(19)

(12)

(11) **EP 3 191 595 B1**

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:25.12.2019 Bulletin 2019/52
- (21) Application number: 15763713.3
- (22) Date of filing: 31.08.2015

(51) Int Cl.: *C12N 15/82*^(2006.01) A01H 5/1

A01H 5/10^(2018.01)

- (86) International application number: PCT/US2015/047706
- (87) International publication number: WO 2016/040030 (17.03.2016 Gazette 2016/11)

(54) GENERATION OF SITE-SPECIFIC-INTEGRATION SITES FOR COMPLEX TRAIT LOCI IN CORN AND SOYBEAN, AND METHODS OF USE

ERZEUGUNG VON STELLEN ZUR STELLENSPEZIFISCHEN INTEGRATION FÜR KOMPLEXE TRAIT-LOCI IN MAIS UND SOJABOHNEN SOWIE VERFAHREN ZUR VERWENDUNG

PRODUCTION DE SITES D'INTÉGRATION SPÉCIFIQUE DE SITE, POUR DES LOCI DE TRAITS COMPLEXES DANS LE MAÏS ET LE SOJA, ET PROCÉDÉS D'UTILISATION

(84) (30)	Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Priority: 12.09.2014 US 201462049465 P	•	PODLICH, Dean Des Moines Iowa 50310 (US) SCELONGE, Christopi Ankeny Iowa 50023 (US)	her	
(43)	Date of publication of application: 19.07.2017 Bulletin 2017/29	(74)	 Representative: J A Kemp LLP 14 South Square Gray's Inn 		
(00)	19206649.6		London WCTR 5JJ (Gr	<i>>)</i>	
		(56)	References cited:		
(73)	Proprietors:		WO-A1-2010/077319	WO-A1-2013/112686	
•	E. I. du Pont de Nemours and Company		WO-A1-2014/093768	WO-A1-2015/026887	
	Wilmington, DE 19805 (US)		WO-A2-2012/129373	WO-A2-2013/066423	
•	Pioneer Hi-Bred International, Inc.		US-A1- 2010 313 293		
	Johnston, Iowa 50131 (US)				
(70)		•	VESNA DJUKANOVIC	ET AL: "Male-sterile maize	
(72)	Inventors:		plants produced by tai	rgeted mutagenesis of the	
•	CIGAN, Andrew Mark		cytochrome P450-like	gene (MS26) using a	
			re-designed I- Cre I no	The second clease , THE	
			(2013-11-05) pages 88	70, 110. 5, 5 NOVEILIDE 2015	
•	Johnston		ISSN: 0960-7412 DOI:	10 1111/tni 12335	
	lowa 50131 (US)	•	LIANG ZHEN ET AL: "	Targeted Mutagenesis in	
•	LIU. Zhan-Bin	Zea mays Using TALENs and the CRISPR/Cas System", JOURNAL OF GENETICS AND GENOMICS, ELSEVIER BV, NL, vol. 41, no. 2, 14			
	West Chester,				
	Pennsylvania 19382 (US)				
•	MUTTI, Jasdeep	December 2013 (2013-12-14), pages 63-68,			
	Johnston	XP028661345, ISSN: 1673-8527, DOI:			
	lowa 50131 (US)	10.1016/J.JGG.2013.12.001			

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- WILLIAM M. AINLEY ET AL: "Trait stacking via targeted genome editing", PLANT BIOTECHNOLOGY JOURNAL, vol. 11, no. 9, 19 August 2013 (2013-08-19), pages 1126-1134, XP055218224, ISSN: 1467-7644, DOI: 10.1111/pbi.12107
- QIUDENG QUE ET AL: "Maize transformation technology development for commercial event generation", FRONTIERS IN PLANT SCIENCE, vol. 5, 5 August 2014 (2014-08-05), XP55217826, DOI: 10.3389/fpls.2014.00379
- VIPULA K SHUKLA ET AL: "Precise genome modification in the crop species Zea mays using zinc-finger nucleases", NATURE, NATURE PUBLISHING GROUP, UNITED KINGDOM, vol. 459, no. 7245, 29 April 2009 (2009-04-29), page 437, XP002626698, ISSN: 0028-0836, DOI: 10.1038/NATURE07992 [retrieved on 2009-04-29]
- GAJ THOMAS ET AL: "ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering", TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 31, no. 7, 9 May 2013 (2013-05-09), pages 397-405, XP028571313, ISSN: 0167-7799, DOI: 10.1016/J.TIBTECH.2013.04.004

- MARTIN W. GANAL ET AL: "A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome", PLOS ONE, vol. 6, no. 12, 8 December 2011 (2011-12-08), page e28334, XP055062057, DOI: 10.1371/journal.pone.0028334 cited in the application
- SERGEI SVITASHEV ET AL: "Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA", PLANT PHYSIOLOGY, vol. 169, no. 2, 12 August 2015 (2015-08-12), pages 931-945, XP55217829, ISSN: 0032-0889, DOI: 10.1104/pp.15.00793

Description

[0001] This application claims the benefit of U.S. Provisional Application No. 62/049465, filed September 12, 2014.

5 FIELD

[0002] The disclosure relates to the field of plant molecular biology. In particular, methods and compositions are disclosed for altering the genome of a plant.

¹⁰ REFERENCE TO A SEQUENCE LISTING SUBMITTED AS A TEXT FILE VIA EFS-WEB

[0003] The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named 20150811_BB2355PCT_ST25.txt, created August 11, 2015 and having a size of 879 KB and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the aposition.

¹⁵ the specification.

