgtacaac gagctcacca aggtgaagta cgtcacagag ggaatgagga agcctgcctt cttgtccgga gagcagaaga aggccatcgt cgacctgctc ttcaagacca acaggaaggt gactgtcaag cagctgaagg aggactactt caagaagatc gagtgcttcg actccgtcga gatctctggt gtcgaggaca ggttcaacgc ctcccttggg acttaccacg atctgctcaa gattattaaa gacaaggact tcctggacaa cgaggagaac gaggacatcc ttgaggacat cgtgctcacc ctgaccttgt tcgaagacag ggaaatgatc gaagagaggc tcaagaccta cgcccacctc ttcgacgaca aggtgatgaa acagctgaag agacgcagat ataccggctg gggaaggctc tcccgcaaat tgatcaacgg gatcagggac aagcagtcag ggaagactat actcgacttc ctgaagtccg acggattcgc caacaggaac ttcatgcagc tcattcacga cgactccttg accttcaagg aggacatcca gaaggctcag gtgtctggac agggtgactc cttgcatgag cacattgcta acttggccgg ctctcccgct attaagaagg gcattttgca gaccgtgaag gtcgttgacg agctcgtgaa ggtgatggga cgccacaagc cagagaacat cgttattgag atggctcgcg agaaccaaac tacccagaaa gggcagaaga attcccgcga gaggatgaag cgcattgagg agggcataaa agagcttggc tctcagatcc tcaaggagca ccccgtcgag aacactcagc tgcagaacga gaagctgtac ctgtactacc tccaaaacgg aagggacatg tacgtggacc aggagctgga catcaacagg ttgtccgact acgacgtcga ccacatcgtg cctcagtcct tcctgaagga tgactccatc gacaataaag tgctgacacg ctccgataaa aatagaggca agtccgacaa cgtcccctcc gaggaggtcg tgaagaagat gaaaaactac tggagacagc tcttgaacgc caagctcatc acccagcgta agttcgacaa cctgactaag gctgagagag gaggattgtc cgagctcgat aaggccggat tcatcaagag acagctcgtc gaaacccgcc aaattaccaa gcacgtggcc caaattctgg attcccgcat gaacaccaag tacgatgaaa atgacaagct gatccgcgag gtcaaggtga tcaccttgaa gtccaagctg gtctccgact tccgcaagga cttccagttc tacaaggtga gggagatcaa caactaccac cacgcacacg acgcctacct caacgctgtc gttggaaccg ccctcatcaa aaaatatcct aagctggagt ctgagttcgt ctacggcgac tacaaggtgt acgacgtgag gaagatgatc gctaagtctg agcaggagat cggcaaggcc accgccaagt acttcttcta ctccaacatc


gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca tatctggatc cagcaaaggc gattttttaa ttccttgtga aacttttgta atatgaagtt gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta 1980
2040 tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa ttgattctag tttaagtaat ccatggacaa aaggtactca atagggctcg acatagggac taactccgtt ggatgggceg tcatcaccga cgagtacaag gtgccctcca agaagttcaa ggtgttggga aacaccgaca ggcacagcat aagaagaat ttgatcggtg ccctcctctt cgactccgga gagaccgctg aggctaccag gctcaagagg accgctagaa ggcgctacac cagaaggaag aacagaatct gctacctgca ggagatcttc tccaacgaga tggccaaggt ggacgactcc ttcttccacc gccttgagga atcattcctg gtggaggagg ataaaaagca cgagagacac ccaatcttcg ggaacatcgt cgacgaggtg gcctaccatg aaaagtaccc taccatctac cacctgagga agaagctggt cgactctacc gacaaggctg acttgcgett gatttacctg gctctcgctc acatgataaa gttccgcgga cacttcctca ttgagggaga cctgaaccca gacaactccg acgtggacaa gctcttcatc cagctcgttc agacctacaa ccagcttttc gaggagaacc caatcaacgc cagtggagtt gacgccaagg ctatcctctc tgctcgtctg tcaaagtcca ggaggcttga gaacttgatt gcccagctgc ctggcgaaaa gaagaacgga ctgttcggaa acttgatcgc tctctccctg ggattgactc ccaacttcaa gtccaacttc gacctcgccg aggacgctaa gttgcagttg tctaaagaca cctacgacga tgacctcgac aacttgctgg cccagatagg cgaccaatac gccgatctct tcctcgccgc taagaacttg tccgacgcaa tcctgctgtc cgacatcctg agagtcaaca ctgagattac caaagctcct ctgtctgctt ccatgattaa gcgctacgac gagcaccacc aagatctgac cctgctcaag gccctggtga g ccagtccaag aacggctacg c caagttcatc aagcccatcc ttgagaagat ggacggtacc gaggagctgt tggtgaagtt gaacagagag gacctgttga ggaagcagag aaccttcgac aacggaagca tccctcacca aatccacctg ggagagctcc acgccatctt gaggaggcag gaggatttct atcccttcct gaaggacaac cgcgagaaga ttgagaagat cttgaccttc agaattcctt actacgtcgg gccactcgcc agaggaaact ctaggttcgc ctggatgacc cgcaaatctg aagagaccat tactccctgg aacttcgagg aagtcgtgga caagggcgct tccgctcagt ctttcatcga gaggatgacc aacttcgata aaaatctgcc caacgagaag gtgctgccca agcactccct gttgtacgag tatttcacag tgtacaacga gctcaccaag gtgaagtacg tcacagaggg aatgaggaag cctgccttct tgtccggaga gcagaagaag g caagaccaac aggaaggtga ctgtcaagca gctgaaggag g gtgcttcgac tccgtcgaga tctctggtgt cgaggacagg t ttaccacgat ctgctcaaga ttattaaaga caaggacttc c ggacatcctt gaggacatcg tgctcaccct gaccttgttc g agagaggctc aagacctacg cccacctctt cgacgacaag g acgcagatat accggctggg gaaggctctc ccgcaaattg a gcagtcaggg aagactatac tcgacttcct gaagtccgac g catgcagctc attcacgacg actccttgac cttcaaggag g gtctggacag ggtgactcct tgcatgagca cattgctaac t taagaagggc attttgcaga ccgtgaaggt cgttgacgag c ccacaagcca gagaacatcg t gcagaagaat tcccgcgaga ggatgaagcg cattgaggag g tcagatcctc aaggagcacc ccgtcgagaa cactcagctg c gtactacctc caaaacggaa gggacatgta cgtggaccag g gtccgactac gacgtcgacc acatcgtgcc tcagtccttc c caataaagtg ctgacacgct ccgataaaaa tagaggcaag t ggaggtcgtg aagaagatga aaaactactg gagacagctc t ccagcgtaag ttcgacaacc tgactaaggc tgagagagga g ggccggattc atcaagagac agctcgtcga aacccgccaa a aattctggat tcccgcatga acaccaagta cgatgaaaat g caaggtgatc accttgaagt ccaagctggt ctccgacttc c caaggtgagg gagatcaaca a tggaaccgcc ctcatcaaa a cgccaagtac ttcttctact c caacggtgag atcaggaagc gcccactgat cgagaccaac gtgggacaaa gggagggatt tcgctactgt gaggaaggtg catcgtcaag aagaccgaag ttcagaccgg aggattctcc a gagaaactcc gacaagctga tcgctagaaa gaaagactgg gaccctaaga agtacggagg cttcgattct cctaccgtgg cctactctgt gctggtcgtg gccaaggtgg agaagggcaa gtccaagaag ctgaaatccg tcaaggagct cctcgggatt accatcatgg agaggagttc

2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580

<210> 406
<211> 6518
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 406

cgactccgga gagaccgctg aggctaccag gctcaagagg accgctagaa ggcgctacac
2280 cagaaggaag aacagaatct gctacctgca ggagatcttc tccaacgaga tggccaaggt ggacgactcc ttcttccacc gccttgagga atcattcctg gtggaggagg ataaaaagca cgagagacac ccaatcttcg ggaacatcgt cgacgaggtg gcctaccatg aaaagtaccc taccatctac cacctgagga agaagctggt cgactctacc gacaaggctg acttgcgctt gatttacctg gctctcgctc acatgataaa gttccgcgga cacttcctca ttgagggaga 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120
```

taccctcaca aacttgggag cccctgctgc cttcaagtac ttcgacacca ccattgacag 6060
gaagagatac acctccacca aggaggtgct cgacgcaaca ctcatccacc aatccatcac 6120
cggcctctat gaaacaagga ttgacttgtc ccagctggga ggcgactcta gagccgatcc 6180
caagaagaag agaaaggtgt aggttaacct agacttgtcc atcttctgga ttggccaact 6240
taattaatgt atgaaataaa aggatgcaca catagtgaca tgctaatcac tataatgtgg 6300
gcatcaaagt tgtgtgttat gtgtaattac tagttatctg aataaaagag aaagagatca }636
tccatatttc ttatcctaaa tgaatgtcac gtgtctttat aattctttga tgaaccagat }642
gcatttcatt aaccaaatcc atatacatat aaatattaat catatataat taatatcaat 6480
tgggttagca aaacaaatct agtctaggtg tgttttgc 6518

```
<210> 407
<211> 6518
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 407
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta 60 cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt240 atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac 300 taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct 360 cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag 420 atgcacaaca acaaagcttg acgtgatgca tcatagatgg ttttagagct agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 480
ccagcttttc gaggagaacc caatcaacgc cagtggagtt gacgccaagg ctatcctctc 2700 tgctcgtctg tcaaagtcca ggaggcttga gaacttgatt gcccagctgc ctggcgaaaa 2760 gaagaacgga ctgttcggaa acttgatcgc tctctccctg ggattgactc ccaacttcaa 2820 gtccaacttc gacctcgccg aggacgctaa gttgcagttg tctaaagaca cctacgacga 2880 tgacctcgac aacttgctgg cccagatagg cgaccaatac gccgatctct tcctcgccgc 2940 taagaacttg tccgacgcaa tcctgctgtc cgacatcctg agagtcaaca ctgagattac 3000 caaagctcct ctgtctgctt ccatgattaa gcgctacgac gagcaccacc aagatctgac cctgctcaag gccctggtga gacagcagct gcccgagaag tacaaggaga tctttttcga ccagtccaag aacggctacg ccggatacat tgacggaggc gcctcccagg aagagttcta caagttcatc aagcccatcc ttgagaagat ggacggtacc gaggagctgt tggtgaagtt gaacagagag gacctgttga ggaagcagag aaccttcgac aacggaagca tccctcacca aatccacctg ggagagctcc acgccatctt gaggaggcag gaggatttct atcccttcct gaaggacaac cgcgagaaga ttgagaagat cttgaccttc agaattcctt actacgtcgg gccactcgcc agaggaaact ctaggttcgc ctggatgacc cgcaaatctg aagagaccat tactccctgg aacttcgagg aagtcgtgga caagggcgct tccgctcagt ctttcatcga gaggatgacc aacttcgata aaaatctgcc caacgagaag gtgctgccca agcactccct gttgtacgag tatttcacag tgtacaacga gctcaccaag gtgaagtacg tcacagaggg aatgaggaag cctgccttct tgtccggaga gcagaagaag gccatcgtcg acctgctctt caagaccaac aggaaggtga ctgtcaagca gctgaaggag gactacttca agaagatcga gtgcttcgac tccgtcgaga tctctggtgt cgaggacagg ttcaacgcct cccttgggac ttaccacgat ctgctcaaga ttattaaaga caaggacttc ctggacaacg aggagaacga ggacatcctt gaggacatcg tgctcaccct gaccttgttc gaagacaggg aaatgatcga agagaggctc aagacctacg cccacctctt cgacgacaag gtgatgaaac agctgaagag acgcagatat accggctggg gaaggctctc ccgcaaattg atcaacggga tcagggacaa gcagtcaggg aagactatac tcgacttcct gaagtccgac ggattcgcca acaggaactt catgcagctc attcacgacg actccttgac cttcaaggag gacatccaga aggctcaggt gtctggacag ggtgactcct tgcatgagca cattgctaac ttggccggct ctcccgctat taagaagggc attttgcaga ccgtgaaggt cgttgacgag ctcgtgaagg tgatgggacg ccacaagcca gagaacatcg ttattgagat ggctcgcgag aaccaaacta cccagaaagg gcagaagaat tcccgcgaga ggatgaagcg cattgaggag ggcataaaag agcttggctc tcagatcctc aaggagcacc ccgtcgagaa cactcagctg cagaacgaga agctgtacct gtactacctc caaaacggaa gggacatgta cgtggaccag gagctggaca tcaacaggtt gtccgactac gacgtcgacc acatcgtgcc tcagtccttc ctgaaggatg actccatcga caataaagtg ctgacacgct ccgataaaaa tagaggcaag tccgacaacg tcccctccga ggaggtcgtg aagaagatga aaaactactg gagacagctc ttgaacgcca agctcatcac ccagcgtaag ttcgacaacc tgactaaggc tgagagagga ggattgtccg agctcgataa ggccggattc atcaagagac agctcgtcga aacccgccaa attaccaagc acgtggccca aattctggat tcccgcatga acaccaagta cgatgaaaat gacaagctga tccgcgaggt caaggtgatc accttgaagt ccaagctggt ctccgacttc cgcaaggact tccagttcta caaggtgagg gagatcaaca actaccacca cgcacacgac gcctacctca acgctgtcgt tggaaccgcc ctcatcaaaa aatatcctaa gctggagtct gagttcgtct acggcgacta caaggtgtac gacgtgagga agatgatcgc taagtctgag caggagatcg gcaaggccac cgccaagtac ttcttctact ccaacatcat gaacttcttc aagaccgaga tcactctcgc caacggtgag atcaggaagc gcccactgat cgagaccaac ggtgagactg gagagatcgt gtgggacaaa gggagggatt tcgctactgt gaggaaggtg ctctccatgc ctcaggtgaa catcgtcaag aagaccgaag ttcagaccgg aggattctcc aaggagtcca tcctccccaa gagaaactcc gacaagctga tcgctagaaa gaaagactgg gaccctaaga agtacggagg cttcgattct cctaccgtgg cctactctgt gctggtcgtg gccaaggtgg agaagggcaa gtccaagaag ctgaaatccg tcaaggagct cctcgggatt accatcatgg agaggagttc cttcgagaag aaccctatcg acttcctgga ggccaaggga tataaagagg tgaagaagga cctcatcatc aagctgccca agtactccct cttcgagttg gagaacggaa ggaagaggat gctggcttct gccggagagt tgcagaaggg aaatgagctc gcccttccct ccaagtacgt gaacttcctg tacctcgcct ctcactatga aaagttgaag ggctctcctg aggacaacga gcagaagcag ctcttcgtgg agcagcacaa gcactacctg gacgaaatta tcgagcagat ctctgagttc tccaagcgcg tgatattggc cgacgccaac ctcgacaagg tgctgtccgc ctacaacaag cacagggata agcccattcg cgagcaggct gaaaacatta tccacctgtt taccetcaca aacttgggag cccctgctgc cttcaagtac ttcgacacca ccattgacag gaagagatac acctccacca aggaggtgct cgacgcaaca ctcatccacc aatccatcac cggcctctat gaaacaagga ttgacttgtc ccagctggga ggcgactcta gagccgatcc caagaagaag agaaaggtgt aggttaacct agacttgtcc atcttctgga ttggccaact taattaatgt atgaaataaa aggatgcaca catagtgaca tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat gtgtaattac tagttatctg aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac gtgtctttat aattctttga tgaaccagat
```

gcatttcatt aaccaaatcc atatacatat aaatattaat catatataat taatatcaat
tgggttagca aaacaaatct agtctaggtg tgttttgc

```
<210>408
```

<211> 6518
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 408
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc 120 tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa
300

atacttggat ctttctctta c
taatcttgcc ttgttgtttc attccctaac t

attgagacct gaaacttgag agagatacac
360 cgttccccat ttaagtccca c atgcacaaca acaaagcttg aggaaatgac t agttaaaata aggctagtcc gttatcaact t tttgcggccg caattggatc g ttttaatcag gctcctgatt t gtagatcgaa taaattataa tattaaagca atgaatatgt a tagtattttt ttaaaaataa aaaaaatcat aaaggtttag ctgctttaat agaaaaatag t tttgaacgtg agccgaaacg cataatatcg ccaaatgcca aaatcaaatc gctcaaacca ca cgagtagagc acagtaacct acctaggggc attatcggaa agttttcgtt atcactctgt g aggattccga acgagtgacc tcttcgattc gatctatgcc t ttatttatgc tttatgctgt t gttttttagg attcttttgg t ggtgtgttgg aggtgaatct catgcgactt tgtatgattt tgttgagaca gaaccatgat acaggattaa aagtttttta gtttttttgt gggtttgttc tatctggatc cagcaaaggc gaaattttgt tattggtaaa tttggctttg tgatagttta ttgattctag tttaagtaat taactccgtt ggatgggccg t ggtgttggga aacaccgaca cgactccgga gagaccgctg cagaaggaag aacagaatct ggacgactcc ttcttccacc cgagagacac ccaatcttcg taccatctac cacctgagga gatttacctg gctctcgctc cctgaaccca gacaactccg ccagcttttc gaggagaacc tgctcgtctg tcaaagtcca gaagaacgga ctgttcggaa gtccaacttc gacctcgecg tgacctcgac aacttgctgg taagaacttg tccgacgcaa caaagctcct ctgtctgctt ccatgattaa

420 480 540 600 660 720 780 840 900 960 1020 1080 1140
cctgctcaag gccetggtga gacagcagct gcccgagaag tacaaggaga tctttttcga路 caagttcatc aagcccatcc ttgagaagat ggacggtacc gaggagctgt tggtgaagtt gaacagagag gacctgttga ggaagcagag aaccttcgac aacggaagca tccctcacca aatccacctg ggagagctcc acgccatctt gaggaggcag gaggatttct atcccttcct gaaggacaac cgcgagaaga t gccactcgcc agaggaaact tactccctgg aacttcgagg gaggatgacc aacttcgata gttgtacgag tatttcacag aatgaggaag cctgccttct caagaccaac aggaaggtga gtgcttcgac tccgtcgaga ttaccacgat ctgctcaaga ggacatcctt gaggacatcg agagaggctc aagacctacg acgcagatat accggctggg gcagtcaggg aagactatac catgcagctc attcacgacg gtctggacag ggtgactcct taagaagggc attttgcaga ccacaagcca gagaacatcg gcagaagaat tcccgcgaga tcagatcctc aaggagcacc gtactacctc caaaacggaa gtccgactac gacgtcgacc caataaagtg ctgacacgct ggaggtcgtg aagaagatga ccagcgtaag ttcgacaacc ggccggattc atcaagagac aattctggat tcccgcatga caaggtgatc accttgaagt caaggtgagg gagatcaaca tggaaccgcc ctcatcaaaa caaggtgtac gacgtgagga cgccaagtac ttcttctact caacggtgag atcaggaagc gtgggacaaa gggagggatt catcgtcaag aagaccgaag gagaaactcc gacaagctga cttcgattct cctaccgtgg gtccaagaag ctgaaatccg cttcgagaag aaccctatcg cctcatcatc aagctgccca gctggcttct gccggagagt gaacttcctg tacctcgcct gcagaagcag ctcttcgtgg ctctgagttc tccaagcgcg ctacaacaag cacagggata taccctcaca aacttgggag gaagagatac acctccacca cggcctctat gaaacaagga caagaagaag agaaaggtgt taattaatgt atgaaataaa gcatcaaagt tgtgtgttat tccatatttc ttatcctaaa gcatttcatt aaccaaatcc tgggttagca aaacaaatct
ttgagaagat ctaggttcgc ctggatgacc cgcaaatctg aagagaccat aagtcgtgga caagggcgct tccgctcagt ctttcatcga aaaatctgcc caacgagaag gtgctgccca agcactccct tgtacaacga gctcaccaag gtgaagtacg tcacagaggg tgtccggaga gcagaagaag gccatcgtcg acctgctctt ctgtcaagca gctgaaggag gactacttca agaagatcga tctctggtgt cgaggacagg ttcaacgcct cccttgggac ttattaaaga caaggacttc ctggacaacg aggagaacga tgctcaccct gaccttgttc gaagacaggg aaatgatcga cccacctctt cgacgacaag gtgatgaaac agctgaagag gaaggctctc ccgcaaattg atcaacggga tcagggacaa tcgacttcct gaagtccgac ggattcgcca acaggaactt actccttgac cttcaaggag gacatccaga aggctcaggt tgcatgagca cattgctaac ttggccggct ctcccgctat ccgtgaaggt cgttgacgag ctcgtgaagg tgatgggacg ttattgagat ggctcgcgag aaccaaacta cccagaaagg ggatgaagcg cattgaggag ggcataaag agcttggctc ccgtcgagaa cactcagctg cagaacgaga agctgtacct gggacatgta cgtggaccag gagctggaca tcaacaggtt acatcgtgcc tcagtccttc ctgaaggatg actccatcga ccgataaaaa tagaggcaag tccgacaacg tcccctcoga aaaactactg gagacagctc ttgaacgcca agctcatcac tgactaaggc tgagagagga ggattgtccg agctcgataa agctcgtcga aacccgccaa attaccaagc acgtggccca acaccaagta cgatgaaaat gacaagctga tccgcgaggt ccaagctggt ctccgacttc cgcaaggact tccagttcta actaccacca cgcacacgac gcctacctca acgetgtcgt aatatcctaa gctggagtct gagttcgtct acggcgacta agatgatcgc taagtctgag caggagatcg gcaaggccac ccaacatcat gaacttcttc aagaccgaga tcactctcgc gcccactgat cgagaccaac ggtgagactg gagagatcgt tcgetactgt gaggaaggtg ctctccatgc ctcaggtgaa ttcagaccgg aggattctcc aaggagtcca tcctccccaa tcgctagaaa gaaagactgg gaccctaaga agtacggagg cctactctgt gctggtcgtg gccaaggtgg agaagggcaa tcaaggagct cctcgggatt accatcatgg agaggagttc acttcctgga ggccaaggga tataaagagg tgaagaagga agtactccct cttcgagttg gagaacggaa ggaagaggat tgcagaaggg aaatgagctc gcccttccct ccaagtacgt ctcactatga aaagttgaag ggctctcctg aggacaacga agcagcacaa gcactacctg gacgaaatta tcgagcagat tgatattggc cgacgccaac ctcgacaagg tgctgtccgc agcccattcg cgagcaggct gaaaacatta tccacctgtt cccctgctgc cttcaagtac ttcgacacca ccattgacag aggaggtgct cgacgcaaca ttgacttgtc ccagctggga aggttaacct agacttgtcc atcttctgga ttggccaact aggatgcaca catagtgaca tgctaatcac tataatgtgg gtgtaattac tagttatctg aataaaagag aaagagatca tgaatgtcac gtgtctttat aattctttga tgaaccagat atatacatat aaatattaat catatataat taatatcaat agtctaggtg tgttttgc

[^1]```
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>409
```

ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta
tactccctgg aacttcgagg aagtcgtgga caagggcget tccgctcagt ctttcatcga

3540
3600
<210> 410
$<211>6550$
$<212>$ DNA
$<213>$ Artificial
<223> Artificial Sequence
ccgggttaag agaattgtaa gtgtgctttt atatatttaa aattaatata ttttgaaatg
attttaaaac ataaaagaaa atgtctaaca agaggattaa gatcctgtgc tcttaaattt
180
240 ttaggtgttg aaatcttagc catacaaaat atattttatt aaaaccaagc atgaaaaag 300 tcactaaaga gctatataac tcatgcagct agaaatgaag tgaagggaat ccagtttgtt 360 ctcagtcgaa agagtgtcta tctttgttct tttctgcaac cgagttaagc aaaatgggaa 420 tgcgaggtat cttcctttcg ttaggggagc accagatgca tagttagtcc cacattgatg aatataacaa gagcttcaca gaatatatag cccaggccac agtaaaagct tggaactgac acacgacatg agttttagag ctagaaatag caagttaaaa taaggctagt cegttatcaa cttgaaaaag tggcaccgag tcggtgcttt tttttgcggc cgcaattgga tcgggtttac ttattttgtg ggtatctata cttttattag atttttaatc aggctcctga tttcttttta tttcgattga attcctgaac ttgtattatt cagtagatcg a aatcataaaa taatatttta tcttatcttt attttaaaa ttagttttac tattcactgc taaaataaat ataggaatag ttaagatagt tttaatccca acattatctt aacctagctg acgtcgaacc cacaaatccc aacaacgcgt ttgttacacg gcgaatgggg cataatcaga tagctcactc aatataaaa gctctatttc tcagtctctg ttctcgcaaa ggtaacagcc atttacgatg atgtttcttc ggttgtttgt ttcgctttgt tcgattaatc ggaagagatt aggtcataga tctgttgtat gttatgatgt tctggttgtt atgttcgttt acactattaa gaaggagtct tgtagatatg tcaagcttaa tcttttacta aattccttgt gaaacttttg gtgtgaagtt ggagtatacc gtattttgag ttctgacttg aaaaagtact caatagggct gacgagtaca aggtgccctc ataaagaaga atttgatcgg aggctcaaga ggaccgctag caggagatct tctccaacga gaatcattcc tggtggagga gtcgacgagg tggcctacca gtcgactcta ccgacaaggc aagttccgcg gacacttcct aagctcttca tccagctcgt gccagtggag ttgacgccaa gagaacttga ttgcccagct gctctctccc tgggattgac aagttgcagt tgtctaaaga ggcgaccaat acgccgatct tccgacatcc tgagagtcaa aagcgctacg acgagcacca ctgcccgaga agtacaagga attgacggag gcgcctccca atggacggta ccgaggagct agaaccttcg acaacggaag ttgaggaggc aggaggattt atcttgacct tcagaattcc gcctggatga cccgcaaatc gacaagggcg cttccgctca cccaacgaga aggtgctgcc gagctcacca aggtgaagta gagcagaaga aggccatcgt cagctgaagg aggactactt gtcgaggaca ggttcaacgc
cctatcaat catattaaag caatgaatat gtaaaattaa atcatatagg tttagtattt ttttaaaat aagatagga ttattacttt taaaaaatc ataaaggttt agtatttttt ttttactatt cactgcttta atagaaaaat agtttaaaat gcatttgcca cgtttgaacg tgagccgaaa cgatgtcgtt aaacgatgtc gtcataatat cgccaaatgc caactggact acaaagcgcg tgaaatcaaa tcgctcaaac cacaaaaaag ctcaatccca cgcgagtaga gcacagtaac cttcaaataa aatccgaaat aaacctaggg gcattatcgg aaatgaaaag tctaggaacc ctagttttcg ttatcactct gtgctccctc tgtttgcggc tgaggattcc gaacgagtga ccttcttcgt tctgctcttg tctcttcgat tcgatctatg cctgtctctt ggttatgttt ttttatttat gctttatgct gttgatgttc ttttgtggtt cagtttttta ggattctttt ggtttttgaa ttcgagttat ttggtgtgtt ggaggtgaat cttttttttg ttgtgttata aacatgcgac tttgtatgat tttttacgag ttattatgaa tctgttgaga cagaaccatg atttttgttg taagcatgtt tcacatgtta gcgatttttt aactataaat taatttatat atccatggac cgtcatcacc caggcacagc tgaggctacc ctgctacctg ccgccttgag cgggaacatc gaagaagctg tcacatgata cgacgtggac cccaatcaac caggaggctt aaacttgatc cgaggacgct ggcccagata aatcctgctg ttccatgatt gagacagcag cgccggatac ccttgagaag gaggaagcag ccacgccatc gattgagaag ctctaggttc ggaagtcgtg taaaaatctg agtgtacaac cttgtccgga gactgtcaag gatctctggt gattattaaa

480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
gacaaggact tcctggacaa cgaggagaac gaggacatcc ttgaggacat cgtgctcacc ctgaccttgt tcgaagacag ggaaatgatc gaagagaggc tcaagaccta cgcccacctc ttcgacgaca aggtgatgaa acagctgaag agacgcagat ataccggctg gggaaggctc tcccgcaaat tgatcaacgg gatcagggac aagcagtcag ggaagactat actcgacttc ctgaagtccg acggattcgc caacaggaac ttcatgcagc tcattcacga cgactccttg accttcaagg aggacatcca gaaggctcag gtgtctggac agggtgactc cttgcatgag 4080 cacattgcta acttggccgg ctctcccgct attaagaagg gcattttgca gaccgtgaag gtcgttgacg agctcgtgaa ggtgatggga cgccacaagc cagagaacat cgttattgag atggctcgcg agaaccaaac tacccagaaa gggcagaaga attcccgcga gaggatgaag cgcattgagg agggcataaa agagcttggc tctcagatcc tcaaggagca ccccgtcgag aacactcagc tgcagaacga gaagctgtac ctgtactacc tccaaaacgg aagggacatg tacgtggacc aggagctgga catcaacagg ttgtccgact acgacgtcga ccacatcgtg cctcagtcct tcctgaagga tgactccatc gacaataaag tgctgacacg ctccgataaa aatagaggca agtccgacaa cgtcccctcc gaggaggtcg tgaagaagat gaaaaactac tggagacagc tcttgaacgc caagctcatc acccagcgta agttcgacaa cctgactaag gctgagagag gaggattgtc cgagctcgat aaggccggat tcatcaagag acagctcgtc gaaacccgcc aaattaccaa gcacgtggcc caaattctgg attcccgcat gaacaccaag tacgatgaaa atgacaagct gatccgcgag gtcaaggtga tcaccttgaa gtccaagctg gtctccgact tccgcaagga cttccagttc tacaaggtga gggagatcaa caactaccac cacgcacacg acgcctacct c aagctggagt ctgagttcgt gctaagtctg agcaggagat atgaacttct tcaagaccga atcgagacca acggtgagac t gtgaggaagg tgctctccat ggaggattct ccaaggagtc aagaaagact gggaccctaa gtgctggtcg tggccaaggt ctcctcggga ttaccatcat gaggccaagg gatataaaga ctcttcgagt tggagaacgg ggaaatgagc tcgcccttcc gaaaagttga agggctctcc t aagcactacc tggacgaaat gccgacgcca acctcgacaa cgcgagcagg ctgaaaacat t gccttcaagt acttcgacac ctcgacgcaa cactcatcca tcccagctgg gaggcgactc t ctagacttgt ccatcttctg cacatagtga catgctaatc acgtgtcttt ataattcttt g ataaatatta atcatatata atgaaccag atgcatttca ttaaccaaat ccatatacat tgtgttttgc

4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480
6540
6550

```
<210>411
<211> 6518
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>411
```

ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta ..... 60
cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc ..... 120
tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt ..... 180
catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa ..... 240
atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac ..... 300
taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct ..... 360
cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag ..... 420
atgcacaaca acaaagcttg acatgatgga acgtgactag ttttagagct agaaatagca ..... 480
agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt
taagaagggc attttgcaga ccgtgaaggt cgttgacgag ctcgtgaagg tgatgggacg 4320 ccacaagcca gagaacatcg ttattgagat ggctcgcgag aaccaaacta cccagaaagg 4380 gcagaagaat tcccgcgaga ggatgaagcg cattgaggag ggcataaaag agcttggctc 4440 tcagatcctc aaggagcacc ccgtcgagaa cactcagctg cagaacgaga agctgtacct 4500 gtactacctc caaaacggaa gggacatgta cgtggaccag gagctggaca tcaacaggtt 4560 gtccgactac gacgtcgacc acatcgtgcc tcagtccttc ctgaaggatg actccatcga 4620 caataaagtg ctgacacgct ccgataaaaa tagaggcaag tccgacaacg tcccctccga 4680 ggaggtcgtg aagaagatga aaactactg gagacagctc ttgaacgcca agctcatcac 4740 ccagcgtaag ttcgacaacc tgactaaggc tgagagagga ggattgtccg agctcgataa 4800 ggccggattc atcaagagac agctcgtcga aacccgccaa attaccaagc acgtggccca aattctggat tcccgcatga acaccaagta cgatgaaaat gacaagctga tccgcgaggt 4860 4920
 caaggtgagg gagatcaaca actaccacca tggaaccgcc ctcatcaaaa a caaggtgtac gacgtgagga cgccaagtac ttcttctact caacggtgag atcaggaagc gcccactgat gtgggacaaa gggagggatt tcgctactgt ga catcgtcaag aagaccgaag ttcagaccgg gagaaactcc gacaagctga t cttcgattct cctaccgtgg cctactctgt gtccaagaag ctgaaatccg tcaaggagct cttcgagaag aaccctatcg acttcctgga cctcatcatc aagctgccca agtactccct gctggcttct gccggagagt tgcagaaggg gaacttcctg tacctcgcct ctcactatga gcagaagcag ctcttcgtgg agcagcacaa ctctgagttc tccaagcgcg tgatattggc ctacaacaag cacagggata agcccattcg taccetcaca aacttgggag cccctgctgc gaagagatac acctccacca aggaggtgct cggcctctat gaaacaagga ttgacttgtc caagaagaag agaaaggtgt aggttaacct taattaatgt atgaaataaa aggatgcaca gcatcaaagt tgtgtgttat gtgtaattac tas tccatatttc ttatcctaaa tgaatgtcac gcatttcatt aaccaaatcc atatacatat aaatattaat catatataat taatatcaat tgggttagca aaacaaatct agtctaggtg tgttttgc

```
<210>412
<211>6518
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
```

<400> 412

ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg
ggaggtcgtg aagaagatga aaaactactg gagacagctc ttgaacgeca agctcatcac 4740 ccagcgtaag ttcgacaacc tgactaaggc tgagagagga ggattgtccg agctcgataa 4800 ggccggattc atcaagagac agctcgtcga aacccgccaa attaccaagc acgtggccca 4860 aattctggat tcccgcatga acaccaagta cgatgaaaat gacaagctga tccgcgaggt 4920 caaggtgatc accttgaagt ccaagctggt ctccgacttc cgcaaggact tccagttcta 4980 caaggtgagg gagatcaaca actaccacca cgcacacgac gcctacctca acgctgtcgt 5040 tggaaccgcc ctcatcaaaa aatatcctaa gctggagtct gagttcgtct acggcgacta 5100 caaggtgtac gacgtgagga agatgatcgc taagtctgag caggagatcg gcaaggccac 5160 cgccaagtac ttcttctact ccaacatcat gaacttcttc aagaccgaga tcactctcgc 5220 caacggtgag atcaggaagc gcccactgat cgagaccaac ggtgagactg gagagatcgt 5280 gtgggacaaa gggagggatt tcgctactgt gaggaaggtg ctctccatgc ctcaggtgaa 5340 catcgtcaag aagaccgaag ttcagaccgg aggattctcc aaggagtcca tcctccccaa 5400 gagaaactcc gacaagctga tcgctagaaa gaaagactgg gaccctaaga agtacggagg 5460 cttcgattct cctaccgtgg cctactctgt gctggtcgtg gccaaggtgg agaagggcaa gtccaagaag ctgaaatccg tcaaggagct cctcgggatt accatcatgg agaggagttc cttcgagaag aaccctatcg acttcctgga ggccaaggga tataaagagg tgaagaagga cctcatcatc aagctgccca agtactccct cttcgagttg gagaacggaa ggaagaggat gctggcttct gccggagagt tgcagaaggg aaatgagctc gcccttccct ccaagtacgt gaacttcctg tacctcgcct ctcactatga aaagttgaag ggctctcctg aggacaacga gcagaagcag ctcttcgtgg agcagcacaa gcactacctg gacgaaatta tcgagcagat ctctgagttc tccaagcgcg tgatattggc cgacgccaac ctcgacaagg tgctgtccgc ctacaacaag cacagggata agcccattcg cgagcaggct gaaaacatta tccacctgtt taccctcaca aacttgggag cccctgctgc cttcaagtac ttcgacacca ccattgacag gaagagatac acctccacca aggaggtgct cgacgcaaca ctcatccacc aatccatcac cggcctctat gaaacaagga ttgacttgtc ccagctggga ggcgactcta gagccgatcc caagaagaag agaaaggtgt aggttaacct agacttgtcc atcttctgga ttggccaact taattaatgt atgaaataaa aggatgcaca catagtgaca tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat gtgtaattac tagttatctg aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac gtgtctttat aattctttga tgaaccagat gcatttcatt aaccaaatcc atatacatat aaatattaat catatataat taatatcaat tgggttagca aaacaaatct agtctaggtg tgttttgc

<210> 413<br><211> 6518<br><212> DNA<br><213> Artificial<br><220><br><223> Artificial Sequence

<400> 413

aggattccga acgagtgacc ttcttcgttt ctcgcaaagg taacagcctc tgctcttgtc
1380 tcttcgattc gatctatgcc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca tatctggatc cagcaaaggc gattttttaa ttccttgtga a gaaattttgt tattggtaaa ctataaatgt gtgaagttgg a tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa ttgattctag tttaagtaat ccatggacaa aaagtactca atagggctcg acatagggac taactccgtt ggatgggccg tcatcaccga cgagtacaag gtgccctcca agaagttcaa ggtgttggga aacaccgaca g cgactccgga cagaaggaag aacagaatct ggacgactcc ttcttccacc g cgagagacac ccaatcttcg ggaacatco taccatctac cacctgagga agaagctggt cgactctacc gatttacctg gctctcgctc acatgataaa gttccgcgga cctgaaccca gacaactccg acgtggacaa gctcttcatc ccagcttttc gaggagaacc caatcaacgc cagtggagtt tgctcgtctg tcaaagtcca ggaggettga gaacttgatt gaagaacgga ctgttcggaa acttgatcgc tctctccctg gtccaacttc gacctcgccg aggacgctaa gttgcagttg t tgacctcgac aacttgctgg cccagatagg cgaccaatac taagaacttg tccgacgcaa tcctgctgtc cgacatcctg caaagctcct ctgtctgctt ccatgattaa gcgctacgac cctgctcaag gccctggtga gacagcagct gcccgagaag t ccagtccaag aacggctacg ccggatacat tgacggaggc caagttcatc aagcccatcc ttgagaagat ggacggtacc g gaacagagag gacctgttga g aatccacctg ggagagctcc acgccatctt gaggaggcag gaaggacaac cgcgagaaga ttgagaagat cttgaccttc a gccactcgcc agaggaaact ctaggttcgc ctggatgacc tactccctgg aacttcgagg aagtcgtgga caagggcgct t gaggatgacc aacttcgata aaaatctgcc caacgagaag gttgtacgag tatttcacag tgtacaacga gctcaccaag aatgaggaag cctgccttct tgtccggaga gcagaagaag g caagaccaac aggaaggtga ctgtcaagca gctgaaggag gtgcttcgac tccgtcgaga tctctggtgt ttaccacgat ctgctcaaga tt ggacatcctt gaggacatcg t agagaggctc a agacctacg acgcagatat accggctggg gaaggctctc ccgcaaattg gcagtcaggg aagactatac t catgcagctc attcacgacg act gtctggacag ggtgactcct
taagaagggc attttgcaga ccacaagcca gagaacatcg ttattgagat ggctcgcgag gcagaagaat tcccgcgaga ggatgaagcg cattgaggag g tcagatcctc aaggagcacc ccgtcgagaa cactcagctg gtactacctc caaaacggaa gggacatgta cgtggaccag gtccgactac gacgtcgacc acatcgtgcc tcagtccttc caataaagtg ctgacacgct ccgataaaaa tagaggcaag t ggaggtcgtg aagaagatga a ccagcgtaag ttcgacaacc t ggccggattc atcaagagac aattctggat tcccgcatga caaggtgatc accttgaagt ccaagctggt ctccgacttc caaggtgagg gagatcaaca actaccacca cgcacacgac tggaaccgcc ctcatcaaaa aatatcctaa gctggagtct 9