BACKGROUND

[0004] Recombinant DNA technology has made it possible to insert foreign DNA sequences into the genome of an organism, as well as altering endogenous genes of an organism, thus, altering the organism's phenotype. The most commonly used plant transformation methods are *Agrobacterium* infection and biolistic particle bombardment in which transgenes integrate into a plant genome in a random fashion and in an unpredictable copy number.

[0005] Site-specific integration techniques, which employ site-specific recombination systems, as well as, other types of recombination technologies, have been used to generate targeted insertions of genes of interest in a variety of

- organism. Other methods for inserting or modifying a DNA sequence involve homologous DNA recombination by introducing a transgenic DNA sequence flanked by sequences homologous to the genomic target. U.S. Patent No. 5,527,695 describes transforming eukaryotic cells with DNA sequences that are targeted to a predetermined sequence of the eukaryote's DNA. Transformed cells are identified through use of a selectable marker included as a part of the introduced DNA sequences. While such systems have provided useful techniques for targeted insertion of sequences of interest,
- 30 there remains a need for methods and compositions which improve these systems and allow for targeting the insertion of a sequence of interest into a desirable genomic position, for stacking additional polynucleotides of interest near the desired integration site, and for producing a fertile plant, having an altered genome comprising one or more transgenic target sited for site specific integration located in a defined region of the genome of the plant.

35 BRIEF SUMMARY

[0006] Methods and compositions for introducing transgenic target sites for Site Specific Integration (SSI) into at least one target site of a double-strand-break inducing agent (referred to as double-strand break target site, or DSB target site) in a genomic window of a plant genome are disclosed. Composition and methods are also disclosed for introducing

- 40 a polynucleotide of interest into a target site of a double-strand-break inducing agent (such as but not limited to a Cas9 endonuclease) in a genomic window of a plant. Also disclosed are methods and compositions for producing a complex trait locus in a genomic window of a plant, the plant comprising at least one transgenic target site for SSI integrated in at least one double-strand break target site. The double-strand break target site can be, but is not limited to a zinc finger endonuclease target site, an engineered endonuclease target site, a meganuclease target site, a TALENs target site
- ⁴⁵ and a Cas endonuclease target site. The genomic window of said plant can optionally comprise at least one genomic locus of interest such as a trait cassette, a transgene, a mutated gene, a native gene, an edited gene or a site-specific integration (SSI) target site.

[0007] The compositions provide a plant, plant part, plant cell, or seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double-strand

- ⁵⁰ break target site, wherein said genomic window is flanked by (genetically linked to) at least a first marker and at least a second marker. The compositions further provide a plant, plant part or seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration integrated into at least one double-strand break target site, wherein said at least one transgenic target site is genetically linked to at least a first genetic marker and a second genetic marker, wherein said first genetic marker is located between a first and a second location on a plant
- ⁵⁵ physical map. The compositions further provide a plant, plant part or seed having in its genome a genomic window comprising at least one double-strand break target site, wherein said genomic window is flanked by (genetically linked to) at least a first marker and at least a second marker, and wherein said genomic window comprises a transgene. The compositions further provide a plant, plant part or seed having in its genome a genomic window comprising at least one

altered double-strand break target site, wherein said genomic window is flanked by (genetically linked to) at least a first marker and at least a second marker, and wherein said altered double-strand break target site comprises a polynucleotide of interest.

- **[0008]** Also disclosed are plants, plant part or seed having in its genome at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas endonuclease target site.
- **[0009]** Further disclosed are methods for introducing into the genome of a plant cell a transgenic target site for sitespecific integration. In one example, the method comprising: (a) providing a plant cell comprising in its genome an endogenous target site for a Cas endonuclease; (b) providing a Cas endonuclease and guide polynucleotide, wherein the Cas endonuclease is capable of forming a complex with the guide polynucleotide, wherein said complex is capable

5

- of inducing a double-strand break in said endogenous target site, and wherein the endogenous target site is located between a first and a second genomic region that is capable of guiding the Cas endonuclease of (a) to said endogenous target site; (c) providing a donor DNA comprising the transgenic target site for site-specific integration located between a first region of homology to said first genomic region and a second region of homology to said second genomic region, wherein the transgenic target site comprises a first and a second recombination site, wherein the first and the second
- ¹⁵ recombination sites are dissimilar with respect to one another; (d) contacting the plant cell with the guide polynucleotide, the donor DNA and the Cas endonuclease; and, (e) identifying at least one plant cell from (d) comprising in its genome the transgenic target site integrated at said endogenous target site.

[0010] In another example, the method comprises a method of integrating a polynucleotide of interest into a transgenic target site in the genome of a plant cell, the method comprising: (a) providing at least one plant cell comprising in its