1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
$\left.\begin{array}{llllll}\text { caaggtgtac } & \text { gacgtgagga } & \text { agatgatcgc } & \text { taagtctgag } & \text { caggagatcg } & \text { gcaaggccac }\end{array}\right] 5160$
<210> 414
<211> 466
<212> DNA
<213> Glycine max
<400> 414

| ccgggttaag agaattgtaa gtgtgctttt atatatttaa aattaatata ttttgaaatg | 60 |
| :--- | :--- | ---: |
| ttaaaatata aaagaaaatt caatgtaaat taaaataaa taaatgttta ataaagataa | 120 |
| attttaaaac ataaaagaaa atgtctaaca agaggattaa gatcctgtgc tcttaaattt | 180 |
| ttaggtgttg aaatcttagc catacaaaat atattttatt aaaaccaagc atgaaaaaag | 240 |
| tcactaaaga gctatataac tcatgcagct agaaatgaag tgaagggaat ccagtttgtt | 300 |
| ctcagtcgaa agagtgtcta tctttgttct tttctgcaac cgagttaagc aaaatgggaa | 360 |
| tgcgaggtat cttcctttcg ttaggggagc accagatgca tagttagtcc cacattgatg | 420 |
| aatataacaa gagcttcaca gaatatatag cccaggccac agtaaa | 466 |

```
<210>415
<211> }659
<212> DNA
<213> Artificial
```

<220>
<223> Artificial Sequence
<400> 415

| ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta | 60 |
| :--- | :--- | :--- | :--- |
| cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc | 120 |
| tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt | 180 |
| catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa | 240 |
| atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac | 300 |
| taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct | 360 |
| cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag | 420 |
| atgcacaaca acaaagcttg gaaacttttg tgagcaagtg ttttagagct agaaatagca | 480 |
| agttaaaata aggctagtcc gttatcaact tgaaaagtg gcaccgagtc ggtgcttttt | 540 |
| tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat | 600 |
| tttaatcag gctcctgatt tcttttatt tcgattgaat tcctgaactt gtattattca | 660 |
| gtagatcgaa taaattataa aaagataaaa tcataaaata atattttatc ctatcaatca | 720 |
| tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaat catataggtt | 780 |
| tagtattttt ttaaaaataa agataggatt agttttacta ttcactgctt attactttta | 840 |

EP 3191595 B1
aaaaaatcat aaaggtttag tattttttta aaataaatat aggaatagtt ttactattca

900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgetccg ataaaaatag 4680 aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag 4740 acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga 4800 gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc 4980 acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaat atcctaagct 5100 ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa 5160 5220 cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga 5280 gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg 5340 5400 attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa 5460 agactgggac cctaagaagt acggaggctt cgattctcct accgtggcct actctgtgct ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct 5520 5580 cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc 5640 caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa tgagctcgcc cttccctcca agtacgtgaa cttcctgtac ctcgcctctc actatgaaaa 5700 5760 5820 gttgaagggc tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga 5880 5940 cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgcga 6000 gcaggctgaa aacattatcc acctgtttac cctcacaaac ttgggagccc ctgctgcctt caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga 6060 6120 cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca 6180 gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc 6240 6300 catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac 6360 atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta 6420 6480 taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa 6540 tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc

```
<210>416
<211> }659
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>416
```


acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct agttttcgtt atcactctgt gctccctcge tctatttctc agtctctgtg tttgcggctg 1320 aggattccga acgagtgacc ttcttcgttt ctcgcaaagg taacagcctc tgctcttgtc 1380 tcttcgattc gatctatgcc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta acaggattaa aagtttttta gtttttttgt gggtttgttc tatctggatc cagcaaaggc gaaattttgt tattggtaaa tttggctttg tgatagttta ttgattctag tttaagtaat gtactcaata gggctcgaca gtacaaggtg ccctccaaga gaagaatttg atcggtgccc caagaggacc gctagaaggc gatcttctcc aacgagatgg attcctggtg gaggaggata cgaggtggcc taccatgaaa ctctaccgac aaggctgact ccgcggacac ttcctcattg cttcatccag ctcgttcaga tggagttgac gccaaggcta cttgattgcc cagctgcctg ctccctggga ttgactccca gcagttgtct aaagacacct ccaatacgcc gatctcttcc catcctgaga gtcaacactg ctacgacgag caccaccaag cgagaagtac aaggagatct cggaggcgcc tcccaggaag cggtaccgag gagctgttgg cttcgacaac ggaagcatcc gaggcaggag gatttctatc gaccttcaga attccttact gatgaccogc aaatctgaag gggcgcttcc gctcagtctt cgagaaggtg ctgcccaagc caccaaggtg aagtacgtca gaagaaggcc atcgtcgacc gaaggaggac tacttcaaga ggacaggttc aacgcctccc ggacttcctg gacaacgagg cttgttcgaa gacagggaaa cgacaaggtg atgaaacagc caaattgatc aacgggatca gtccgacgga ttcgccaaca caaggaggac atccagaagg tgctaacttg gccggctctc tgacgagctc gtgaaggtga tcgcgagaac caaactaccc tgaggagggc ataaaagagc tcagctgcag aacgagaagc ggaccaggag ctggacatca gtccttcctg aaggatgact aggcaagtcc gacaacgtcc acagctcttg aacgccaagc gagaggagga ttgtccgagc ccgccaaatt accaagcacg t tgaaaatgac aagctgatcc

1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc

5040 5100 5160 5220 5280 5340 5400 5460 5520

```
<210> 417
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
```

<400> 417
$\left.\begin{array}{llllll}\text { ccgggtgtga } & \text { tttagtataa } & \text { agtgaagtaa } & \text { tggtcaaaag } & \text { aaaaagtgta } & \text { aaacgaagta }\end{array}\right]=60$
ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa
1620 catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc 1680 tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta 1740 acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata 1800 gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca tatctggatc cagcaaaggc gattttttaa ttccttgtga aacttttgta atatgaagtt gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa ttgattctag tttaagtaat ccatggcacc gaagaagaag cgcaaggtga tggacaaaaa gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggce ctggtgagac agcagctgcc cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctccog caaattgatc aacgggatca gtccgacgga ttcgccaaca caaggaggac atccagaagg c tgctaacttg gccggctctc c tgacgagctc gtgaaggtga t tcgcgagaac caaactaccc ag tgaggagggc ataaaagagc t tcagctgcag aacgagaagc t ggaccaggag ctggacatca ac gtccttcctg aaggatgact c aggcaagtcc gacaacgtcc gagaggagga ttgtccgagc t ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag

1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340


```
<210>418
<211> }659
<212> DNA
<213> Artificial
```

<220>
<223> Artificial Sequence
<400> 418
420540600780tagtatttt ttaaaaataa agataggatt agtttacta ttcactgctt attactetta900
gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta 1980 tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa 2040 ttgattctag tttaagtaat ccatggcacc gaagaagaag cgcaaggtga tggacaaaaa gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga 2160 gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa 2220 gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct 2280 caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga 2340 gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc 2400 attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga 2460 cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga 2520 ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt 2580 ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct 2640 cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag 2700 tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa 2760 cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct 2820 ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt 2880 gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggcce agataggcga 2940 ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga 3000 catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg 3060 ctacgacgag caccaccaag atctgaccct gctcaaggce ctggtgagac agcagctgcc 3120 cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga 3180 cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga 3240 cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac 3300 cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag 3360 gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt 3420 gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgectg 3480 gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa 3540 gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa 3600 cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct 3660 caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca 3720 gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct 3780 gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga 3840 ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa 3900 ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac 3960 cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga 4020 cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg 4080 caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacctt caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat tgaggagggc ataaaagagc ttggctctca gatcctcaag gagcaccccg tcgagaacac tcagctgcag aacgagaagc tgtacctgta ctacctccaa aacggaaggg acatgtacgt ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcctca gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaatag aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgec tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa agactgggac cctaagaagt acggaggctt cgattctcct accgtggcct actctgtgct ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt

4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
$\left.\begin{array}{llllll}\text { cgagttggag } & \text { aacggaagga agaggatgct } & \text { ggcttctgcc } & \text { ggagagttgc agaagggaaa } & 5760 \\ \text { tgagctcgcc } & \text { cttccctcca } & \text { agtacgtgaa } & \text { cttcctgtac } & \text { ctcgcctctc } & \text { actatgaaaa }\end{array}\right) 5820$

```
<210>419
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>419
```


caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga
2340 gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc 2400 attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga 2460 cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga 2520 ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct 2580
2640
2700
2760 tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggce ctggtgagac agcagctgcc cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacctt caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat tgaggagggc ataaaagagc ttggctctca gatcctcaag gagcaccccg tcgagaacac tcagctgcag aacgagaagc tgtacctgta ctacctccaa aacggaaggg acatgtacgt ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcctca gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaatag aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa agactgggac cctaagaagt acggaggctt cgattctcct accgtggcet actctgtgct ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa tgagctcgcc cttccctcca agtacgtgaa cttcctgtac ctcgectctc actatgaaaa gttgaagggc tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgega gcaggctgaa aacattatcc acctgtttac cctcacaaac ttgggagccc ctgctgcctt

2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060

```
caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga 6120
cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca 6180
gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga }624
ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc 6300
catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac 6360
atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct 6420
gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta 6480
taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa }654
tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc 6599
```

<210> 420
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 420
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta 60 cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt240 atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac 300 taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct 360 cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag 420 atgcacaaca acaaagcttg aaataaaagg cctataaaag ttttagagct agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 480
cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag
2700 tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt 2880 gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga 2940 ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga 3000 3060 3120

# gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta <br> taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaatcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc 

```
<210>421
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>421
```

ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaa atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac taatcttgcc ttgttgtttc attccctaac t cgttccccat ttaagtccca ca atgcacaaca acaaagcttg t agttaaaata aggctagtcc g tttgcggccg caattggatc g ttttaatcag gctcctgatt gtagatcgaa taaattataa tattaaagca atgaatatgt a tagtattttt ttaaaataa aaaaaatcat aaaggtttag ta ctgctttaat agaaaaatag t tttgaacgtg agccgaaacg cataatatcg ccaaatgcca aaatcaaatc gctcaaacca cgagtagagc acagtaacct acctaggggc attatcggaa agttttcgtt atcactctgt aggattccga acgagtgacc t tcttcgattc gatctatgcc ttatttatgc tttatgctgt gttttttagg attcttttgg ggtgtgttgg aggtgaatct catgcgactt tgtatgattt t tgttgagaca gaaccatgat acaggattaa aagtttttta gtttttttgt gggtttgttc tatctggatc cagcaaaggc gaaattttgt tattggtaaa tttggctttg tgatagttta ttgattctag tttaagtaat gtactcaata gggctcgaca gtacaaggtg ccctccaaga gaagaatttg atcggtgccc caagaggacc gctagaaggc gatcttctcc aacgagatgg attcctggtg gaggaggata cgaggtggcc taccatgaaa ctctaccgac aaggctgact t ccgcggacac ttcctcattg a cttcatccag ctcgttcaga tggagttgac gccaaggcta cttgattgcc cagctgcctg 9 ctccctggga ttgactccca acttcaagtc gcagttgtct aaagacacct acgacgatga ccaatacgcc gatctcttcc tcgccgctaa g
catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggcc ctggtgagac agcagctgcc cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cttcgacaac gaggcaggag gatttctatc gaccttcaga attccttact gatgacccgc gggcgcttcc gctcagtctt cgagaaggtg ctgcccaagc caccaaggtg aagtacgtca gaagaaggcc atcgtcgacc gaaggaggac tacttcaaga ggacaggttc ggacttcctg cttgttcgaa cgacaaggtg caaattgatc gtccgacgga t caaggaggac tgctaacttg tgacgagctc gtgaaggtga tcgcgagaac tgaggagggc tcagctgcag ggaccaggag gtccttcctg aggcaagtcc acagctcttg gagaggagga ttgtccgagc ccgccaaatt accaagcacg tgaaaatgac aagctgatcc cgacttccgc aaggacttcc acacgacgcc tacctcaacg ggagtctgag ttcgtctacg gtctgagcag g cttcttcaag gaccaacggt gaaggtgctc t attctccaag agactgggac ggtcgtggcc cgggattacc caagggatat cgagttggag tgagctcgcc gttgaagggc ctacctggac cgccaacctc gcaggctgaa caagtacttc cgcaacactc gctgggaggc ccgccacgat catcttctgg atgctaatca gaataaaaga taattctttg tcatatataa ttaatatcaa
catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaageg gctcaaggcc ctggtgagac agcagctgcc
gtccaagaac ggctacgccg gatacattga gttcatcaag cccatccttg agaagatgga cagagaggac ctgttgagga agcagagaac ccacctggga gagctccacg ccatcttgag ggacaaccgc gagaagattg agaagatctt actcgccaga ggaaactcta ggttcgcctg tccctggaac ttcgaggaag tcgtggacaa gatgaccaac ttcgataaaa atctgcccaa gtacgagtat ttcacagtgt acaacgagct gaggaagcct gccttcttgt ccggagagca gaccaacagg aaggtgactg tcaagcagct cttcgactcc gtcgagatct ctggtgtcga ccacgatctg ctcaagatta ttaaagacaa catccttgag gacatcgtgc tcaccctgac gaggctcaag acctacgccc acctcttcga cagatatacc ggctggggaa ggctctcccg gtcagggaag actatactcg acttcctgaa gcagctcatt cacgacgact ccttgacctt tggacagggt gactccttgc atgagcacat gaagggcatt ttgcagaccg tgaaggtcgt aacatcgtta ttgagatggc cgcgagagga tgaagcgcat gagcaccecg tcgagaacac aacggaaggg acatgtacgt gtcgaccaca tcgtgcctca acacgctccg ataaaaatag aagatgaaaa actactggag gacaacctga ctaaggctga aagagacagc tcgtcgaaac cgcatgaaca ccaagtacga ttgaagtcca agctggtctc atcaacaact accaccacgc atcaaaaaat atcctaagct gtgaggaaga tgatcgctaa ttctactcca acatcatgaa aggaagcgcc cactgatcga agggatttcg ctactgtgag accgaagttc agaccggagg aagctgatcg ctagaaagaa accgtggcct actctgtgct aaatccgtca aggagctcct cctatcgact tcctggaggc ctgcccaagt actccctctt ggagagttgc agaagggaaa ctcgcctctc actatgaaaa ttcgtggagc agcacaagca aagcgcgtga tattggccga agggataagc ccattcgcga ttgggagccc ctgctgcctt tccaccaagg aggtgctcga acaaggattg acttgtccca aaggtgaaga gaccacggga taggttaacc tagacttgtc aaggatgcac acatagtgac tgtgtaatta ctagttatct atgaatgtca cgtgtcttta catatacata taaatattaa tagtctaggt gtgttttgc
<210> 422
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 422
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa
gaggcaggag gatttctatc cettcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gggcgettcc getcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctccco caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact cottgacctt caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat tgaggagggc ataaaagagc ttggctctca g tcagctgcag a ggaccaggag ctggacatca acaggttgtc c gtccttcctg aaggatgact ccatcgacaa ta aggcaagtcc gacaacgtcc c acagctcttg aacgccaagc t gagaggagga ttgtccgagc ccgccaaatt accaagcacg tgaaaatgac aagctgatcc cgacttccgc aaggacttcc acacgacgcc tacctcaacg ggagtctgag ttcgtctacg gtctgagcag gagatcggca cttcttcaag accgagatca gaaggtgctc tccatgcctc aggtgaacat attctccaag gagtccatcc t agactgggac ggtcgtggcc aaggtggaga agggcaagtc cgggattacc atcatggaga g caagggatat aaagaggtga a cgagttggag aacggaagga tgagctcgcc cttccctcca gttgaagggc t ctacctggac gaaattatcg cgccaacctc gacaaggtgc gcaggctgaa aacattatcc caagtacttc gacaccacca cgcaacactc atccaccaat gctgggaggc gactctagag ccgccacgat ggcgagctgg ga catcttctgg attggccaac atgctaatca ctataatgtg gaataaaaga gaaagagatc tatcelta

```
<210> 423
<211> 6599
<212> DNA
<213> Artificial
```

<220>

```
<223> Artificial Sequence
<400>423
```

ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc

$$
180
$$

gaagaaggce atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct 3780 gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacctt caaggaggac atccagaagg ctcaggtgtc t tgctaacttg gccggctctc ccgctattaa g tgacgagctc gtgaaggtga tgggacgcca ca tcgcgagaac caaactaccc agaaagggca tgaggagggc ataaaagagc ttggctctca tcagctgcag aacgagaagc tgtacctgta ggaccaggag ctggacatca acaggttgtc gtccttcctg aaggatgact ccatcgacaa ta aggcaagtcc gacaacgtcc cctccgagga acagctcttg aacgccaagc tcatcaccca gagaggagga ttgtccgagc tcgataaggc ccgccaaatt accaagcacg tggcccaaat tgaaaatgac aagctgatcc gcgaggtcaa cgacttccgc aaggacttcc agttctacaa acacgacgcc tacctcaacg ctgtcgttgg ggagtctgag ttcgtctacg gcgactacaa gtctgagcag gagatcggca aggccaccgc cttcttcaag accgagatca ctctcgccaa gaccaacggt gagactggag agatcgtgtg gaaggtgctc tccatgcctc aggtgaacat c attctccaag gagtccatcc tccccaagag a agactgggac cctaagaagt acggaggctt ggtcgtggcc aaggtggaga agggcaagtc cgggattacc atcatggaga ggagttcctt caagggatat aaagaggtga agaaggacct cgagttggag aacggaagga agaggatgct g tgagctcgcc cttccctcca agtacgtgaa gttgaagggc tctcctgagg acaacgagca ga ctacctggac gaaattatcg agcagatctc t cgccaacctc gacaaggtgc tgtccgccta gcaggctgaa aacattatcc acctgtttac caagtacttc gacaccacca ttgacaggaa g cgcaacactc atccaccaat ccatcaccgg gctgggaggc gactctagag ccgatcccaa ccgccacgat ggcgagctgg gaggccgcaa catcttctgg attggccaac ttaattaatg atgctaatca ctataatgtg ggcatcaaag gaataaaaga gaaagagatc atccatattt taattctttg atgaaccaga tgcatttcat tcatatataa ttaatatcaa ttgggttagc aaacaaatc tagtctaggt gtgttttgc

```
<210>424
<211> }659
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
```

<400> 424
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta ..... 60
cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc ..... 120
tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt ..... 180
catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa ..... 240
atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac ..... 300

EP 3191595 B1
taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag atgcacaaca acaaagcttg attatgtatg atgcaagttg ttttagagct agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat ttttaatcag gctcctgatt tctttttatt tcgattgaat tcctgaactt gtattattca gtagatcgaa taaattataa aaagataaaa tcataaaata atattttatc ctatcaatca tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaaat catataggtt tagtattttt ttaaaaataa agataggatt agttttacta ttcactgctt attactttta aaaaaatcat aaaggtttag tattttttta aaataaatat aggaatagtt ttactattca ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcgt cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg aaatcaaatc gctcaaacca caaaaagaa caacgcgttt gttacacgct caatcccacg cgagtagagc acagtaacct tcaaataagc gaatggggca taatcagaaa tccgaaataa acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct agttttcgtt atcactctgt gctccctcgc tctatttctc agtctctgtg tttgcggctg aggattccga acgagtgacc ttcttcgttt ctcgcaaagg taacagcctc tgctcttgtc tcttcgattc gatctatgcc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca tatctggatc cagcaaaggc g gaaattttgt tattggtaaa c tttggctttg tgatagttta a gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgec gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggce ctggtgagac agcagctgcc cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga
cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgectg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccotgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg
caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa 4140 gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacctt 4200 caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat 4260 tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt 4320 tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc 4380 tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat 4440 tgaggagggc ataaaagagc ttggctctca gatcctcaag gagcaccccg tcgagaacac 4500 tcagctgcag aacgagaagc tgtacctgta ctacctccaa aacggaaggg acatgtacgt ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcctca 4560 4620 tccttcctg aaggatgact

```
<210>425
<211> }659
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>425
```

| ccgggtgtga | tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta | 60 |
| :--- | :--- | :--- | :--- | :--- |
| cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc | 120 |  |
| tttaataaaa ggaagaaaaa aacaaacaa aaaataggtt gcaatggggc agagcagagt | 180 |  |
| catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa | 240 |  |
| atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac | 300 |  |
| taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct | 360 |  |
| cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag | 420 |  |
| atgcacaaca acaaagcttg accaaaggca cgtacgtaag ttttagagct agaaatagca | 480 |  |
| agttaaaata aggctagtcc gttatcaact tgaaaagtg gcaccgagtc ggtgctttt | 540 |  |
| tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat | 600 |  |
| tttaatcag gctcctgatt tcttttatt tcgattgaat tcctgaactt gtattattca | 660 |  |

gtagatcgaa taaattataa aaagataaaa tcataaaata atattttatc ctatcaatca
720 tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaat catataggtt 780 tagtattttt ttaaaataa agataggatt agttttacta ttcactgctt attactttta 840 aaaaatcat aaaggtttag tattttttta aaataaatat aggaatagtt ttactattca 900 ctgctttaat agaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg 960 tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcgt 1020 cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg aaatcaaatc gctcaaacca caaaaaagaa caacgcgttt gttacacgct caatcccacg cgagtagagc acagtaacct tcaaataagc gaatggggca taatcagaaa tccgaaataa acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaatc taggaaccct agttttcgtt atcactctgt gctccctcgc tctatttctc agtctctgtg tttgcggctg aggattccga acgagtgacc ttcttcgttt ctcgcaaagg taacagcctc tgctcttgtc tcttcgattc gatctatgcc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca tatctggatc cagcaaaggc gattttttaa ttccttgtga aacttttgta atatgaagtt gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa ttgattctag tttaagtaat ccatggcacc gaagaagaag cgcaaggtga tggacaaaaa gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga ctctaccgac aaggctgact tgcgettgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca ac gcagttgtct aaagacacct a ccaatacgcc gatctcttcc t catcctgaga gtcaacactg a ctacgacgag caccaccaag a cgagaagtac aaggagatct t cggaggcgcc tcccaggaag ag cggtaccgag gagctgttgg $t$
cttcgacaac ggaagcatcc gaggcaggag gatttctatc c gaccttcaga attccttact a gatgacccgc aaatctgaag a gggcgcttcc gctcagtctt t cgagaaggtg ctgcccaagc a caccaaggtg aagtacgtca
gaagaaggcc atcgtcgacc t gaaggaggac tacttcaaga a ggacaggttc aacgcctccc t ggacttcctg gacaacgagg a cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacctt caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat

1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440

<210> 426
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 426

cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg
1080 aaatcaaatc gctcaaacca caaaaagaa caacgcgttt gttacacgct caatcccacg cgagtagagc acagtaacct tcaaataagc gaatggggca taatcagaaa tccgaaataa acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct agttttcgtt atcactctgt gctccctcgc tctatttctc agtctctgtg tttgcggctg aggattccga acgagtgacc ttcttcgttt ctcgcaaagg taacagcctc tgctcttgtc tcttcgattc gatctatgcc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca tatctggatc cagcaaaggc gattttttaa ttccttgtga aacttttgta atatgaagtt gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa ttgattctag tttaagtaat ccatggcacc gaagaagaag cgcaaggtga tggacaaaaa gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac t ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc g catcctgaga gtcaacactg agattaccaa agctcctctg t
ctacgacgag caccaccaag atctgaccct gctcaaggcc ctacgacgag caccaccaag atctgaccet gctcaaggcc
cgagaagtac aaggagatct tttcgacca gtccaagaac cggaggcgec tcccaggaag agttctacaa gttcatcaag co cggtaccgag gagctgttgg tgaagttgaa cagagaggac c cttcgacaac ggaagcatcc ctcaccaaat ccacctggga g gaggcaggag gatttctatc ccttcctgaa ggacaaccgc g gaccttcaga attccttact acgtcgggcc actcgccaga g gatgacccgc aaatctgaag agaccattac tccctggaac t gggcgcttcc gctcagtctt tcatcgagag gatgaccaac t cgagaaggtg ctgcccaagc actccctgtt gtacgagtat t caccaaggtg aagtacgtca cagagggaat gaggaagcct g gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg a gaaggaggac tacttcaaga agatcgagtg cttcgactcc g ggacaggttc aacgcctccc ttgggactta ccacgatctg c ggacttcctg gacaacgagg agaacgagga catccttgag g cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag a cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg caaattgatc aacgggatca gggacaagca gtcagggaag a gtccgacgga ttcgccaaca ggaacttcat gcagctcatt ca caaggaggac atccagaagg ctcaggtgtc tggacagggt g tgctaacttg gccggctctc ccgctattaa gaagggcatt t tgacgagctc gtgaaggtga tgggacgcca caagccagag a
tcgcgagaac caaactacc a agaagggca gaagaattcc tgaggagggc ataaaagagc ttggctctca gatcctcaag g tcagctgcag aacgagaagc tgtacctgta ctacctccaa a ggaccaggag ctggacatca acaggttgtc cgactacgac g gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaatag aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga
gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ..... 4860

ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga ..... 4920
tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc ..... 4980
cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc ..... 5040

acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaat atcctaagct ..... 5100 ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa5160
gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa ..... 5220

cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga ..... 52805340 gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag 5340 gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg 5400 attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa 5460 agactgggac cctaagaagt acggaggctt cgattctcct accgtggcct actctgtgct 5520 ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct 5580 cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc 5640 caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt 5700 cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa 5760 tgagctcgcc cttccctcca agtacgtgaa cttcctgtac ctcgcctctc actatgaaaa 5820 gttgaagggc tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca 5880 ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga 5940 cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgcga 6000 gcaggctgaa aacattatcc acctgtttac cctcacaaac ttgggagccc ctgctgcctt 6060 caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga 6120 cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca 6180 gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga 6240 ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc 6300 catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac 6360 atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct 6420 gaataaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta 6480 taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa 6540 tcatatataa ttaatatcaa ttgggttagc aaacaaatc tagtctaggt gtgttttgc

```
<210>427
<211> }659
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>427
```


tcttcgattc gatctatgcc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt
1440 ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa 1620 catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc 1680 tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta 1740 acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata 1800 gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca 1860 tatctggatc cagcaaaggc gattttttaa ttccttgtga aacttttgta atatgaagtt 1920 gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa ttgattctag tttaagtaat ccatggcacc gaagaagaag cgcaaggtga tggacaaaaa gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc attcctggtg gaggaggata aaagcacga gagacaccca atcttcggga acatcgtcga cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgec gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggcc ctggtgagac agcagctgcc cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgecg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacctt caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat tgaggagggc ataaaagagc ttggctctca gatcctcaag gagcaccccg tcgagaacac tcagctgcag aacgagaagc tgtacctgta ctacctccaa aacggaaggg acatgtacgt ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcctca gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaatag aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa

1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160

|  |  | 5220 |
| :---: | :---: | :---: |
| cttca | accgagatca ctctcgccaa cggtgagatc aggaagcgec cactgatcga | 5280 |
|  | gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag | 5340 |
| aget | tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg | 5400 |
|  | gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa | 5460 |
| gactggg | cctaagaagt acggaggctt cgattctcct accgtggcet actctgtgct | 5520 |
| gtcgtgg | aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct | 5580 |
| gggatta | atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc | 5640 |
| agggata | aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt | 5700 |
| agttgga | aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa | 5760 |
| gagctcg | cttccctcca agtacgtgaa cttcctgtac ctcgectctc actatgaaaa | 5820 |
| tgaaggg | tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca | 5880 |
| cctgg | gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga | 5940 |
| gccaacc | gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgega | 6000 |
| caggctg | aacattatcc acctgtttac cctcacaaac ttgggagccc ctgctgcctt | 6060 |
| aagtact | gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga | 6120 |
| gcaacac | atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca | 6180 |
| ctgggagg | gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga | 6240 |
| cgccacgat | ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc | 6300 |
| atcttct | attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac | 6360 |
| gctaat | ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct | 6420 |
| taaa | gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta | 6480 |
| ttc | atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa | 6540 |
| tatat | ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc | 6599 |

```
<210>428
```

<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 428
ccgggtgtga tttagtataa agtgaagtaa tggtcaaag aaaaagtgta aaacgaagta cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc120 tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt 180 catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa 240 atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac 300 taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct 360 cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag 420 atgcacaaca acaaagcttg atgtagtacc acactaactg ttttagagct agaaatagca 480 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 540 tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat 600 ttttaatcag gctcctgatt tctttttatt tcgattgaat tcctgaactt gtattattca 660 gtagatcgaa taaattataa aagataaaa tcataaaata atattttatc ctatcaatca 720 tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaaat catataggtt $\quad 780$ tagtattttt ttaaaataa agataggatt agttttacta ttcactgctt attactttta 840 aaaaaatcat aaaggtttag tattttttta aaataaatat aggaatagtt ttactattca 900 ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg 960 tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcgt 1020 cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg aaatcaaatc gctcaaacca caaaaaagaa caacgcgttt gttacacgct caatcccacg cgagtagagc acagtaacct tcaaataagc gaatggggca taatcagaaa tccgaaataa acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct agttttcgtt atcactctgt gctccctcgc tctatttctc agtctctgtg tttgcggctg aggattccga acgagtgacc ttcttcgttt ctcgcaaagg taacagcctc tgctcttgtc tcttcgattc gatctatgcc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta
acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata 1800 gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca 1860 tatctggatc cagcaaaggc gattttttaa ttccttgtga aacttttgta atatgaagtt 1920 gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta 1980 tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa 2040 ttgattctag tttaagtaat ccatggcacc gaagaagaag cgcaaggtga tggacaaaaa 2100 gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga 2160 gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa 2220 gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct 2280 caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggcc ctggtgagac agcagctgcc cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga g gaggcaggag gatttctatc ccttcctgaa ggacaaccgc g gaccttcaga attccttact acgtcgggcc actcgccaga g gatgacccgc aaatctgaag agaccattac tccctggaac t gggcgcttcc gctcagtctt tcatcgagag gatgaccaac t cgagaaggtg ctgcccaagc actccctgtt gtacgagtat t caccaaggtg aagtacgtca cagagggaat gaggaagcct g gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg a gaaggaggac tacttcaaga agatcgagtg cttcgactcc g ggacaggttc aacgcctccc ttgggactta ccacgatctg c ggacttcctg gacaacgagg agaacgagga ca cttgttcgaa gacagggaaa tgatcgaaga ga
cgacaaggtg atgaaacagc tgaagagacg tgaagagacg cagatatacc caaattgatc aacgggatca gggacaagca gtcagggaag a gtccgacgga ttcgccaaca ggaacttcat gcagctcatt c caaggaggac atccagaagg ctcaggtgtc tggacagggt g tgctaacttg gccggctctc ccgctattaa gaagggcatt t
tgacgagctc gtgaaggtga tgggacgcca caagccagag a tcgegagaac caaactaccc agaaagggca gaagaattcc c tgaggagggc ataaaagagc ttggctctca gatcctcaag g tcagctgcag aacgagaagc tgtacctgta ctacctccaa a ggaccaggag ctggacatca acaggttgtc cgactacgac g gtccttcctg aaggatgact ccatcgacaa taaagtgctg a aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag a acagctcttg aacgccaagc tcatcaccca gcgtaagttc g
gagaggagga ttgtccgagc tcgataaggc cggattcatc a ccgccaaatt accaagcacg tggcccaaat tctggattcc c tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc t cgacttccgc aaggacttcc agttctacaa ggtgagggag a acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc a ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac g gtctgagcag gagatcggca aggccaccgc caagtacttc t cttcttcaag accgagatca ctctcgccaa cggtgagatc a gaccaacggt gagactggag agatcgtgtg ggacaaaggg a gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa agactgggac cctaagaagt acggaggctt cgattctcct accgtggcct actctgtgct

|  |  | 5580 |
| :---: | :---: | :---: |
| gat | atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc | 5640 |
| ggga | aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt | 5700 |
| 硣 | aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa | 5760 |
| gagctcgc | cttccctcca agtacgtgaa cttcctgtac ctcgcctctc actatgaaaa | 5820 |
|  | tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca | 5880 |
| acctgga | gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga | 5940 |
| gccaac | gacaaggtgc tgtccgceta caacaagcac agggataagc ccattcgega | 6000 |
| aggctg | aacattatcc acctgtttac cctcacaaac ttgggagccc ctgctgcctt | 6060 |
| aagtac | gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga | 6120 |
| caacac | atccaccaat ccatcaccgg cotctatgaa acaaggattg acttgtccca | 6180 |
| tgggag | gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga | 6240 |
| ccacg | ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc | 6300 |
| tcttct | attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac | 6360 |
| gct | ataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct | 6420 |
| gaataaaag | t cttatcctaa atgaatgtca cgtgtcttta | 6480 |
| taattctt | gaaccaga tgcatttcat taaccaaatc catatacata taaatattaa | 6540 |
| catat |  | 6599 |

```
<210>429
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 429
```


gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga
2160 gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa 2220 gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct 2280 caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga 2340 gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc 2400 attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga 2460 cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga 2520 ctctaccgac aaggctgact tgcgettgat ttacctggct ctcgctcaca tgataaagtt 2580 ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct 2640 cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccet gctcaaggce ctggtgagac agcagctgce cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgecg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact cettgacctt caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat tgaggagggc ataaaagagc ttggctctca gatcctcaag gagcaccccg tcgagaacac tcagctgcag aacgagaagc tgtacctgta ctacctccaa aacggaaggg acatgtacgt ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcctca gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaatag aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa agactgggac cctaagaagt acggaggctt cgattctcct accgtggcct actctgtgct ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa tgagctcgcc cttccctcca agtacgtgaa cttcctgtac ctcgcctctc actatgaaaa gttgaagggc tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca

2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880

| ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga | 5940 |
| :--- | :--- | :--- |
| cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgcga | 6000 |
| gcaggctgaa aacattatcc acctgtttac cctcacaaac ttgggagccc ctgctgcctt | 6060 |
| caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga | 6120 |
| cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca | 6180 |
| gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga | 6240 |
| ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc | 6300 |
| catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac | 6360 |
| atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct | 6420 |
| gaataaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta | 6480 |
| taattcttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa | 6540 |
| tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc | 6599 |

```
<210>430
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>430
```

ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta 60 cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc 120 tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt 180 catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa 240 atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac 300 taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct 360 cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag 420 atgcacaaca acaaagcttg ttattggaga gtactttgcg ttttagagct agaaatagca 480 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 540 tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat 600 ttttaatcag gctcctgatt tctttttatt tcgattgaat tcctgaactt gtattattca 660 gtagatcgaa taaattataa aagataaaa tcataaaata atattttatc ctatcaatca 720 tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaat catataggtt 780 tagtattttt ttaaaaataa agataggatt agttttacta ttcactgctt attactttta 840 aaaaatcat aaaggtttag tattttttta aaataaatat aggaatagtt ttactattca 900 ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg 960 tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcg cataatatcg ccaaatgcca aaatcaaatc gctcaaacca ca cgagtagagc acagtaacct t acctaggggc attatcggaa agttttcgtt atcactctgt aggattccga acgagtgacc t tcttcgattc gatctatgcc t ttatttatgc tttatgctgt t gttttttagg attcttttgg t ggtgtgttgg aggtgaatct catgcgactt tgtatgattt tgttgagaca gaaccatgat acaggattaa aagtttttta gtttttttgt gggtttgttc tatctggatc cagcaaaggc gaaattttgt tattggtaaa tttggctttg tgatagttta ttgattctag tttaagtaat gtactcaata gggctcgaca t gtacaaggtg ccctccaaga gaagaatttg atcggtgccc caagaggacc gctagaaggc gatcttctcc aacgagatgg ccaaggtgga attcctggtg gaggaggata a
atgtcgttac a actggactac g caaaaaagaa caacgcgttt gttacacgct caatcccacg tcaaataagc gaatggggca taatcagaaa tccgaaataa atgaaaagta gctcactcaa tataaaaatc taggaaccct gctccctcgc tctatttctc agtctctgtg tttgcggctg ttcttcgttt ctcgcaaagg taacagcctc tgctcttgtc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca tttttgaatc gattaatcgg aagagatttt cgagttattt tttttttgag gtcatagatc tgttgtattt gtgttataaa tttacgaggt tatgatgttc tggttgtttt attatgaatc ttttgttgat gttcgtttac actattaaag gtttgtttta agcatgttga aggagtcttg tagatatgta accgtcgata acatgttatc aagcttaatc ttttactatg tatgcgacca ttccttgtga aacttttgta atatgaagtt gtgaagttgg agtatacctt taccttctta attttgagtt ctgacttgta tttctttgaa gaagaagaag cgcaaggtga tggacaaaaa ctccgttgga tgggccgtca tcaccgacga gttgggaaac accgacaggc acagcataaa ctccggagag accgctgagg ctaccaggct aaggaagaac agaatctgct acctgcagga cgactccttc ttccaccgcc ttgaggaatc gagacaccca atcttcggga acatcgtcga