- 20 genome a transgenic target site for site-specific integration, wherein the transgenic target site is integrated into an endogenous target site for a Cas endonuclease, and wherein the transgenic target site is, (i) a target site comprising a first and a second recombination site; or (ii) the target site of (i) further comprising a third recombination site between the first recombination site and the second recombination site, wherein the first, the second, and the third recombination sites are dissimilar with respect to one another, (b) introducing into the plant cell of (a) a transfer cassette comprising,
- (iii) the first recombination site, a first polynucleotide of interest, and the second recombination site, (iv) the second recombination site, a second polynucleotide of interest, and the third recombination sites, or (v) the first recombination site, a third polynucleotide of interest, and the third recombination sites; (c) providing a recombinate that recognizes and implements recombination at the first and the second recombination sites, at the second and the third recombination sites; or at the first and third recombination sites; and (d) selecting at least one plant cell comprising integration of the transfer cassette at the target site.
- transfer cassette at the target site.
 [0011] The compositions further provide a nucleic acid molecule comprising an RNA sequence selected from the group consisting of SEQ ID NOs: 267-307, 441-480, and any one combination thereof. In one example the DSB target site is a Cas9 endonuclease target site selected from the group of consisting of SEQ ID NO: 3-5, 7-11, 13-19, 21-23, 25-28, 30-34, 36-39, 43-47, 49-52, 54-58, 60, 63-66, 68-72, 74-78, 80-83, 87-90, 92-93, 95-98, 100-104, 317-320,
- 323-324, 327-328, 331-332, 334-337, 342-343, 346-347, 350-351, 354-355, 358-359, 365-366. 370-371, 376-377, 380-381, 384-385, 388-389, 392-393 and 396-397.
 [0012] Also disclosed are methods and compositions for producing a complex trait locus in a genomic window of a plant, the plant comprising at least one transgenic target site for site specific integration integrated in at least one double-
- strand-break target site. The double-strand-break target site can be, but is not limited to a zinc finger endonuclease target site, an engineered endonuclease target site, a meganuclease target site, a TALENs target site and a Cas endonuclease target site. The genomic window of said plant can optionally comprise at least one genomic locus of interest such as a trait cassette, a transgene, a mutated gene, a native gene, an edited gene or a site-specific integration (SSI) target site. Plant breeding techniques can be employed such that the transgenic target site for SSI and the genomic locus of interest can be bred together. In this way, multiple independent trait integrations can be generated within a
- ⁴⁵ genomic window to create a complex trait locus. The complex trait locus is designed such that its target sites comprising traits of interest and/or genomic loci of interest can segregate independently of each other, thus providing the benefit of altering a complex trait locus by breeding-in and breeding-away specific elements. Various methods can also be employed to modify the target sites such that they contain a variety of polynucleotides of interest. Also disclosed is a method of producing a complex trait locus in the genome of a plant comprising applying plant breeding techniques to a first plant
- ⁵⁰ having in its genome a genomic window of about 10 cM with at least a first transgenic target sites for Site Specific Integration (SSI) integrated into at least a first double-strand break target site (such as but not limited to a Cas9 endonuclease target site). The method comprises breeding to said first plant a second plant comprising a first genomic locus of interest (such as trait cassette, a transgene, a mutated gene, a native gene, an edited gene or a site-specific integration (SSI) target site) in the genomic window and selecting a progeny comprising said first transgenic target site for Site
- ⁵⁵ Specific Integration (SSI) integrated into said first double-strand break target site and said first genomic locus of interest, wherein said first transgenic target site and said first genomic locus have different genomic insertion sites in said progeny plant. Using such methods, various transgenic target sites and/or polynucleotides of interest can be introduced into double-strand break target sites of a genomic window. Also disclosed are methods of altering the complex trait locus by

utilizing various breeding techniques or by employing site-specific recombination techniques to add, remove, or replace double-strand break target sites, genomic loci of interest or polynucleotides of interest.

[0013] The invention is directed to a maize plant, maize plant part or maize seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double-strand-break target site, wherein said genomic window is

- flanked by:
 - a) at least a first marker comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and,
 - b) at least a second marker comprising SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and

10

45

50

55

5

wherein said double-strand-break target site is a Cas9 endonuclease target site selected from the group consisting of SEQ ID NO: 3-5 or 7-11 or an active variant, capable of being recognized and cleaved by a double strand break-inducing agent, with at least 95% sequence identity to said Cas9 endonuclease target site.

15 BRIEF DESCRIPTION OF THE DRAWINGS

[0014]

- Figure 1. Schematic of a genomic window for producing a Complex Trait Locus (CTL). The genomic window can be about 10 cM in length (genomic distance) and comprises at least one double-strand break target site. The doublestrand break target site can be, but is not limited to, Cas endonuclease target site, a zinc finger endonuclease target site, an engineered endonuclease target site, a meganuclease target site and a TALENs target site. The genomic window of said plant can optionally comprise at least one genomic locus of interest such as trait cassette, a transgene, a mutated gene, a native gene, an edited gene or a site-specific integration (SSI) target site.
- Figure 2A-2D. Schematic of the insertion of a transgenic target site for site specific integration (SSI) into a doublestrand break- target site located in a genomic window. Figure 2A show the genomic window for producing a Complex Trait Locus (CTL) of about 10 cM in length, the genomic window comprises at least one double-strand break target site (DSB target site) flanked by a DNA1 and DNA2 endogenous DNA sequence. Figure 2B shows a donor (repair) DNA for integration of a transgenic target site for SSI. Figure 2C shows a schematic of a guide RNA and Cas9
- 30 endonuclease expression cassette, either located on one molecule of located on separate molecules. Figure 2D shows a schematic of the transgenic target site for SSI integrated in the genomic window. This integration results in the alteration of the DSB target site (referred to as aDSB). FRT1 and FRT87 (or FRT6) are shown as non-limiting examples of recombination sites flanking the transgenic target site for SSI. Other recombination sites can be used. Figure 3A-3C shows a schematic of the insertion of a trait cassette into a DSB target site located in a genomic
- ³⁵ window. Figure 3A shows the genomic window for producing a CTL. Figure 3B shows a schematic of a donor (repair) DNA for integration of a trait cassette. Figure 3C shows a schematic of the trait cassette integrated in the genomic window.