EP 3191595 B1
cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga
2520 ctctaccgac aaggctgact tgcgettgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgec gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggcc ctggtgagac agcagctgcc cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacctt caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat tgaggagggc ataaaagagc ttggctctca gatcctcaag gagcaccccg tcgagaacac tcagctgcag aacgagaagc tgtacctgta ctacctccaa aacggaaggg acatgtacgt ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcctca gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaatag aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa agactgggac cctaagaagt acggaggctt cgattctcct accgtggcct actctgtgct ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa tgagctcgcc cttccctcca agtacgtgaa cttcctgtac ctcgcctctc actatgaaaa gttgaagggc tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgcga gcaggctgaa aacattatcc acctgtttac cctcacaaac ttgggagccc ctgctgcctt caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga

2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060
6120
6180
6240

```
ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc
catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac
atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct
gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta
taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa
tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc
<210>431
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>431
```

ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt catcatgaag ctagaaaggc taccgataga taactatag ttaattaaat acattaaaa atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag atgcacaaca acaaagcttg tgagatgtgg tgcgtacgtg ttttagagct agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat ttttaatcag gctcctgatt t gtagatcgaa taaattataa tattaaagca atgaatatgt tagtattttt ttaaaataa aaaaaatcat aaaggtttag ta ctgctttaat agaaaaatag t tttgaacgtg agccgaaacg cataatatcg ccaaatgcca aaatcaaatc gctcaaacca cgagtagagc acagtaacct acctaggggc attatcggaa agttttcgtt atcactctgt aggattccga acgagtgacc tcttcgattc gatctatgcc t ttatttatgc tttatgctgt t gttttttagg attcttttgg ggtgtgttgg aggtgaatct catgcgactt tgtatgattt tgttgagaca gaaccatgat acaggattaa aagtttttta gtttttttgt gggtttgttc tatctggatc cagcaaaggc gaaattttgt tattggtaaa tttggctttg tgatagttta ttgattctag tttaagtaat gtactcaata gggctcgaca gtacaaggtg ccctccaaga gaagaatttg atcggtgccc caagaggacc gctagaaggc gatcttctcc aacgagatgg attcctggtg gaggaggata cgaggtggcc taccatgaaa ctctaccgac aaggctgact ccgcggacac ttcctcattg a cttcatccag ctcgttcaga tggagttgac gccaaggcta cttgattgcc cagctgcctg
tctttttatt tcgattgaat tcctgaactt gtattattca aaagataaaa tcataaata atattttatc ctatcaatca aaaattaatc ttatctttat tttaaaaat catataggtt ttcactgctt attactttta aggaatagtt ttactattca taatcccagc atttgccacg cctagctgaa acgatgtcgt caaatcccac aaagcgcgtg gttacacgct caatcccacg taatcagaaa tccgaaataa tataaaaatc taggaaccct agtctctgtg tttgcggctg taacagcctc tgctcttgtc gtttcttcgg ttatgttttt cgctttgttt ttgtggttca aagagatttt cgagttattt tgttgtattt gtgttataaa tggttgtttt attatgaatc actattaaag gtttgtttta tagatatgta accgtcgata ttttactatg tatgcgacca aacttttgta atatgaagtt agtatacctt taccttctta ctgacttgta tttctttgaa cgcaaggtga tggacaaaaa tgggccgtca tcaccgacga accgacaggc acagcataaa accgctgagg ctaccaggct agaatctgct acctgcagga ttccaccgcc ttgaggaatc atcttcggga acatcgtcga ctgaggaaga agctggtcga ctcgctcaca tgataaagtt aactccgacg tggacaagct gagaacccaa tcaacgccag aagtccagga ggcttgagaa ttcggaaact tgatcgctct
ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt
2880 gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggcc ctggtgagac agcagctgcc cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag a cgacaaggtg atgaaacagc tgaagagacg cagatatacc g caaattgatc aacgggatca gggacaagca gtcagggaag a gtccgacgga ttcgccaaca ggaacttcat gcagctcatt can caaggaggac atccagaagg ctcaggtgtc tggacagggt tgctaacttg gccggctctc ccgctattaa gaagggcatt t tgacgagctc gtgaaggtga tgggacgcca caagccagag a tcgcgagaac caaactaccc agaaagggca gaagaattcc c tgaggagggc ataaaagagc ttggctctca gatcctcaag g tcagctgcag aacgagaagc tgtacctgta ctacctccaa a ggaccaggag ctggacatca acaggttgtc cgactacgac g gtccttcctg aaggatgact ccatcgacaa taaagtgctg a
aggcaagtcc gacaacgtcc cetccgagga ggtcgtgaag a acagctcttg aacgccaagc tcatcaccca gcgtaagttc ga gagaggagga ttgtccgagc tcgataaggc cggattcatc ccgccaaatt accaagcacg tggcccaaat tctggattcc c tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc t cgacttccgc aaggacttcc agttctacaa ggtgagggag a acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc a ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac g gtctgagcag gagatcggca aggccaccgc caagtacttc t cttcttcaag accgagatca ctctcgccaa cggtgagatc a gaccaacggt gagactggag agatcgtgtg ggacaaaggg a gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag a attctccaag gagtccatcc tccccaagag aaactccgac a ggtcgtggcc aaggtggaga agggcaagtc caagaagctg a cgggattacc atcatggaga ggagttcctt cgagaagaac c caagggatat aaagaggtga agaaggacct catcatcaag c cgagttggag aacggaagga agaggatgct ggcttctgcc g tgagctcgcc cttccctcca agtacgtgaa cttcctgtac c gttgaagggc tctcctgagg acaacgagca gaagcagctc t ctacctggac gaaattatcg agcagatctc tgagttctcc a cgccaacctc gacaaggtgc tgtccgccta caacaagcac a gcaggctgaa aacattatcc acctgtttac cctcacaaac t caagtacttc gacaccacca ttgacaggaa gagatacacc t cgcaacactc atccaccaat ccatcaccgg cctctatgaa a
gctgggagge gactctagag ccgatcccaa gaagaagaga ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg t catcttctgg attggccaac ttaattaatg tatgaaataa a atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta t gaataaaaga gaaagagatc atccatattt cttatcctaa a taattctttg atgaaccaga tgcatttcat taaccaaatc catat tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc
<210> 432
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 432
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaagtgta aaacgaagta cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc 120 tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa 180 catcatgaag ctagaaaggc ta atacttggat ctttctctta
taatcttgcc ttgttgtttc cgttccccat ttaagtccca atgcacaaca acaaagcttg agttaaaata aggctagtcc tttgcggccg caattggatc ttttaatcag gctcctgatt gtagatcgaa taaattataa tattaaagca atgaatatgt tagtattttt ttaaaaataa aaaaatcat aaaggtttag ctgctttaat agaaaaatag tttgaacgtg agccgaaacg cataatatcg ccaaatgcca aaatcaaatc gctcaaacca cgagtagagc acagtaacct acctagggge attatcggaa agttttcgtt atcactctgt aggattccga acgagtgacc tcttcgattc gatctatgcc ttatttatgc tttatgctgt gttttttagg attcttttgg ggtgtgttgg aggtgaatct catgcgactt tgtatgattt tgttgagaca gaaccatgat acaggattaa aagtttttta gtttttttgt gggtttgttc tatctggatc cagcaaaggc gaaattttgt tattggtaaa tttggctttg tgatagttta ttgattctag tttaagtaat gtactcaata gggctcgaca gtacaaggtg ccctccaaga gaagaatttg atcggtgccc t caagaggacc gctagaaggc gatcttctcc aacgagatgg attcctggtg gaggaggata cgaggtggcc taccatgaaa ctctaccgac aaggctgact t ccgcggacac ttcctcattg a cttcatccag ctcgttcaga tggagttgac gccaaggcta cttgattgcc cagctgcctg ctccctggga ttgactccca gcagttgtct aaagacacct ccaatacgcc gatctcttcc catcctgaga gtcaacactg ctacgacgag caccaccaag cgagaagtac aaggagatct
cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc cettcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg ggacaggttc aacgcctccc ttgggactta ggacttcctg gacaacgagg agaacgagga cttgttcgaa gacagggaaa tgatcgaaga cgacaaggtg atgaaacagc tgaagagacg caaattgatc aacgggatca gggacaagca gtccgacgga ttcgccaaca ggaacttcat caaggaggac atccagaagg ctcaggtgtc tgctaacttg gccggctctc ccgctattaa tgacgagctc gtgaaggtga tgggacgcca tcgcgagaac caaactaccc agaaagggca tgaggagggc ataaaagagc ttggetctca tcagctgcag aacgagaagc tgtacctgta ggaccaggag ctggacatca acaggttgtc gtccttcctg aaggatgact ccatcgacaa aggcaagtcc gacaacgtcc cctccgagga acagctcttg aacgccaagc tcatcaccca gagaggagga ttgtccgagc tcgataaggc ccgccaaatt accaagcacg tggcccaaat tgaaaatgac aagctgatcc gcgaggtcaa cgacttccgc aaggacttcc agttctacaa acacgacgcc tacctcaacg ctgtcgttgg ggagtctgag ttcgtctacg gcgactacaa gtctgagcag gagatcggca aggccaccgc cttcttcaag accgagatca ctctcgccaa gaccaacggt gagactggag agatcgtgtg gaaggtgctc tccatgcctc aggtgaacat attctccaag gagtccatcc tccccaagag agactgggac cctaagaagt acggaggctt ggtcgtggcc aaggtggaga agggcaagtc cgggattacc atcatggaga ggagttcctt caagggatat aaagaggtga agaaggacct ca cgagttggag aacggaagga agaggatgct tgagctcgcc cttccctcca agtacgtgaa gttgaagggc tctcctgagg acaacgagca ctacctggac gaaattatcg agcagatctc cgccaacctc gacaaggtgc tgtccgccta gcaggctgaa aacattatcc acctgtttac caagtacttc gacaccacca ttgacaggaa cgcaacactc atccaccaat ccatcaccgg gctgggaggc gactctagag ccgatcccaa ccgccacgat ggcgagctgg gaggccgcaa catcttctgg attggccaac ttaattaatg atgctaatca ctataatgtg ggcatcaaag gaataaaaga gaaagagatc atccatattt taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa tcatatataa ttaatatcaa ttgggttagc aaacaaatc tagtctaggt gtgttttgc

[^2]<213> Artificial
<220>
<223> Artificial Sequence
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaagtgta aaacgaagta
gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa

3600
$<210>434$
$<211>6599$
$<212>$ DNA
$<213>$ Artificial
<223> Artificial Sequence
<400> 434
ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta 60 cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc120
tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt
180
240 catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac 300 taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct 360 cgttccccat ttaagtccca caccgtctaa acttattaaa t atgcacaaca acaaagcttg agttaaaata aggctagtcc tttgcggccg caattggatc ttttaatcag gctcctgatt t gtagatcgaa taaattataa a tattaaagca atgaatatgt a tagtattttt aaaaaatcat aaaggtttag t ctgctttaat agaaaaatag tttaaaattt aagatagttt tttgaacgtg agccgaaacg atgtcgttac attatcttaa cataatatcg ccaaatgcca actggactac gtcgaaccca aaatcaaatc gctcaaacca caaaaaagaa caacgcgttt cgagtagagc acagtaacct tcaaataagc gaatggggca t acctaggggc attatcggaa atgaaaagta gctcactcaa ta agttttcgtt atcactctgt gctccctcgc tctatttctc a aggattccga acgagtgacc ttcttcgttt ctcgcaaagg t tcttcgattc gatctatgcc tgtctcttat ttacgatgat g ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt gttttttagg attcttttgg t ggtgtgttgg aggtgaatct tt catgcgactt tgtatgattt t tgttgagaca gaaccatgat t acaggattaa aagtttttta a gtttttttgt gggtttgttc a tatctggatc cagcaaaggc g tttttaa ttccttgtga tttggctttg tgatagttta atttatatgt attttgagtt ttgattctag tttaagtaat ccatggcacc gaagaagaag gtactcaata gggctcgaca tagggactaa ctccgttgga t gtacaaggtg ccctccaaga agttcaaggt gttgggaaac a gaagaatttg atcggtgccc t caagaggacc gctagaaggc gatcttctcc aacgagatgg attcctggtg gaggaggata a cgaggtggcc taccatgaaa agtaccctac catctaccac ctctaccgac aaggctgact tgcgcttgat ttacctggct c ccgcggacac ttcctcattg agggagacct gaacccagac a cttcatccag ctcgttcaga cctacaacca gcttttcgag tggagttgac gccaaggcta tcctctctgc tcgtctgtca
cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ctccctggga ttgactccca acttcaagtc caacttcgac gcagttgtct aaagacacct acgacgatga cctcgacaac t ccaatacgcc gatctcttcc tcgecgctaa gaacttgtcc catcctgaga gtcaacactg agattaccaa agctcctctg t ctacgacgag caccaccaag atctgaccct gctcaaggcc c cgagaagtac aaggagatct ttttcgacca gtccaagaac g cggaggcgcc tcccaggaag agttctacaa gttcatcaag cggtaccgag gagctgttgg tgaagttgaa cagagaggac c cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gaggcaggag gatttctatc ccttcctgaa ggacaaccgc g gaccttcaga attccttact acgtcgggcc actcgccaga g gatgacccgc aaatctgaag agaccattac tccctggaac t gggcgcttcc gctcagtctt tcatcgagag gatgaccaac cgagaaggtg ctgcccaagc actccetgtt gtacgagtat t caccaaggtg aagtacgtca cagagggaat gaggaagcct gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa

420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac

3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 6180

```
<210>435
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>435
```

ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta ..... 60
cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc ..... 120
tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt ..... 180
catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa ..... 240
atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac ..... 300
taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct ..... 360
cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag ..... 420
atgcacaaca acaaagcttg gctttgtaca tgcctgcacg ttttagagct agaaatagca ..... 480
agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt
tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt
4320 tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc 4380 tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat 4440 tgaggagggc ataaaagagc ttggctctca gatcctcaag gagcaccccg tcgagaacac tcagctgcag aacgagaagc tgtacctgta ctacctccaa aacggaaggg acatgtacgt 4560 4500 ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcctca 4620 gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaatag aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag 4680 4740 acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga 4800 gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga 4860 4920 tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa agactgggac cctaagaagt acggaggctt cgattctcct accgtggcct actctgtgct ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa tgagctcgcc cttccctcca agtacgtgaa cttcctgtac ctcgcctctc actatgaaaa gttgaagggc tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgcga gcaggctgaa aacattatcc acctgtttac cctcacaace ttgggagccc ctgctgcctt caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga cgcaacactc atccaccaat ccatcaccgg gctgggaggc gactctagag ccgatcccaa ccgccacgat ggcgagctgg gaggccgcaa
catcttctgg attggccaac ttaattaatg t atgctaatca ctataatgtg ggcatcaaag t gaataaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc

## 4980

5040
5100

## 5160

5220
5280

## 5340

## 5400

5460
5520
5580

## 5640

5700
5760
5820
5880
5940
6000
6060
6120
6180
6240
6300
6360
6420
6480
6540
6599

```
<210>436
<211>6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>436
```

| ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta | 60 |
| :--- | :--- | :--- | :--- | :--- |
| cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc | 120 |
| tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt | 180 |
| catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa | 240 |
| atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac | 300 |
| taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct | 360 |
| cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag | 420 |
| atgcacaaca acaaagcttg tttggaaggc cccccgtgcg ttttagagct agaaatagca | 480 |
| agttaaaata aggctagtcc gttatcaact tgaaaagtg gcaccgagtc ggtgcttttt | 540 |
| tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat | 600 |
| tttaatcag gctcctgatt tcttttatt tcgattgaat tcctgaactt gtattattca | 660 |
| gtagatcgaa taaattataa aaagataaaa tcataaaata atattttatc ctatcaatca | 720 |
| tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaat catataggtt | 780 |
| tagtattttt ttaaaaataa agataggatt agttttacta ttcactgctt attactttta | 840 |

EP 3191595 B1
aaaaaatcat aaaggtttag tattttttta aaataaatat aggaatagtt ttactattca

900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgetccg ataaaaatag 4680 aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag 4740 acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga 4800 gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc 4980 acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaat atcctaagct 5100 ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa 5160 5220 cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga 5280 gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg 5340 5400 attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa 5460 agactgggac cctaagaagt acggaggctt cgattctcct accgtggcct actctgtgct ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct 5520 5580 cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc 5640 caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa tgagctcgcc cttccctcca agtacgtgaa cttcctgtac ctcgcctctc actatgaaaa 5700 5760 5820 gttgaagggc tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga 5880 5940 cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgcga 6000 gcaggctgaa aacattatcc acctgtttac cctcacaaac ttgggagccc ctgctgcctt caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga 6060 6120 cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca 6180 gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc 6240 6300 catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac 6360 atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta 6420 6480 taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa 6540 tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc

```
<210>437
<211> }659
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>437
```


acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct agttttcgtt atcactctgt gctccctcge tctatttctc agtctctgtg tttgcggctg 1320 aggattccga acgagtgacc ttcttcgttt ctcgcaaagg taacagcctc tgctcttgtc 1380 tcttcgattc gatctatgcc tgtctcttat ttacgatgat gtttcttcgg ttatgttttt ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta acaggattaa aagtttttta gtttttttgt gggtttgttc tatctggatc cagcaaaggc gaaattttgt tattggtaaa tttggctttg tgatagttta ttgattctag tttaagtaat gtactcaata gggctcgaca gtacaaggtg ccctccaaga gaagaatttg atcggtgccc caagaggacc gctagaaggc gatcttctcc aacgagatgg attcctggtg gaggaggata cgaggtggcc taccatgaaa ctctaccgac aaggctgact ccgcggacac ttcctcattg cttcatccag ctcgttcaga tggagttgac gccaaggcta cttgattgcc cagctgcctg ctccctggga ttgactccca gcagttgtct aaagacacct ccaatacgcc gatctcttcc catcctgaga gtcaacactg ctacgacgag caccaccaag cgagaagtac aaggagatct cggaggcgcc tcccaggaag cggtaccgag gagctgttgg cttcgacaac ggaagcatcc gaggcaggag gatttctatc gaccttcaga attccttact gatgaccogc aaatctgaag gggcgcttcc gctcagtctt cgagaaggtg ctgcccaagc caccaaggtg aagtacgtca gaagaaggcc atcgtcgacc gaaggaggac tacttcaaga ggacaggttc aacgcctccc ggacttcctg gacaacgagg cttgttcgaa gacagggaaa cgacaaggtg atgaaacagc caaattgatc aacgggatca gtccgacgga ttcgccaaca caaggaggac atccagaagg tgctaacttg gccggctctc tgacgagctc gtgaaggtga tcgcgagaac caaactaccc tgaggagggc ataaaagagc tcagctgcag aacgagaagc ggaccaggag ctggacatca gtccttcctg aaggatgact aggcaagtcc gacaacgtcc acagctcttg aacgccaagc gagaggagga ttgtccgagc ccgccaaatt accaagcacg t tgaaaatgac aagctgatcc

1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc

5040 5100 5160 5220 5280 5340 5400 5460 5520

```
<210> 438
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
```

<400>438
$\left.\begin{array}{llllll}\text { ccgggtgtga } & \text { tttagtataa } & \text { agtgaagtaa } & \text { tggtcaaaag } & \text { aaaaagtgta } & \text { aaacgaagta }\end{array}\right]=60$
ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa
1620 catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc 1680 tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta 1740 acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata 1800 gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca tatctggatc cagcaaaggc gattttttaa ttccttgtga aacttttgta atatgaagtt gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa ttgattctag tttaagtaat ccatggcacc gaagaagaag cgcaaggtga tggacaaaaa gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggce ctggtgagac agcagctgcc cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctccog caaattgatc aacgggatca gtccgacgga ttcgccaaca caaggaggac atccagaagg c tgctaacttg gccggctctc c tgacgagctc gtgaaggtga t tcgcgagaac caaactaccc ag tgaggagggc ataaaagagc t tcagctgcag aacgagaagc t ggaccaggag ctggacatca ac gtccttcctg aaggatgact c aggcaagtcc gacaacgtcc
acagctcttg aacgccaagc gagaggagga ttgtccgagc t ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag

1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340


```
<210>439
<211> }659
<212> DNA
<213> Artificial
```

<220>
<223> Artificial Sequence
<400> 439

gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta 1980 tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa 2040 ttgattctag tttaagtaat ccatggcacc gaagaagaag cgcaaggtga tggacaaaaa gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga 2160 gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa 2220 gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct 2280 caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga 2340 gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc 2400 attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga 2460 cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga 2520 ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt 2580 ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct 2640 cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag 2700 tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa 2760 cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct 2820 ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt 2880 gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga 2940 ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga 3000 catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg 3060 ctacgacgag caccaccaag atctgaccct gctcaaggce ctggtgagac agcagctgcc 3120 cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga 3180 cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga 3240 cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac 3300 cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag 3360 gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt 3420 gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgectg 3480 gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa 3540 gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa 3600 cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct 3660 caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca 3720 gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct 3780 gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga 3840 ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa 3900 ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac 3960 cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga 4020 cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg 4080 caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacctt caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat tgaggagggc ataaaagagc ttggctctca gatcctcaag gagcaccccg tcgagaacac tcagctgcag aacgagaagc tgtacctgta ctacctccaa aacggaaggg acatgtacgt ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcctca gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaatag aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgec tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa agactgggac cctaagaagt acggaggctt cgattctcct accgtggcct actctgtgct ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt

4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
$\left.\begin{array}{llllll}\text { cgagttggag } & \text { aacggaagga agaggatgct } & \text { ggcttctgcc } & \text { ggagagttgc agaagggaaa } & 5760 \\ \text { tgagctcgcc } & \text { cttccctcca } & \text { agtacgtgaa } & \text { cttcctgtac } & \text { ctcgcctctc } & \text { actatgaaaa }\end{array}\right) 5820$

```
<210>440
<211> 6599
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>440
```


caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga
2340 gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc 2400 attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga 2460 cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga 2520 ctctaccgac aaggctgact tgcgcttgat ttacctggct ctcgctcaca tgataaagtt ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct 2580
2640
2700
2760 tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg ctacgacgag caccaccaag atctgaccct gctcaaggce ctggtgagac agcagctgcc cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca gaagaaggcc atcgtcgacc tgctcttcaa gaccaacagg aaggtgactg tcaagcagct gaaggaggac tacttcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtcga ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtgc tcaccctgac cttgttcgaa gacagggaaa tgatcgaaga gaggctcaag acctacgccc acctcttcga cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctgaa gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacctt caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagcacat tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagaccg tgaaggtcgt tgacgagctc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttgagatggc tcgcgagaac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaagcgcat tgaggagggc ataaaagagc ttggctctca gatcctcaag gagcaccccg tcgagaacac tcagctgcag aacgagaagc tgtacctgta ctacctccaa aacggaaggg acatgtacgt ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcctca gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaatag aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactggag acagctcttg aacgccaagc tcatcaccca gcgtaagttc gacaacctga ctaaggctga gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaaac ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtacga tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtctc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccacgc acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaagct ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgctaa
gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatgaa cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatcga gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtgag gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccggagg attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaagaa agactgggac cctaagaagt acggaggctt cgattctcct accgtggcet actctgtgct ggtcgtggcc aaggtggaga agggcaagtc caagaagctg aaatccgtca aggagctcct cgggattacc atcatggaga ggagttcctt cgagaagaac cctatcgact tcctggaggc caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa tgagctcgcc cttccctcca agtacgtgaa cttcctgtac ctcgectctc actatgaaaa gttgaagggc tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc coattcgega gcaggctgaa aacattatcc acctgtttac cctcacaaac ttgggagccc ctgctgcctt

2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
3720
3780
3840
3900
3960
4020
4080
4140
4200
4260
4320
4380
4440
4500
4560
4620
4680
4740
4800
4860
4920
4980
5040
5100
5160
5220
5280
5340
5400
5460
5520
5580
5640
5700
5760
5820
5880
5940
6000
6060

```
caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga }612
cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca
gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga
ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc
catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac
atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct
gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta
taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa
tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>441
ggugcucguu cucgugagaa guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
<210>443
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>443
gccacuucau uuacucaacu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
```

```
<210>441
```

```
<210>441
```

gacgagcaca caugucgauu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc ..... 60 cguuaucaac uugaaaaagu ggcaccgagu cggugc ..... 96

```
<210>442
```

<210>442
<211> 96
<211> 96
<212> RNA
<212> RNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400> 442

```
<400> 442
```60
cguuaucaac uugaaaaagu ggcaccgagu cggugc ..... 96
```

<223> Artificial Sequence
<400>444

```
gacucaaagu cauauuuuuc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc ..... 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc ..... 96
```

<210>445
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>445

```
gucccuugua cuuguacgua guuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc96
```

<210>446
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>446

```
guauucuaga aaagaggaau guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
<210> 447
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 447
ggugcuaagc acgacaucca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
<210> 448
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
```

<400>448

```
gacgugaugc aucauagaug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc ..... 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc ..... 96
```

<210>449
<211> }9
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>449

```
gaggaaauga cuguggcaca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
<210>450
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 450
gacauggcac uguaacauca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
<210> 451
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 451
ggaacugaca cacgacauga guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210> 452
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 452
```

gacaugaugg aacgugacua guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc60

```
cguuaucaac uugaaaaagu ggcaccgagu cggugc ..... 96
```

<210>453

```
<210>453
<211> 96
<211> 96
<212> RNA
<212> RNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400>453
<400>453
gugugugagg uacacaauua guuuvagagc uagaaauagc aaguuaaaau aaggcuaguc 
<210> 454
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>454
guaauguacg unguugugug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210> 455
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>455
ggaaacuuuu gugagcaagu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
cguuaucaac uugaaaaagu ggcaccgagu cggugc
96
<210>456
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>456
```

```
ggaccaaaga cuucauuaau guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210> 457
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 457
ggcaacgaca augaagugca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60, 6
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210> 458
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>458
gccaugcacu cacauaaucg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210>459
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>459
gacacaauuu aguugccuga guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
96
<210>460
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>460
gaaauaaaag gccuauaaaa guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
cguuaucaac uugaaaaagu ggcaccgagu cggugc96
```

```
<210>461
<211> }9
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>461
luucagguug uuguacgaca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 
<210>462
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>462
gaugaagaca ugaaucauug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210>463
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>463
ggcaaguugg guuaugaaau guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }6
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210>464
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>464
gauuauguau gaugcaaguu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }6
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210>465
<211> 96
```

```
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>465
gaccaaaggc acguacguaa guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }6
cguuaucaac uugaaaaagu ggcaccgagu cggugc96
<210>466
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>466
ggccuuuacg uacgugccuu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210>467
<211> }9
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>467
gauagucauc cuaguuagug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }6
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210>468
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>468
gauguaguac cacacuaacu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }6
cguuaucaac uugaaaaagu ggcaccgagu cggugc
96
<210>469
<211> 96
<212> RNA
<213> Artificial
```

```
<220>
<223> Artificial Sequence
<400>469
```60
```

```
gcuguaacuu cugcacucac guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
```

gcuguaacuu cugcacucac guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
cguuaucaac uugaaaaagu ggcaccgagu cggugc
cguuaucaac uugaaaaagu ggcaccgagu cggugc
<210>470
<210>470
<211> 96
<211> 96
<212> RNA
<212> RNA
<213> Artificial
<213> Artificial
<220>
<220>
<223> Artificial Sequence
<223> Artificial Sequence
<400>470
<400>470
guuauuggag aguacuuugc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }6
cguuaucaac uugaaaaagu ggcaccgagu cggugc
<210>471
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>471
gugagaugug gugcguacgu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
<210>472
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>472
ggauucuuaa aaaagaucga guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
96
<210>473
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence

```
```

<400>473

```
gugcuauggu gcucguguaa guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96

<210> 474
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 474
gauccaagau auugagugau guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
```

<210>475
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>475

```
ggcuunguac augccugcac guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
<210> 476
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 476
guuuggaagg ceccecgugc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
96
<210> 477
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 477
```

gguuucguac aacaauggca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210>478
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>478
lugccauugu uguacgaaac guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc
<210>479
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>479
guauaugacu aggaaaauuc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc }6
cguuaucaac uugaaaaagu ggcaccgagu cggugc 96
<210>480
<211> 96
<212> RNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>480
gaauucgauu ggaccauuag guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugc
96
<210>481
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>481
gagaacgagc acacatgtcg at 22
<210>482

```
```

<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>482
ggtttagttt ggcgttggta aaa 23
<210>483
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>483
tggttcaat ctaagaatg 19
<210>484
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>484
aaccaaataa actccattct cacgag 26
<210>485
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>485
atctgccact tcatttactc aacttg 26
<210>486
<211> }3
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>486
tgtatggtgt caagtatgaa gtttatagtg a 31
<210>487
<211> 18
<212> DNA
<213> Artificial

```
```

<220>
<223> Artificial Sequence
<400>487
agcttctct catcaaaa 18
<210>488
<211> 29
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>488
tactacaact caaagtcata ttttcagg 29
<210>489
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>489
ttctagaata ccctccgtac gtacaa 26
<210>490
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>490
cccagatgat tctctttca ctattg 26
<210>491
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>491
caagggactt gtgagttgt 19
<210>492
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence

```
```

<400>492
aaagaagagg cagactccaa ttcctc 26
<210>493
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>493
tccatttgg ctgttctcca tggatg 26
<210>494
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>494
cacattgtcc cagtcacaga aag 23
<210>495
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>495
agatgcggta aattat 16
<210>496
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>496
acgtgatgca tcatagatgc gg 22
<210>497
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>497
agtgttctgg cacaaggttt acc 23

```
```

<210>498
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>498
ctcctccagt ggccac 16
<210>499
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400>499
tccctgaaat ttgtggttgg taa 23
<210> 500
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 500
tactaggaaa tgactgtggc ac 22
<210> 501
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 501
catggcgtaa cccgtgat 18
<210> 502
<211> 27
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 502
ccctttaag gaaaaaaact acgtcat 27
<210> 503
<211> 20
<212> DNA

```
```

<213> Artificial
<220>
<223> Artificial Sequence
<400> 503
acatggcact gtaacatcac 20
<210> 504
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 504
ccctgaaatt tgtggttgg 19
<210> 505
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 505
attcggaact gacacacgac at 22
<210>506
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 506
tcgacatgca aagtcaaaaa cc 22
<210> 507
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 507
atggaacgtg actaagg 17
<210> 508
<211> 27
<212> DNA
<213> Artificial
<220>

```
```

<223> Artificial Sequence
<400> 508
cgataacgag aaggagatac ataaggt 27
<210> 509
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 509
tgaacttctt catccccata attg 24
<210> 510
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 510
cgttgttgtg tgaggtac 18
<210> 511
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 511
ccaaaggcac gtacgtaaag g 21
<210> 512
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 512
ttgcaattgt gcactgtttt ttt 23
<210>513
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 513

```
```

agcacatgtt ctaatgaa 18
<210> 514
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 514
cacacacaaa aattaccaaa ggc 23
<210> 515
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 515
tttggtgtcc acagaatatt cga 23
<210> 516
<211> 28
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 516
cttaatgca ttgtttgga tagtcatc 28
<210> 517
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 517
agatgtagta ccacactaac ta 22
<210>518
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 518
ctgcactcac cggcaaagt 19
<210> 519

```
```

<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 519
acctctctat cccttcttc ttcgt 25
<210> 520
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 520
ctctccaata aagagaatag a 21
<210> 521
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 521
aagtgagatg tggtgcgtac gtagg 25
<210> 522
<211> 27
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 522
ggttgtggc tataacttga gagaatg 27
<210> 523
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 523
attcttaaaa aagatcgaag gac 23
<210> 524
<211> 22
<212> DNA
<213> Artificial

```
```

<220>
<223> Artificial Sequence
<400> 524
gaattcaggt cggatccaag at 22
<210> 525
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 525
gtgctatggt gctcgtgtaa gg 22
<210> 526
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 526
tgagtgatcg gagttc 17
<210> 527
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 527
caacaccaac accctttcta acag 24
<210>528
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 528
aaggcccccc gtgcagg 17
<210> 529
<211> 15
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence

```
```

<400> 529
agcatcaaaa ttggc 15
<210> 530
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 530
ccccggttc gtacaacaat ggca 24
<210> 531
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 531
catcctcgct actctctaag acaatg 26
<210> 532
<211> 16
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 532
cttgatctca attccg 16
<210> 533
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 533
aatctattat cccccggttt cg 22
<210> 534
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 534
ccctatatga ctaggaaaat tcagg 25

```
```

<210> 535
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 535
gctacatttg gttgggtcac ttg 23
<210> 536
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 536
tcggtcccta tgcctat 17
<210> 537
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 537
caggtacgga ccaccactaa tgg 23
<210> 538
<211> 27
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 538
gaaactttg tgagcaagta ggtagct 27
<210> 539
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 539
atggcaagaa caagaccaaa gac 23
<210> 540
<211> 21
<212> DNA

```
```

<213> Artificial
<220>
<223> Artificial Sequence
<400> 540
agagtcaaga ccaattaatg a 21
<210> 541
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 541
atgaagtgtg agtgggcaag tg 22
<210> 542
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 542
gtcctcaccg ccatgcact 19
<210>543
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 543
cgttcttcc acgattat 18
<210> 544
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 544
gcgttcttc cacgattatg tg 22
<210> 545
<211> 15
<212> DNA
<213> Artificial
<220>

```
```

<223> Artificial Sequence
<400> 545
tggccgcaac gacaa 15
<210> 546
<211> 28
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 546
attattacac aattagttg cctgacgg 28
<210> 547
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 547
tgtggtgata gatccccttt tatagg 26
<210> 548
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 548
ttttttcat ccaaccttgt ca 22
<210> 549
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 549
ggttcaggtt gttgtacgac atg 23
<210>550
<211> 29
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 550

```
```

gttgaatggt atgatgttac tgagcttat 29
<210> 551
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 551
ttgtggatac ggtagttgtg 20
<210> 552
<211> 29
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 552
ttattgtatg aagacatgaa tcattgagg 29
<210> 553
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 553
gtgccattg cccattatgt atg 23
<210> 554
<211> 29
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 554
cttgttggta cttcatgcta gtagattc 29
<210> 555
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 555
tgcaagttgg gttatgaaat tggt 24
<210> 556

```
```

<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 556
cattatgtat gatgcaagtt ggg 23
<210> 557
<211> 24
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 557
catgggttat gatcctcaaa gtca 24
<210> 558
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 558
agctacgtga tctgatg 17
<210> 559
<211> 19
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 559
ccttcttcca ccgccttga 19
<210> 560
<211> 21
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 560
tgggtgtctc tcgtgctttt t 21
<210> 561
<211> 19
<212> DNA
<213> Artificial

```
```

<220>
<223> Artificial Sequence
<400> 561
aatcattcct ggtggagga 19
<210> 562
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 562
tgatgcccac attatagtga ttagc 25
<210> 563
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 563
catcttctgg attggccaac tt 22
<210> 564
<211> 17
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 564
actatgtgtg catcctt 17
<210> 565
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 565
aggcttgttg tgcagtttt ga 22
<210> 566
<211> 21
<212> DNA
<213> Artificia
<220>
<223> Artificial Sequence

```
```

<400> 566
gcggtgagtt caggctttt c 21
<210> 567
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 567
tggactagtg gaagttccta ta 22
<210>568
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 568
ttcaagttgg gcttttcag aag 23
<210> 569
<211> 22
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 569
tctcettggt gctctcatca ca 22
<210> 570
<211> 15
<212> DNA
<213> Artificial
<220>
<223> Artificial Sequence
<400> 570
ctgcagcaga accaa 15
<210> 571
<211> 3387
<212> DNA
<213> S. thermophilus
<400> 571

```
atgagtgact tagttttagg acttgatatc ggtataggtt ctgttggtgt aggtatcctt aacaaagtga caggagaaat tatccataaa aactcacgca tcttcccagc agctcaagca catcgtatag ttcgtttaaa tcgtctattt gaggaaagtg gattaatcac cgattttacg
aatgaagatg atgaaaagaa agctattcaa aagattcaaa agccaacaa agatgaaaa

1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
<400> 572
<210> 573
<211> 4113
<212> DNA
<213> S. agalactiae
<400> 573

gacttggttg ataaagaaaa atctgcggaa gcttttatcc atcgtatgac caacaatgat ttttatcttc ctgaagaaaa agttttacca aggcatagtc ttatttatga aaaatttacg gtctataatg agttgactaa ggttagatat aaaatgagc aaggtgagac ttattttttt gatagcaata ttaaacaaga aatctttgat ggagtattca aggaacatcg taaggtatcc aagaagaagt tgctagattt tctggctaaa gaatatgagg agtttaggat agtagatgtt attggtctag ataaagaaaa taaagctttc aacgcctcat tgggaactta ccacgatctc gaaaaaatac tagacaaaga ttttctagat aatccagata atgagtctat tctggaagat atcgtccaaa ctctaacatt atttgaagac agagaaatga ttaagaagcg tcttgaaaac tataaagatc tttttacaga gtcacaacta aaaaactct atcgtcgtca ctatactggc tggggacgat tgtctgctaa gttaatcaat ggtattcgag ataaagagag tcaaaaaca atcttggact atcttattga tgatggtaga tctaatcgca actttatgca gttgataaat gatgatggtc tatctttcaa atcaattatc agtaaggcac aggctggtag tcattcagat aatctaaaag aagttgtagg tgagcttgca ggtagccctg ctattaaaaa gggaattcta caaagtttga aaattgttga tgagcttgtt aaagtcatgg gatacgaacc tgaacaaatt gtggttgaga tggcgcgtga gaatcaaaca acaaatcaag gtcgtcgtaa ctctcgacaa cgctataaac ttcttgatga tggcgttaag aatctagcta gtgacttgaa tggcaatatt ttgaaagaat atcctacgga taatcaagcg t ttacaaaacg gaagagatat g tatgatattg accacattat t gttttggtat catctgctaa gtaaaagatt gtaaagtttt aagtatgata atttgactaa tttatccaac gtcagttggt gatgaacgct ttaataatga g gtaaccttga agtcaaattt cgtgaagtta acaattatca gctattctaa ccaaatatcc tataatagtt acaaaacgcg atgaacttct ttaaaactaa attgaagtta ataatgatac gttagaaaag tcttgtcata ggtggtttct ctaaggaatc aaaacgaagg atatttattt a gcttactctg ttttagttgt a gttacggaac ttttaggaat gctttccttg aatcaaaagg aagtatagtc tgttcgaatt ttacaaaaag gtaatgagct agtcgttata atgagtcaaa aatcaacatg tctcttattt t gttattctag cagatgctaa tttagagaaa aatatatcag tagatgaact t ggagctccag cagcttttaa actaaagaag tacttaattc ta cgtattgatt tgggtaagtt a

1500 1560 1620 1680 1740 1800 1860 1920 1980 2040
```