Figure 4 shows a schematic of the maize genomic window (CTL1) on chromosome 1. The genomic window is about 5 cM in length and contains 31 Cas endonuclease target sites (listed above the bar diagram representing the genomic window, such as 40 CP1) located near trait A (represented by an avail). The genetic location (cM) of each of the

40 window, such as 49-CR1) located near trait A (represented by an oval). The genetic location (cM) of each of the Cas endonuclease target sites is shows below the bar diagram (for example target site 49-CR2 is located at 50.87 cM on chromosome 1).

Figure 5 shows a schematic of the maize genomic window (CTL2) on chromosome 1. The genomic window is about 4 cM in length and contains 15 Cas endonuclease target sites (listed above the bar diagram representing the genomic window, such as 62-CR1) located near trait B (represented by an oval). The genetic location (cM) of each of the Cas endonuclease target sites is shown below the bar diagram (for example target site 62-CR1 is located at 230.55 cM on chromosome 1).

Figure 6 shows a schematic of the maize genomic window (CTL3) on chromosome 3. The genomic window is about 3 cM in length and contains 15 Cas endonuclease target sites (listed above the bar diagram representing the genomic window, such as TS1). The genetic location (cM) of each of the Cas endonuclease target sites is shown below the bar diagram (for example target site TS1 is located at 4.04 cM on chromosome 3).

- Figure 7 shows a schematic of the maize genomic window (CTL4) on chromosome 10. The genomic window is about 4 cM in length and contains 15 Cas endonuclease target sites (listed above the bar diagram representing the genomic window, such as TS1). The genetic location (cM) of each of the Cas endonuclease target sites is shown below the bar diagram (for example target site TS1 is located at 120.09 cM on chromosome 10).
- Figure 8 shows a junction PCR screen for identification of insertion events at one locus on chromosome 1 of maize. A gel picture indicates the presence of insertion events at the Cas endonuclease 41-CR target site (see white bands in lanes D1 and D10). PCR reactions of HR1 and HR2 junction were loaded next to each other (white label and lane

gray label), with white label representing HR1 junction PCR, gray label representing HR2 junction PCR. Figure 9 shows a schematic of a soybean genomic window (CTL-D) on chromosome 4. The genomic window is about 4 cM in length and shows 14 Cas endonuclease target sites (represented by grey boxes). Genomic locations are indicated as cM.

⁵ Figure 10 shows a schematic of a soybean genomic window (CTL-X) on chromosome 6. The genomic window is about 5 cM in length and shows 10 Cas endonuclease target sites (represented by grey boxes). Genomic locations are indicated as cM.

Figure 11 shows a schematic of a soybean genomic window (CTL-R) on chromosome 6. The genomic window is about 4 cM in length and shows 16 Cas endonuclease target sites (represented by grey boxes). Genomic locations are indicated as cM.

Sequences

[0015]

10

SEQ ID NOs: 1-41 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL1) on chromosome 1 of maize (see also Table 1).

SEQ ID NOs: 42-61 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL2) on chromosome 1 of maize (see also Table 2).

SEQ ID NOs: 62-84 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL3) on chromosome 3 of maize (see also Table 3).
 SEQ ID NOs: 85-105 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a

genomic window (CTL4) on chromosome 10 of maize (see also Table 4). SEQ ID NOs: 106-135 and 136-146 are the nucleotide sequences of guide RNA/Cas9 DNA's used in maize.

SEQ ID NOS: 100-135 and 130-140 are the nucleotide sequences of guide RNA/Cas9 DNA's used in maize.
 SEQ ID NOS: 267-296 and 297-307 are the nucleotide sequences of guide RNA's used in maize.

SEQ ID NOs: 147-266 are the nucleotide sequences of Primers/Probes.

SEQ ID NO: 308 is the nucleotide sequence of the Cas9 gene from Streptococcus pyogenes M1 GAS (SF370).

SEQ ID NO: 309 is the amino acid sequence of SV40 amino N-terminal.

SEQ ID NO: 310 is the amino acid sequence of *Agrobacterium tumefaciens* bipartite VirD2 T-DNA border endonuclease carboxyl terminal.

SEQ ID NO: 311 is the nucleotide sequence of a maize optimized Cas9 expression cassette.

SEQ ID NO: 312 is the nucleotide sequence of a maize U6 polymerase III promoter.

SEQ ID NO: 313 is the nucleotide sequence of a soybean codon optimized Cas9 gene.

SEQ ID NO: 314 is the amino acid sequence of SV40 amino N-terminal with a SRAD linker.

- SEQ ID NO: 315 is the nucleotide sequence of GM-U6-13.1 promoter.
 SEQ ID NOs: 316-339 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL-D) on chromosome 4 of soybean (see also Table 12).
 SEQ ID NOs: 340-362 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL-X) on chromosome 6 of soybean (see also Table 13).
- SEQ ID NOs: 363-399 are the nucleotide sequences of Cas endonuclease target sites or SNP markers located in a genomic window (CTL-R) on chromosome 1 of soybean (see also Table 14).
 SEQ ID NOs: 400-413, 415-424 and 425-440 are the nucleotide sequences of guide RNA/Cas 9 DNA's used in soybean.
 - SEQ ID NO: 414 is the nucleotide sequence the soybean U6 small nuclear RNA promoters GM -U6-9.1.
- SEQ ID NOs: 441-480 are the nucleotide sequences of guide RNAs used in soybean.
 SEQ ID NOs: 481-570 are the nucleotide sequences of Primers/Probes.
 SEQ ID NO: 571 is the nucleotide sequence of a Cas9 endonuclease (genbank CS571758.1) from *S. thermophilus*.
 SEQ ID NO: 572 is the nucleotide sequence of a Cas9 endonuclease, (genbank CS571770.1) from *S. thermophilus*.
 SEQ ID NO: 573 is the nucleotide sequence of a Cas9 endonuclease, (genbank CS571785.1) from *S. agalactiae*.
 SEQ ID NO: 574 is the nucleotide sequence of a Cas9 endonuclease, (genbank CS571790.1) from *S. agalactiae*.
- SEQ ID NO: 575 is the nucleotide sequence a Cas9 endonuclease (genbank CS571790.1) from S. mutans.
 - SEQ ID NO: 576 is the nucleotide sequence of the FRT1 recombination site.
 - SEQ ID NO: 577 is the nucleotide sequence of the FRT5 recombination site.
- SEQ ID NO: 578 is the nucleotide sequence of the FRT6 recombination site.
- 55 SEQ ID NO: 579 is the nucleotide sequence of the FRT12 recombination site. SEQ ID NO: 580 is the nucleotide sequence of the FRT87 recombination site.