<210> 574
<211> 4134
<212> DNA
<213> S. agalactiae

```
<400> 574
\begin{tabular}{lllll}
atgaataagc catattcaat aggccttgac atcggtacta attccgtcgg atggagcatt & 60 \\
attacagatg attataaagt acctgctaag aagatgagag ttttagggaa cactgataaa & 120 \\
gaatatatta agaagaatct cataggtgct ctgctttttg atggcgggaa tactgctgca & 180 \\
gatagacgct tgaagcgaac tgctcgtcgt cgttatacac gtcgtagaaa tcgtattcta & 240 \\
tatttacaag aaatttttgc agaggaaatg agtaaagttg atgatagttt ctttcatcga & 300 \\
ttagaggatt cttttctagt tgaggaagat aagagaggta gcaagtatcc tatctttgca & 360 \\
acaatgcagg aggagaaata ttatcatgaa aaatttccga caatctatca tttgagaaaa & 420 \\
gaattggctg acaagaaaga aaagcagac cttcgtcttg tttatctggc tctagctcat & 480 \\
atcattaaat tcagagggca tttcctaatt gaggatgata gatttgatgt gaggaatacc & 540 \\
gatattcaaa aacaatatca agcctttta gaaattttg atactacctt tgaaaataat & 600 \\
catttgttat ctcaaaatgt agatgtagaa gcaattctaa cagataagat tagcaagtct & 660
\end{tabular}
gcgaagaagg atcgcatctt agcgcagtat cctaaccaaa aatctactgg tatttttgca gaatttttga aattgattgt cggaaatcaa gctgacttca agaaacattt caatttggag 780 840
<212> DNA
<213> S. mutans
<400> 575
atgaaaaaac cttactctat tggacttgat attggaacca attctgttgg ttgggctgtt

60
120
180
240
300
360
420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
2880
2940
3000
3060
3120
3180
3240
3300
3360
3420
3480
3540
3600
3660
```

gctaaaaata ttcataaagt tgatgaacca aagcatttgg actatgttga taaacataaa 3720
gatgaattta aggagttgct agatgttgtg tcaaactttt ctaaaaaata tactttagca
3780
gaaggaaatt tagaaaaaat caaagaatta tatgcacaaa ataatggtga agatcttaaa 3840
gaattagcaa gttcatttat caacttatta acatttactg ctataggagc accggctact
3900
tttaaattct ttgataaaaa tattgatcga aaacgatata cttcaactac tgaaattctc 3960
aacgctaccc tcatccacca atccatcacc ggtctttatg aaacgcggat tgatctcaat 4020
aagttaggag gagactaa
4038
<210> 576
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial Sequence
<400> 576
gaagttccta ttctctagaa agtataggaa cttc 34
<210> 577
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial Sequence
<400> 577
agttcctatt cttcaaaagg tataggaact 30
<210>578
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial Sequence
<400> 578
agttcctatt cttcaaaaag tataggaact 30
<210>579
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial Sequence
<400> 579
agttcctata ctctatgtag aataggaact 30
<210>580
<211> 30
<212> DNA
<213> Artificial Sequence
<220>

```

\section*{EP 3191595 B1}
<223> Artificial Sequence
<400> 580
agttcctata cttctggag aataggaact 30

\section*{Claims}
1. A maize plant, maize plant part or maize seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double-strand-break target site, wherein said genomic window is flanked by:
a) at least a first marker comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and,
b) at least a second marker comprising SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and
wherein said double-strand-break target site is a Cas9 endonuclease target site selected from the group consisting of SEQ ID NO: 3-5 or 7-11 or an active variant, capable of being recognized and cleaved by a double strand breakinducing agent, with at least \(95 \%\) sequence identity to said Cas9 endonuclease target site.
2. The maize plant, maize plant part or maize seed of claim 1 , wherein said genomic window is not more than \(0.1,0.2\), \(0.3,0.4,0.5,1\) or 2 cM in length.
3. The maize plant, maize plant part or maize seed of claim 1 , wherein said genomic window further comprises a transgene.
4. The maize plant, maize plant part or maize seed of claim 3, wherein the transgene confers a trait selected from the group consisting of herbicide tolerance, insect resistance, disease resistance, male sterility, site-specific recombination, abiotic stress tolerance, altered phosphorus, altered antioxidants, altered fatty acids, altered essential amino acids, altered carbohydrates, herbicide tolerance, insect resistance and disease resistance.
5. The maize plant, maize plant part or maize seed of claim 1 , wherein said genomic window further comprises at least a \(1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }}, 9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}, 12^{\text {th }}, 13^{\text {th }}, 14^{\text {th }}, 15^{\text {th }}, 16^{\text {th }}, 17^{\text {th }}, 18^{\text {th }}, 19^{\text {th }}, 20^{\text {th }}, 21^{\text {st }}, 22^{\text {nd }}, 23^{\text {rd }}\), \(24^{\text {th }}, 25^{\text {th }}, 26^{\text {th }}, 2^{\text {th }}, 28^{\text {th }}, 29^{\text {th }}, 30^{\text {th }}\) or \(31^{\text {st }}\) transgenic target site for site specific integration integrated into at least a \(2^{\text {thd }}, 3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }}, 9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}, 12^{\text {th }}, 13^{\text {th }}, 14^{\text {th }}, 15^{\text {th }}, 16^{\text {th }}, 17^{\text {th }}, 18^{\text {th }}, 19^{\text {th }}, 20^{\text {th }}, 21^{\text {st }}, 22^{\text {nd }}, 23^{\text {rd }}, 24^{\text {th }}\), \(25^{\text {th }}, 26^{\text {th }}, 2^{\text {th }}, 28^{\text {th }}, 29^{\text {th }}, 30^{\text {th }}\) or \(31^{\text {st }}\) double-strand-break target site.
6. The maize plant, maize plant part or maize seed of claim 5 , wherein said at least \(2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }}, 9^{\text {th }}\), \(10^{\text {th }}, 11^{\text {th }}, 12^{\text {th }}, 13^{\text {th }}, 14^{\text {th }}, 15^{\text {th }}, 16^{\text {th }}, 17^{\text {th }}, 18^{\text {th }}, 19^{\text {th }}, 20^{\text {th }}, 21^{\text {st }}, 22^{\text {nd }}, 23^{\text {rd }}, 24^{\text {th }}, 25^{\text {th }}, 26^{\text {th }}, 27^{\text {th }}, 28^{\text {th }}, 29^{\text {th }}, 30^{\text {th }}\) or \(31^{\text {st }}\) double-strand-break target site is selected from the group consisting of a zinc finger target site, a endonuclease target site, a meganuclease target site, a TALENs target site, a Cas9 endonuclease target site, and any one combination thereof.
7. The maize plant, maize plant part or maize seed of any one of claims 1 to 6 , wherein said at least one transgenic target site for site specific integration comprises a first recombination site and a second recombination site, wherein said first and said second recombination site are dissimilar with respect to one another.
8. The maize plant, maize plant part or maize seed of claim 7, wherein said at least one transgenic target site for site specific integration further comprises a polynucleotide of interest flanked by said first recombination site and said second recombination site.
9. The maize plant, maize plant part or maize seed of claim 7, wherein the dissimilar recombination sites of said transgenic target site for site specific integration comprises a LOX site, a mutant LOX site, a FRT site or a mutant FRT site.
10. The maize plant, maize plant part or maize seed of claim 7 wherein each of said first recombination site and said second recombination site is selected from the group consisting of a FRT1 site, a FRT5 site, a FRT6 site, a FRT12 site, and a FRT87 site.

\section*{Patentansprüche}
1. Maispflanze, Maispflanzenteil oder Maissamen, in ihrem/seinem Genom ein genomisches Fenster aufweisend, das mindestens eine transgene Zielstelle für ortsspezifische Integration (site specific integration, SSI) umfasst, die in mindestens eine Doppelstrangbruch-Zielstelle integriert ist, wobei das genomische Fenster von Folgendem flankiert ist:
a) mindestens einem ersten Marker, umfassend SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 6 oder SEQ ID NO: 12; und
b) mindestens einem zweiten Marker, der SEQ ID NO: 2, SEQ ID NO: 6 oder SEQ ID NO: 12 umfasst; und
wobei die Doppelstrangbruch-Zielstelle eine Cas9-Endonuklease-Zielstelle ist, ausgewählt aus der Gruppe bestehend aus SEQ ID NO: 3-5 oder 7-11 oder eine aktive Variante, die von einem Doppelstrangbruch-Induzierungsmittel erkannt und gespalten werden kann, mit mindestens \(95 \%\) Sequenzidentität zu der Cas9-Endonuklease-Zielstelle.
2. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 1, wobei das genomische Fenster nicht mehr als \(0,1,0,2,0,3,0,4,0,5,1\) oder 2 cm lang ist.
3. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 1, wobei das genomische Fenster fernerein Transgen umfasst.
4. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 3, wobei das Transgen ein Merkmal verleiht, ausgewählt aus der Gruppe bestehend aus Herbizidtoleranz, Insektenresistenz, Krankheitsresistenz, männlicher Sterilität, ortsspezifischer Rekombination, abiotischer Stresstoleranz, verändertem Phosphor, veränderten Antioxidantien, veränderten Fettsäuren, veränderten essentiellen Aminosäuren, veränderten Kohlenhydraten, Herbizidtoleranz, Insektenresistenz und Krankheitsresistenz.
5. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 1, wobei das genomische Fenster ferner mindestens eine 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30. oder 31. transgene Zielstelle für eine ortsspezifische Integration in mindestens eine 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30. oder 31. Doppelstrangbruch-Zielstelle umfasst.
6. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 5, wobei die mindestens 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30. oder 31. DoppelstrangbruchZielstelle ausgewählt ist aus der Gruppe bestehend aus einer Zink-Finger-Zielstelle, einer Endonuklease-Zielstelle, einer Meganuklease-Zielstelle, einer TALENs-Zielstelle, einer Cas9-Endonuklease-Zielstelle und einer beliebigen Kombination davon.
7. Maispflanze, Maispflanzenteil oder Maissamen nach einem der Ansprüche 1 bis 6 , wobei die mindestens eine transgene Zielstelle für ortsspezifische Integration eine erste Rekombinationsstelle und eine zweite Rekombinationsstelle umfasst, wobei die erste und die zweite Rekombinationsstelle ungleich in Bezug aufeinander sind.
8. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 7, wobei die mindestens eine transgene Zielstelle für ortsspezifische Integration ferner ein Polynukleotid von Interesse umfasst, das von der ersten Rekombinationsstelle und der zweiten Rekombinationsstelle flankiert ist.
9. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 7, wobei die ungleichen Rekombinationsstellen der transgenen Zielstelle für ortsspezifische Integration eine LOX-Stelle, eine mutierte LOX-Stelle, eine FRT-Stelle oder eine mutierte FRT-Stelle umfassen.
10. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 7, wobei jede von der ersten Rekombinationsstelle und der zweiten Rekombinationsstelle ausgewählt ist aus der Gruppe bestehend aus einer FRT1-Stelle, einer FRT5Stelle, einer FRT6-Stelle, einer FRT12-Stelle und einer FRT87-Stelle.

\section*{Revendications}
1. Plante de maïs, une partie de plante de maïs ou une graine de maïs ayant dans son génome une fenêtre génomique comprenant au moins un site cible transgénique pour intégration spécifique de site (SSI) intégrée dans au moins un site cible de rupture à double brin, ladite fenêtre génomique est flanqué de :
a) au moins un premier marqueur comprenant SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 6 ou SEQ ID NO: 12 ; et, b) au moins un second marqueur comprenant SEQ ID NO: 2, SEQ ID NO: 6 ou SEQ ID NO: 12 ; et
dans laquelle ledit site cible à double brin est un site cible de l'endonucléase Cas9 choisi dans le groupe constitué de SEQ ID NO: 3-5 ou 7-11 ou d'un variant actif, capable d'être reconnu et clivé par un inducteur de rupture à double brin agent, avec au moins \(95 \%\) d'identité de séquence avec ledit site cible de l'endonucléase Cas9.
2. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 1, dans laquelle ladite fenêtre génomique ne mesure pas plus de \(0,1,0,2,0,3,0,4,0,5,1\) ou 2 cM de long.
3. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 1, dans laquelle ladite fenêtre génomique comprend en outre un transgène.
4. Plante de maïs, partie de plante de maïs ou graine de maïs de la revendication 3 , caractérisée en ce que le transgène confère un trait choisi dans le groupe constitué de la tolérance aux herbicides, la résistance aux insectes, la résistance aux maladies, la stérilité mâle, la recombinaison spécifique au site, la tolérance au stress abiotique, le phosphore modifié, le phosphore modifié antioxydants, les acides gras altérés, les acides aminés essentiels altérés, les glucides altérés, la tolérance aux herbicides, la résistance aux insectes et aux maladies.
5. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 1, dans laquelle ladite fenêtre génomique comprend en outre au moins un 1er, 2 ème, 3ème, 4ème, 5ème, 6 ème, 7 ème, 8 ème, 9 ème, 10 ème, 11 ème, 12 ème, 13 ème, 14 ème, 15 ème, 16 ème, 17 ème, 18 ème, 19 ème, 20 ème, 21 ème, 22 ème, 23 ème, 24 ème, 25ème, 26ème, 27ème, 28ème, 29ème, 30ème ou 31ème site transgénique cible pour une intégration spécifique intégrée au moins à un 2ème, 3ème, 4ème, 5ème, 6ème, 7ème, 8ème, 9ème, 10ème, 11ème, 12ème, 13ème, 14 ème, 15 ème, 16 ème, 17 ème, 18 ème, 19 ème, 20 ème, 21 ème, 22 ème, 23 ème, 24 ème, 25 ème, 26 ème, 27 ème, 28ème, 29ème, 30ème ou 31ème site cible à double brin.
6. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 5 , dans laquelle au moins les 2 ème, 3ème, 4ème, 5ème, 6ème, 7ème, 8ème, 9ème, 10ème, 11 ème, 12ème, 13ème, 14ème, 15ème, 16ème, 17 ème, 18ème, 19ème, 20ème, 21ème, 22ème, 23ème, 24ème, 25ème, 26ème, 27 ème, 28ème, 29ème, 30ème ou 31 ème sites cibles à rupture de double brin sont sélectionnés dans le groupe constitué d'un site cible à doigts de zinc, un site cible de l'endonucléase, un site cible de la méganucléase, un site cible des TALENs, un site cible de l'endonucléase Cas9 et toute combinaison de ceux-ci.
7. Plante de maïs, partie de plante de maïs ou graine de maïs de l'une quelconque des revendications 1 à 6 , dans laquelle ledit au moins un site cible transgénique pour intégration spécifique de site comprend un premier site de recombinaison et un second site de recombinaison, dans lesquels ledit premier et ledit second site de recombinaison sont dissemblables l'un par rapport à l'autre.
8. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 7, dans laquelle au moins un site cible transgénique d'intégration spécifique de site comprend en outre un polynucléotide d'intérêt flanqué desdits premier site de recombinaison et second site de recombinaison.
9. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 7 , dans laquelle les sites de recombinaison dissemblable dudit site cible transgénique pour une intégration spécifique de site comprennent un site LOX, un site LOX mutant, un site FRT ou un site FRT mutant.
10. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 7 , dans laquelle chacun desdits site de recombinaison et de second site de recombinaison est choisi dans le groupe constitué d'un site FRT1, d'un site FRT5, d'un site FRT6, d'un site FRT12 et d'un site FRT87.
Figure 1

Genomic Locus of Interest
Meganucleases
Engineered endonucleases
Etc.

Figure 2C. Guide RNA and Cas9 endonuclease expression cassettes

or

\section*{Figure 2D. New transgenic target site for SSI integrated in genomic window}

Figure 3A. Genomic window for producing a CTL
Figure 3B. Donor (Repair) DNA for Trait integration

Figure 4
Maize Genomic Window (CTL1) on Chromosome 1
5 cM

Figure 5
Maize Genomic Window (CTL2) on Chromosome 1
\(\quad 4 \mathrm{cM}\)

Figure 6
Maize Genomic Window (CTL3) on Chromosome 3

Figure 7
Maize Genomic Window (CTL4) on Chromosome 10

EP 3191595 B1

EP 3191595 B1
Figure 9
Soybean Genomic Window on Chromosome 4

Figure 10

Figure 11
Soybean Genomic Window on Chromosome 1

\section*{REFERENCES CITED IN THE DESCRIPTION}

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

\section*{Patent documents cited in the description}
- US 62049465 [0001] • US 5240855 A [0130]
- US 5527695 A [0005]
- WO 2010079430 A [0039]
- WO 2007025097 A [0040] [0043]
- US 62023239 [0042] [0056]
- US 20110047655 A [0088]
- US 7626077 B [0101]
- US 5322783 A [0130]
- US 5324646 A [0130]
- US 5736369 A [0130]
- US 5889191 A [0131]
- US 5889190 A [0131]
- US 5866785 A [0131]
- US 5310667 A [0101]
- US 5866775 A [0101]
- US 6225114 В [0101]
- US 6248876 В [0101]
- US 5589367 A [0131]
- US 5316931 A [0131]
- US 5683439 A [0154]
- WO 9943838 A [0154]
- US 6072050 A [0154]
- US 5608149 A [0154]
- US 5608144 A [0154]
- US 5604121 A [0154]
- US 5569597 A [0154]
- US 5466785 A [0154]
- US 5399680 A [0154]
- US 5268463 A [0154]
- US 5608142 A [0154]
- US 6177611 B [0154]
- US 5364780 A [0155]
- US 0122169 W [0155]
- US 5689049 A [0156]
- US 5689051 A [0156]
- US 6225529 В [0156]
- WO 0012733 A [0156]
- US 5814618 A [0157]
- US 5789156 A [0157]
- US 5837876 A [0160]
- US 5750386 A [0160]
- US 5633363 A [0160]
- US 5459252 A [0160]
- US 5401836 A [0160]
- US 5110732 A [0160]
- US 5023179 A [0160]
- US 5380831 A [0162]
- US 5436391 A [0162]
- US 4873192 A [0168]
- EP 75444 A [0169]
- US 5605793 A [0171]
- US 5837458 A [0171]
- US 74870414 [0185] [0263]
- US 42713813 [0185] [0263]
- US 20090328252 A1 [0215] [0216]
- US 20110167516 A [0215]
- US 8697817 B [0232]
- WO 62049465 A [0265]

Non-patent literature cited in the description
- ROBERTS et al. Nucleic Acids Res, 2003, vol. 31, 418-20 [0037]
- ROBERTS et al. Nucleic Acids Res, 2003, vol. 31, 1805-12 [0037]
- BELFORT et al. Mobile DNA II. ASM Press, 2002, 761-783 [0037]
- GUHAN ; MUNIYAPPA. Crit Rev Biochem Mol Biol, 2003, vol. 38, 199-248 [0038]
- LUCAS et al. Nucleic Acids Res, 2001, vol. 29, 960-9 [0038]
- JURICA ; STODDARD. Cell Mol Life Sci, 1999, vol. 55, 1304-26 [0038]
- STODDARD. Q Rev Biophys, 2006, vol. 38, 49-95 [0038]
- MOURE et al. Nat Struct Biol, 2002, vol. 9, 764 [0038]
- MORBITZER et al. PNAS, 2010 [0039]
- SCHOLZE ; BOCH. Virulence, 2010, vol. 1, 428-432 [0039]
- CHRISTIAN et al. Genetics, 2010, vol. 186, 757-761 [0039]
- LI et al. Nuc. Acids Res., 2010 [0039]
- MILLER et al. Nature Biotechnology, 2011, vol. 29, 143-148 [0039]
- ISHINO et al. J. Bacterial., 1987, vol. 169, 5429-5433 [0040]
- NAKATA et al. J. Bacterial., 1989, vol. 171, 3553-3556 [0040]
- GROENEN et al. Mol. Microbiol., 1993, vol. 10, 1057-1065 [0040]
- HOE et al. Emerg. Infect. Dis., 1999, vol. 5, 254-263 [0040]
- MASEPOHL et al. Biochim. Biophys. Acta, 1996, vol. 1307, 26-30 [0040]
- MOJICA et al. Mol. Microbiol., 1995, vol. 17, 85-93 [0040]
- JANSSEN et al. OMICS J. Integ. Biol., 2002, vol. 6, 23-33 [0040]
- MOJICA et al. Mol. Microbiol., 2000, vol. 36, 244-246 [0040]
- HAFT et al. Computational Biology, PLoS Comput Biol, 2005, vol. 1 (6), e60 [0041]
- SINGER et al. Cell, 1982, vol. 31, 25-33 [0073]
- SHEN ; HUANG. Genetics, 1986, vol. 112, 441-57 [0073]
- WATT et al. Proc. Natl. Acad. Sci. USA, 1985, vol. 82, 4768-72 [0073]
- SUGAWARA ; HABER. Mol Cell Biol, 1992, vol. 12, 563-75 [0073]
- RUBNITZ ; SUBRAMANI. Mol Cell Biol, 1984, vol. 4, 2253-8 [0073]
- AYARES et al. Proc. Natl. Acad. Sci. USA, 1986, vol. 83, 5199-203 [0073]
- LISKAY et al. Genetics, 1987, vol. 115, 161-7 [0073]
- BLEUYARD et al. DNA Repair, 2006, vol. 5, 1-12 [0074]
- SIEBERT ; PUCHTA. Plant Cell, 2002, vol. 14, 1121-31 [0074]
- PACHER et al. Genetics, 2007, vol. 175, 21-9 [0074]
- MOLINIER et al. Plant Cell, 2004, vol. 16, 342-52 [0075]
- PUCHTA. Genetics, 1999, vol. 152, 1173-81 [0075]
- PUCHTA et al. Plant Mol Biol, 1995, vol. 28, 281-92 [0076]
- TZFIRA ; WHITE. Trends Biotechnol, 2005, vol. 23, 567-9 [0076]
- PUCHTA. J Exp Bot, 2005, vol. 56, 1-14 [0076]
- LYZNIK et al. Mol Gen Genet, 1991, vol. 230, 209-18 [0076]
- WILLIAMSON et al. Eur. J. Biochem., 1987, vol. 165, 99-106 [0102]
- SCHUBERT et al. J. Bacteriol., 1988, vol. 170, 5837-5847 [0103]
- LILLEY et al. Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs. American Oil Chemists Society, 1989, 497-502 [0104]
- PEDERSEN et al. J. Biol. Chem., 1986, vol. 261, 6279 [0104]
- KIRIHARA et al. Gene, vol. 71, 359 [0104]
- MUSUMURA et al. Plant Mol. Biol., 1989, vol. 12, 123 [0104]
- PENG et al. Nature, 1999, vol. 400, 256-261 [0104]
- JONES et al. Science, 1994, vol. 266, 789 [0106]
- MARTIN et al. Science, 1993, vol. 262, 1432 [0106]
- MINDRINOS et al. Cell, 1994, vol. 78, 1089 [0106]
- LEE et al. Gene, 1998, vol. 216, 55-65 [0114]
- SCHLAKE ; BODE. Biochemistry, 1994, vol. 33, 12746-12751 [0114]
- HUANG et al. Nucleic Acids Research, 1991, vol. 19, 443-448 [0114]
- SADOWSKI. In Progress in Nucleic Acid Research and Molecular Biology, 1995, vol. 51, 53-91 [0114]
- COX. In Mobile DNA. American Society of Microbiology, 1989, 116-670 [0114]
- DIXON et al. Mol. Microbiol., 1995, vol. 18, 449-458 [0114]
- UMLAUF ; COX. EMBO, 1988, vol. 7, 1845-1852 [0114]
- BUCHHOLZ et al. Nucleic Acids Research, 1996, vol. 24, 3118-3119 [0114]
- KILBY et al. Trends Genet., 1993, vol. 9, 413-421 [0114]
- ROSSANT; GEAGY. Nat. Med., 1995, vol. 1, 592-594 [0114]
- ALBERT et al. The Plant J., 1995, vol. 7, 649-659 [0114]
- BAYLEY et al. PlantMol. Biol., 1992, vol. 18, 353-361 [0114]
- ODELL et al. Mol. Gen. Genet., 1990, vol. 223, 369-378 [0114]
- DALE ; OW. Proc. Natl. Acad. Sci. USA, 1991, vol. 88, 10558-10562 [0114]
- QUI et al. Proc. Natl. Acad. Sci. USA, 1994, vol. 91, 1706-1710 [0114]
- STUURMAN et al. Plant Mol. Biol., 1996, vol. 32, 901-913 [0114]
- DALE et al. Gene, 1990, vol. 91, 79-85 [0114]
- SENECOLL et al. J. Mol. Biol., 1988, vol. 201, 406-421 [0115]
- VOZIYANOV et al. Nucleic Acid Research, 2002, vol. 30, 7 [0115]
- ALBERT et al. The Plant Journal, 1995, vol. 7, 649-659 [0115]
- SAUER. Current Opinion in Biotechnology, 1994, vol. 5, 521-527 [0116]
- SADOWSKI. FASEB, 1993, vol. 7, 760-767 [0116]
- ESPOSITO et al. Nucleic Acid Research, 1997, vol. 25, 3605-3614 [0117]
- ABREMSKI et al. Protein Engineering, 1992, vol. 5, 87-91 [0117]
- KUHSTOSS et al. J. Mol. Biol., 1991, vol. 20, 897-908 [0117]
- MASKHELISHVILI et aI. Mol. Gen. Genet., 1993, vol. 237, 334-342 [0117]
- TANAKA et al. Gene, 1998, vol. 17, 67-76 [0117]
- COX. Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 80, 4223-4227 [0118]
- BUCHHOLZ et al. Nat. Biotechnol., 1998, vol. 16, 617-618 [0118] [0119]
- HARTUNG et al. J. Biol. Chem., 1998, vol. 273, 22884-22891 [0118]
- SAXENA et al. Biochim Biophys Acta, 1997, vol. 1340 (2), 187-204 [0118]
- HARTLEY et al. Nature, 1980, vol. 286, 860-864 [0118]
- GUO et al. Nature, 1997, vol. 389, 40-46 [0119]
- ABREMSKI et al. J. Biol. Chem., 1984, vol. 259, 1509-1514 [0119]
- CHEN et al. Somat. Cell Mol. Genet., 1996, vol. 22, 477-488 [0119]
- SHAIKH et al. J. Biol. Chem., 1977, vol. 272, 5695-5702 [0119]
- CROSSWAY et al. Biotechniques, 1986, vol. 4, 320-334 [0130]
- RIGGS et al. Proc. Natl. Acad. Sci. USA, 1986, vol. 83, 5602-5606 [0130]
- PASZKOWSKI et al. EMBO J., 1984, vol. 3, 2717-2722 [0130]
- TOMES et al. Plant Cell, Tissue, and Organ Culture: Fundamental Methods. Springer-Verlag, 1995 [0130]
- MCCABE et al. Biotechnology, 1988, vol. 6, 923-926 [0130]
- WEISSINGER et al. Ann. Rev. Genet., 1988, vol. 22, 421-477 [0130]
- SANFORD et al. Particulate Science and Technology, 1987, vol. 5, 27-37 [0130]
- CHRISTOU et al. Plant Physiol., 1988, vol. 87, 671-674 [0130]
- MCCABE et al. Bio/Technology, 1988, vol. 6, 923-926 [0130]
- FINER ; MCMULLEN. In Vitro Cell Dev. Biol., 1991, vol. 27P, 175-182 [0130]
- SINGH et al. Theor. Appl. Genet., 1998, vol. 96, 319-324 [0130]
- DATTA et al. Biotechnology, 1990, vol. 8, 736-740 [0130]
- KLEIN et al. Proc. Natl. Acad. Sci. USA, 1988, vol. 85, 4305-4309 [0130]
- KLEIN et al. Biotechnology, 1988, vol. 6, 559-563 [0130]
- KLEIN et al. Plant Physiol., 1988, vol. 91, 440-444 [0130]
- FROMM et al. Biotechnology, 1990, vol. 8, 833-839 [0130]
- HOOYKAAS-VAN SLOGTEREN et al. Nature, 1984, vol. 311, 763-764 [0130]
- BYTEBIER et al. Proc. Natl. Acad. Sci. USA, 1987, vol. 84, 5345-5349 [0130]
- DE WET et al. The Experimental Manipulation of Ovule Tissues. Longman, 1985, 197-209 [0130]
- KAEPPLER et al. Plant Cell Reports, 1990, vol. 9, 415-418 [0130]
- KAEPPLER et al. Theor. Appl. Genet., 1992, vol. 84, 560-566 [0130]
- D'HALLUIN et al. Plant Cell, 1992, vol. 4, 1495-1505 [0130]
- LI et al. Plant Cell Reports, 1993, vol. 12, 250-255 [0130]
- CHRISTOU ; FORD. Annals of Botany, 1995, vol. 75, 407-413 [0130]
- OSJODA et al. Nature Biotechnology, 1996, vol. 14, 745-750 [0130]
- PORTA et al. Molecular Biotechnology, 1996, vol. 5, 209-221 [0131]
- CROSSWAY et al. Mol Gen. Genet., 1986, vol. 202, 179-185 [0132]
- NOMURA et al. Plant Sci., 1986, vol. 44, 53-58 [0132]
- HEPLER et al. Proc. Natl. Acad. Sci., 1994, vol. 91, 2176-2180 [0132]
- HUSH et al. The Journal of Cell Science, 1994, vol. 107, 775-784 [0132]
- MCCORMICK et al. Plant Cell Reports, 1986, vol. 5, 81-84 [0133]
- JONES et al. EMBO J., 1985, vol. 4, 2411-2418 [0148]
- DE ALMEIDA et al. Mol. Gen. Genetics, 1989, vol. 218, 78-86 [0148]
- GUERINEAU et al. Mol. Gen. Genet., 1991, vol. 262, 141-144 [0151]
- PROUDFOOT. Cell, 1991, vol. 64, 671-674 [0151]
- SANFACON et al. Genes Dev., 1991, vol. 5, 141-149 [0151]
- MOGEN et al. Plant Cell, 1990, vol. 2, 1261-1272 [0151]
- MUNROE et al. Gene, 1990, vol. 91, 151-158 [0151]
- BALLAS et al. Nucleic Acids Res., 1989, vol. 17, 7891-7903 [0151]
- JOSHI et al. Nucleic Acids Res., 1987, vol. 15, 9627-9639 [0151]
- BORONAT, A. et al. Plant Sci., 1986, vol. 47, 95-102 [0156]
- REINA, M. et al. Nucl. Acids Res., vol. 18 (21), 6426 [0156]
- KLOESGEN, R. B. et al. Mol. Gen. Genet., 1986, vol. 203, 237-244 [0156]
- SCHENA et al. Proc. Natl. Acad. Sci. USA, 1991, vol. 88, 10421-10425 [0157]
- MCNELLIS et al. Plant J., 1998, vol. 14 (2), 247-257 [0157]
- GATZ et al. Mol. Gen. Genet., 1991, vol. 227, 229-237 [0157]
- YAMAMOTO et al. Plant J., 1997, vol. 12 (2), 255-265 [0158] [0159]
- KAWAMATA et al. Plant Cell Physiol., 1997, vol. 38 (7), 792-803 [0158]
- HANSEN et al. Mol. Gen Genet., 1997, vol. 254 (3), 337-343 [0158]
- RUSSELL et al. Transgenic Res., 1997, vol. 6 (2), 157-168 [0158]
- RINEHART et al. Plant Physiol., 1996, vol. 112 (3), 1331-1341 [0158]
- VAN CAMP et al. Plant Physiol., vol. 112 (2), 525-535 [0158]
- CANEVASCINI et al. Plant Physiol., 1996, vol. 112 (2), 513-524 [0158]
- YAMAMOTO et al. Plant Cell Physiol., 1994, vol. 35 (5), 773-778 [0158] [0159]
- LAM. Results Probl. Cell Differ., 1994, vol. 20, 181-196 [0158]
- OROZCO et al. Plant Mol Biol., 1993, vol. 23 (6), 1129-1138 [0158]
- MATSUOKA et al. Proc Natl. Acad. Sci. USA, 1993, vol. 90 (20), 9586-9590 [0158]
- GUEVARA-GARCIA et al. Plant J., 1993, vol. 4 (3), 495-505 [0158]
- KWON et al. Plant Physiol., 1994, vol. 105, 357-67 [0159]
- GOTOR et al. Plant J., 1993, vol. 3, 509-18 [0159]
- OROZCO et al. Plant Mol. Biol., 1993, vol. 23 (6), 1129-1138 [0159]
- MATSUOKA et al. Proc. Natl. Acad. Sci. USA, 1993, vol. 90 (20), 9586-9590 [0159]
- SIMPSON et al. EMBO J, 1958, vol. 4, 2723-2729 [0159]
- TIMKO et al. Nature, 1988, vol. 318, 57-58 [0159]
- HIRE et al. Plant Mol. Biol., 1992, vol. 20 (2), 207-218 [0160]
- KELLER ; BAUMGARTNER. Plant Cell, 1991, vol. 3 (10), 1051-1061 [0160]
- SANGER et al. Plant Mol. Biol., 1990, vol. 14 (3), 433-443 [0160]
- MIAO et al. Plant Cell, 1991, vol. 3 (1), 11-22 [0160]
- BOGUSZ et al. Plant Cell, 1990, vol. 2 (7), 633-641 [0160]
- LIMERICK. Plant Science, vol. 79 (1), 69-76 [0160]
- EMBO J., vol. 8 (2), 343-350 [0160]
- KUSTER et al. Plant Mol. Biol., 1995, vol. 29 (4), 759-772 [0160]
- CAPANA et al. Plant Mol. Biol., 1994, vol. 25 (4), 681-691 [0160]
- MURAI et al. Science, 1983, vol. 23, 476-482 [0160]
- SENGOPTA-GOPALEN et al. PNAS, 1988, vol. 82, 3320-3324 [0160]
- SU et al. Biotechnol. Bioeng., 2004, vol. 85, 610-9 [0161]
- FETTER et al. Plant Cell, 2004, vol. 16, 215-28 [0161]
- BOLTE et al. J. Cell Science, 2004, vol. 117, 943-54 [0161]
- KATO et al. Plant Physiol., 2002, vol. 129, 913-42 [0161]
- CAMPBELL ; GOWRI. Plant Physiol., 1990, vol. 92, 1-11 [0162]
- MURRAY et al. Nucleic Acids Res., 1989, vol. 17, 477-498 [0162]
- KUNKEL. Proc. Natl. Acad. Sci. USA, 1985, vol. 82, 488-492 [0168]
- KUNKEL et al. Methods in Enzymol., 1987, vol. 154, 367-382 [0168]
- Techniques in Molecular Biology. MacMillan Publishing Company, 1983 [0168]
- DAYHOFF et al. Atlas of Protein Sequence and Structure. Natl. Biomed. Res. Found, 1978 [0168]
- STEMMER. Proc. Natl. Acad. Sci. USA, 1994, vol. 91, 10747-10751 [0171]
- STEMMER. Nature, 1994, vol. 370, 389-391 [0171]
- CRAMERI et al. Nature Biotech., 1997, vol. 15, 436-438 [0171]
- MOORE et al. J. Mol. Biol., 1997, vol. 272, 336-347 [0171]
- ZHANG et al. Proc. Natl. Acad. Sci. USA, 1997, vol. 94, 4504-4509 [0171]
- CRAMERI et al. Nature, 1998, vol. 391, 288-291 [0171]
- HIGGINS ; SHARP. CABIOS, 1989, vol. 5, 151-153 [0177] [0178]
- HIGGINS et al. Comput Appl Biosci, 1992, vol. 8, 189-191 [0177] [0178]
- HENIKOFF ; HENIKOFF. Proc. Natl. Acad. Sci USA, 1989, vol. 89, 10915 [0181]
- NEEDLEMAN ; WUNSCH. J. Mol. Biol., 1970, vol. 48, 443-453 [0182]
- GANAL, M. et al. A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome. PloS one, 08 December 2011 [0206]

\section*{EP 3191595 B1}
- GANAL, M. et al. PloS one, 2011 [0207] [0208] [0209]
- SONG, Q et al. PloS one, 2013, vol. 8 (1), e54985 [0237]```

[^0]: <210> 135
 <211> 7845
 <212> DNA
 <213> Artificial
 <220>
 <223> artificial

[^1]: <210> 409
 <211> 6518

[^2]: <210> 433
 <211> 6599
 <212> DNA