DETAILED DESCRIPTION

5

[0016] Many modifications and other embodiments of the disclosures set forth herein will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included providing they fall within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

- [0017] Disclosed herein are plants, plant parts, plant cells or seeds having in its genome a genomic window. The invention is concerned with maize plants. A genomic window can refers to a segment of a chromosome in the genome of a plant that is desirable for producing a complex trait locus or the segment of a chromosome comprising a complex trait locus that was produced by the methods disclosed herein. The genomic window can include, for example, one or more traits prior to producing a complex transgenic trait locus therein (see for example Figure 1). As used herein, a "trait" refers to the phenotype conferred from a particular gene or grouping of genes.
- 15 [0018] The genomic window can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more centimorgans (cM) in length. Alternatively, the genomic window can be about 1-10 cM, about 2-8 cM, about 2-5 cM, about 3-10 cM, about 3-6 cM, about 4-10 cM, about 4-7 cM, about 5-10 cM, about 5-8 cM, about 6-10 cM, about 6-9 cM, about 7-10 cM, about 8-10 cM or about 9-10 cM in length. In one example, the genomic window is about 3 centimorgans (cM) in length or about 4 cM in length, or about 5 cM in length, or about 6 cM in length, or about 10 cM in length. A "centimorgan" (cM)
- or "map unit" is the distance between two linked genes, markers, target sites, genomic loci of interest, loci, or any pair thereof, wherein 1% of the products of meiosis are recombinant. Thus, a centimorgan is equivalent to a distance equal to a 1% average recombination frequency between the two linked genes, markers, target sites, loci, genomic loci of interest or any pair thereof.
- [0019] The genomic window can comprise various components. Such components can include, for example, but not limited to, double-strand break target sites, genomic loci of interest, native genes, transgenic target sites for SSI (sitespecific integration recombination sites), mutated genes, edited genes, trait cassettes and polynucleotides of interest. The genomic window can comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or more double-strand break target sites such that each double-strand break target site has a different genomic insertion site within the genomic window. In addition, the genomic window can comprise at least
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or more genomic loci of interest each having a different genomic insertion site. By a "different genomic insertion site" is meant that each component of the genomic window (such as for example double-strand break target sites and genomic loci of interest) is inserted into the genome at a different location and as such each component can segregate independently from one another. For example, the genomic window can comprise a combination of double-strand break target sites and/or genomic loci of interest such that each target site or genomic loci of interest has a different genomic insertion site within
- genomic loci of interest such that each target site or genomic loci of interest has a different genomic insertion site within the genomic window.
 [0020] The components of the genomic windows disclosed herein have different genomic insertion sites and as such

can segregate independently from one another. As used herein, "segregate independently", is used to refer to the genetic separation of any two or more genes, transgenes, native genes, mutated genes, target sites, genomic loci of interest,

- 40 markers and the like from one another during meiosis. Assays to measure whether two genetic elements segregate independently are known in the art. As such, any two or more genes, transgenes, native genes, mutated genes, target sites, genomic loci of interest, markers and the like within a genomic window disclosed herein, have genomic insertion sites located at an appropriate distance from one another so that they generally segregate independently at a rate of about 10% or less. Thus, the components of the genomic windows disclosed herein can segregate independently from
- ⁴⁵ one another at a rate of about 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2% or 0.1%. Alternatively, the components of the genomic windows disclosed herein can segregate independently from one another at a rate of about 10-0.1%, about 10-0.5%, about 10-1%, about 10-5%, about 9-0.1%, about 9-0.5%, about 9-1 %, about 9-5%, about 8-0.1%, about 8-0.5%, about 8-1 %, about 8-4%, about 7-0.1%, about 7-0.5%, about 7-1%, about 6-0.1%, about 6-1 %, about 6-0.5%, about 6- 3%, about 5-0.1%, about 5-1 %, about 5-0.5%,
- ⁵⁰ about 4-0.1%, about 4-1%, about 4-0.5%, about 3-0.1%, about 3-1%, about 3-0.5%, about 2-0.1%, about 2-0.5%, about 1-0.1% or about 1-0.5%. For example, if the genomic window comprises a double-strand break target site and a genomic locus of interest that are about 5 cM from each other, the double-strand break target site and the genomic locus of interest would segregate independently at a rate of about 5%.
- [0021] In one example, the genomic window comprises at least five different double-strand break target sites (such as at least five Cas9 endonuclease target sites) and at least one transgenic target site for site specific integration (also referred to as transgenic SSI target site) wherein each of the Cas endonuclease target sites and the transgenic SSI target site have a different genomic insertion site and segregate independently from one another at a rate of about 10% to about 0.1%.

[0022] In some examples, the genomic window is flanked by at least a first marker and a second marker. Non-limiting examples of such markers on chromosome 1 of maize include, for example, SYN12545, SYN12536, SYN14645, PZE-101023852, PZE-101024424, SYN25022, SYN31156, SYN31166, SYN22238 or SYN20196, and PZE-101205031, PUT-163A-148951459-517, PZE-101205904, PZE-101206569 or SYN24492. Other non-limiting examples of such markers

- 5 on chromosome 3 of maize include, for example, PZE-103000166, PZE-103000238, PZE-103000307, SYN6355 or PZE-103001421, and on chromosome 10 of maize, for example, PZE-110099037, PZE-110099048, PZE-110100195, PZE-110100685 or PZE-110101412. Non-limiting examples of such markers on chromosome 4 of soybean include, for example. BARC_1.01_Gm04_45591011_C_T, BARC_1.01_Gm04_45613405_T_C, BARC 1.01 Gm04 45697256 G A, BARC_1.01_Gm04_45739051_A_C,
- 10 BARC_1.01_Gm04_45857325_T_C, BARC_1.01_Gm04_45903617_T_C, Non-limiting examples of such BARC 1.01 Gm06 46915875 T C, BARC 1.01 Gm06 47625670 C T,
- 15 BARC 1.01 Gm06 47821576 T G, BARC_1.01_Gm06_47847021_G_T, BARC_1.01_Gm06_48528885_G_T. [0023] Non-limiting examples of BARC_1.01_Gm01_6984873_T_C,
- 20 BARC_1.01_Gm01_8569887_A_G, BARC_1.01_Gm01_8674202_A_C, BARC 1.01 Gm01 9014216 T G, BARC_1.01_Gm01_28179606_A_G, BARC_1.01_Gm01_28536363_G_A, BARC_1.01_Gm01_28599526_G_A, BARC 1.01 Gm01 29284158 A G,

BARC_1.01_Gm04_45857325_T_C, BARC_1.01_Gm04_46000185_C_A or markers on chromosome 6 of BARC 1.01 Gm06 47524452 G T, BARC 1.01 Gm06 47631544 T C, BARC 1.01 Gm06 47829363 A C, BARC_1.01_Gm06_47895876_G_A, BARC_1.01_Gm06_48221293_T_C or

BARC_1.01_Gm01_7775299_G_A,

BARC_1.01_Gm01_8601858_C_T,

BARC_1.01_Gm01_8933345_C_T,

BARC 1.01 Gm01 31202345 C T,

BARC_1.01_Gm04_45800267_T_C, BARC_1.01_Gm04_45883080_A_G, BARC_1.01_Gm04_46113406_T_G. soybean include, for example, BARC 1.01 Gm06 47561262 C T, BARC 1.01 Gm06 47789229 C T, BARC 1.01 Gm06 47833095 A G,

such markers on chromosome 1 of soybean include, for example, BARC_1.01_Gm01_7856395_A_C, BARC_1.01_Gm01_8641430_C_T, BARC_1.01_Gm01_8964201_T_C, BARC_1.01_Gm01_28364595_A_G, BARC_1.01_Gm01_28913996_A_G, BARC 1.01 Gm01 31770743 C T,

- 25 BARC_1.01_Gm01_32683433_G_A, BARC_1.01_Gm01_34327255_C_T or BARC_1.01_Gm01_36994849_A_G. [0024] In the present invention the genomic window is flanked by a) at least a first marker comprising SEQ ID NO:1 (SYN12545), SEQ ID NO:2 (SYN12536), SEQ ID NO:6 (SYN14645) or SEQ ID NO:12 (PZE-101023852); and, b) at least a second marker comprising SEQ ID NO:2 (SYN12536), SEQ ID NO:6 (SYN14645) or SEQ ID NO:12 (PZE-101023852).
- 30 [0025] As used herein, a "genomic locus of interest" (plural genomic loci of interest) comprises a collection of specific polymorphisms that are inherited together. A given genomic locus can comprise, but is not limited to, a modified or edited native gene, a transgene, an altered double-strand-break target site, a native gene, or a transgenic SSI target site that can comprise dissimilar pairs of recombination sites or pairs of recombination sites that are dissimilar and have a decreased compatibility with respect to one another.
- 35 [0026] The genomic locus of interest can be, for example, any modification that confers a trait, such as a transgene or a native trait. In one example, the genomic locus of interest comprises a native trait. As used herein, a "native trait" refers to a trait found in nature. In another example, the genomic locus of interest comprises a transgene. [0027] The number of genomic loci of interest that could be crossed into a genomic window of a plant is at least 1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or more. Any desired trait can be introduced into the genome at a given genomic locus 40 of interest. Such traits include, but are not limited to, traits conferring insect resistance, disease resistance, herbicide tolerance, male sterility, abiotic stress tolerance, altered phosphorus, altered antioxidants, altered fatty acids, altered essential amino acids, altered carbohydrates, or sequences involved in site-specific recombination.

[0028] In specific examples, a given genomic locus of interest is associated with a desirable and/or favorable phenotype in a plant. For example, traits that confer insect resistance, disease resistance or herbicide tolerance would be desirable 45 in a plant. In other examples, the genomic locus is not associated with traits that affect the agronomic characteristics of the plant.

[0029] A given genomic locus of interest has its own genomic insertion site within the genomic window. For example, a genomic locus of interest and a double-strand-break target site within the genomic window will have different genomic insertion sites within the genome. A given double-strand-break target site can be found within about 10 cM, 9 cM, 8 cM,

- 50 7 cM, 6 cM, 5 cM, 4 cM, 3 cM, 2 cM, 1 cM, 0.9 cM, 0.8 cM, 0.7 cM, 0.6 cM, 0.5 cM, 0.4 cM, 0.3 cM, 0.2 cM, 0.1 cM or 0.05 cM from the genomic locus of interest such that the double-strand-break target site and genomic locus of interest have different genomic insertion sites. Alternatively, a given double-strand-break target site can be found within about 0.5-10 cM, about 1-10 cM, about 2-10 cM, about 2-5 cM, about 3-10 cM, about 3-6 cM, about 4-10 cM, about 4-7 cM, about 5-10 cM, about 5-8 cM, about 6-10 cM, about 6-9 cM, about 7-10 cM, about 8-10 cM, about 9-10 cM, about 0.1-0.5
- 55 cM, about 0.1-1 cM, about 0.1-2 cM, about 0.1-3 cM, about 0.1-4 cM, about 0.1-5 cM, about 0.1-6 cM, about 0.1-7 cM about 0.1-8 cM, about 0.1-9 cM or about 0.1-10 cM from the genomic locus of interest such that the double-strand-break target site and genomic locus of interest have different genomic insertion sites.

[0030] As used herein, the terms "double-strand-break target site", "DSB target site", "DSB target sequence", and

"target site for a double-strand-break-inducing-agent" are used interchangeably and refer to a polynucleotide sequence in the genome of a plant cell (including choloroplastic and mitochondrial DNA) that comprises a recognition sequence for a double-strand-break-inducing agent at which a double-strand-break is induced in the cell genome by a doublestrand-break-inducing-agent.

- ⁵ **[0031]** As used herein, the terms "altered double-strand-break target site", "altered DSB target site", "aDSB target site", and "altered target site for a double-strand-break-inducing-agent" are used interchangeably and refer to a DSB target sequence comprising at least one alteration when compared to a non-altered DSB target sequence. "Alterations" can include, for example: (i) replacement of at least one nucleotide, (ii) a deletion of at least one nucleotide, (iii) an insertion of at least one nucleotide, or (iv) any combination of (i)-(iii).
- ¹⁰ **[0032]** The DSB target site can be an endogenous site in the plant genome, or alternatively, the DSB target site can be heterologous to the plant and thereby not be naturally occurring in the genome, or the DSB target site can be found in a heterologous genomic location compared to where it occurs in nature. As used herein, the term "endogenous DSB target site" refers to an DSB target site that is endogenous or native to the genome of a plant and is located at the endogenous or native position of that DSB target site in the genome of the plant.
- **[0033]** The length of the DSB target site can vary, and includes, for example, DSB target sites that are at least 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 or more nucleotides in length. It is further possible that the DSB target site could be palindromic, that is, the sequence on one strand reads the same in the opposite direction on the complementary strand. The nick/cleavage site could be within the recognition
- ²⁰ sequence or the nick/cleavage site could be outside of the recognition sequence. In another variation, the cleavage could occur at nucleotide positions immediately opposite each other to produce a blunt end cut or, in other cases, the incisions could be staggered to produce single-stranded overhangs, also called "sticky ends", which can be either 5' overhangs, or 3' overhangs.
- [0034] A "double-strand-break-inducing agent" (also referred to as "DSB-inducing-agent") refers to any nuclease which produces a double-strand break in the target sequence. The double-strand break target site can be, but is not limited to a zinc finger endonuclease target site, an engineered endonuclease target site, a meganuclease target site, a TALENs target site and a Cas endonuclease target site.

[0035] Any nuclease that induces a double-strand break into a desired DSB target site can be used in the methods and compositions disclosed herein. A naturally-occurring or native endonuclease can be employed so long as the endonuclease induces a double-strand break in a desired DSB target site. Alternatively, a modified or engineered endonuclease can be employed. An "engineered endonuclease" refers to an endonuclease that is engineered (modified or derived) from its native form to specifically recognize and induce a double-strand break in the desired DSB target site. Thus, an engineered endonuclease can be derived from a native, naturally-occurring endonuclease or it could be

artificially created or synthesized. The modification of the endonuclease can be as little as one nucleotide. Producing a
 double-strand break in a DSB target site or other DNA can be referred to herein as "cutting" or "cleaving" the DSB target site or other DNA.

[0036] Active variants and fragments of the DSB target sites (i.e. SEQ ID NO: 3-5, 7-11, 13-19, 21-23, 25-28, 30-34, 36-39, 43-47, 49-52, 54-58, 60, 63-66, 68-72, 74-78, 80-83, 87-90, 92-93, 95-98, 100-104, 317-320, 323-324, 327-328, 331-332, 334-337, 342-343, 346-347, 350-351, 354-355, 358-359, 365-366. 370-371, 376-377, 380-381, 384-385,

- 40 388-389, 392-393 and 396-397) can comprise at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the given DSB target site, wherein the active variants retain biological activity and hence are capable of being recognized and cleaved by an DSB-inducing-agent. Assays to measure the double-strand break of a DSB target site by an endonuclease are known in the art and generally measure the ability of an endonuclease to cut the DSB target site.
- ⁴⁵ [0037] Endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain, and include restriction endonucleases that cleave DNA at specific sites without damaging the bases. Restriction endonucleases include Type I, Type II, Type III, and Type IV endonucleases, which further include subtypes. In the Type I and Type III systems, both the methylase and restriction activities are contained in a single complex. Restriction enzymes are further described and classified, for example in the REBASE database (webpage at rebase.neb.com; Roberts et al., (2003)
- ⁵⁰ Nucleic Acids Res 31:418-20), Roberts et al., (2003) Nucleic Acids Res 31:1805-12, and Belfort et al., (2002) in Mobile DNA II, pp. 761-783, Eds. Craigie et al., (ASM Press, Washington, DC).
 [0038] Endonucleases also include meganucleases, also known as homing endonucleases (HEases), which like restriction endonucleases, bind and cut at a specific DSB target site, however the DSB target sites for meganucleases are typically longer, about 18 bp or more. Meganuclease domains, structure and function are known, see for example,
- ⁵⁵ Guhan and Muniyappa (2003) Crit Rev Biochem Mol Biol 38:199-248; Lucas et al., (2001) Nucleic Acids Res 29:960-9; Jurica and Stoddard, (1999) Cell Mol Life Sci 55:1304-26; Stoddard, (2006) Q Rev Biophys 38:49-95; and Moure et al., (2002) Nat Struct Biol 9:764. In some examples a naturally occurring variant, and/or engineered derivative meganuclease is used. Any meganuclease can be used herein, including, but not limited to, I-Scell, I-Scell, I-Scell, I-ScelV, I-SceV, I-

SceVI, I-SceVII, I-CeuI, I-CeuAIIP, I-Crel, I-CrepsbIP, I-CrepsbIIP, I-CrepsbIIP, I-CrepsbIVP, I-Tiil, I-PpoI, PI-PspI, F-Scel, F-Scell, F-Suvl, F-Tevl, F-Tevl, I-Amal, I-Anil, I-Chul, I-Cmoel, I-Cpal, I-Cpall, I-Csml, I-Cvul, I-CvuAIP, I-Ddil, I-Ddill, I-Dirl, I-Dmol, I-Hmul, I-Hmull, I-HsNIP, I-Llal, I-Msol, I-Naal, I-Nanl, I-NcIIP, I-NgrIP, I-Nitl, I-Njal, I-Nsp236IP, I-Pakl, I-PboIP, I-PcuIP, I-PcuAI, I-PcuVI, I-PgrIP, I-PobIP, I-Porl, I-PorlIP, I-PbpIP, I-SpBetaIP, I-Scal, I-SexIP, I-SneIP,

- 5 I-SpomI, I-SpomCP, I-SpomIP, I-SpomIP, I-SquIP, I-Ssp6803I, I-SthPhiJP, I-SthPhiST3P, I-SthPhiSTe3bP, I-TdeIP, I-Tevl, I-TevlI, I-TevlII, I-UarAP, I-UarHGPAIP, I-UarHGPA13P, I-VinIP, I-ZbiIP, PI-MtuI, PI-MtuHIP PI-MtuHIIP, PI-PfuI, PI-Pfull, PI-Pkol, PI-Pkoll, PI-Rma43812IP, PI-SpBetaIP, PI-Scel, PI-Tful, PI-Tfull, PI-Thyl, PI-Tlill, PI-Tlill, or any active variants or fragments thereof.
- [0039] TAL effector nucleases can be used to make double-strand breaks at specific target sequences in the genome 10 of a plant or other organism. TAL effector nucleases can be created by fusing a native or engineered transcription activator-like (TAL) effector, or functional part thereof, to the catalytic domain of an endonuclease, such as, for example, Fokl. The unique, modular TAL effector DNA binding domain allows for the design of proteins with potentially any given DNA recognition specificity. Thus, the DNA binding domains of the TAL effector nucleases can be engineered to recognize specific DNA target sites and thus, used to make double-strand breaks at desired target sequences. See, WO
- 15 2010/079430; Morbitzer et al. (2010) PNAS 10.1073/pnas.1013133107; Scholze & Boch (2010) Virulence 1:428-432; Christian et al. Genetics (2010) 186:757-761; Li et al. (2010) Nuc. Acids Res. (2010) doi:10.1093/nar/gkq704; and Miller et al. (2011) Nature Biotechnology 29:143-148. [0040] CRISPR loci (Clustered Regularly Interspaced Short Palindromic Repeats) (also known as SPIDRs--SPacer

Interspersed Direct Repeats) constitute a family of recently described DNA loci. CRISPR loci consist of short and highly 20 conserved DNA repeats (typically 24 to 40 bp, repeated from 1 to 140 times-also referred to as CRISPR-repeats) which

- are partially palindromic. The repeated sequences (usually specific to a species) are interspaced by variable sequences of constant length (typically 20 to 58 by depending on the CRISPR locus (WO2007/025097 published March 1, 2007). CRISPR loci were first recognized in E. coli (Ishino et al. (1987) J. Bacterial. 169:5429-5433; Nakata et al. (1989) J. Bacterial. 171:3553-3556). Similar interspersed short sequence repeats have been identified in Haloferax mediterranei,
- 25 Streptococcus pyogenes, Anabaena, and Mycobacterium tuberculosis (Groenen et al. (1993) Mol. Microbiol. 10:1057-1065; Hoe et al. (1999) Emerg. Infect. Dis. 5:254-263; Masepohl et al. (1996) Biochim. Biophys. Acta 1307:26-30; Mojica et al. (1995) Mol. Microbiol. 17:85-93). The CRISPR loci differ from other SSRs by the structure of the repeats, which have been termed short regularly spaced repeats (SRSRs) (Janssen et al. (2002) OMICS J. Integ. Biol. 6:23-33; Mojica et al. (2000) Mol. Microbiol. 36:244-246). The repeats are short elements that occur in clusters, that are always
- 30 regularly spaced by variable sequences of constant length (Mojica et al. (2000) Mol. Microbiol. 36:244-246). [0041] Cas gene relates to a gene that is generally coupled, associated or close to or in the vicinity of flanking CRISPR loci. The terms "Cas gene", "CRISPR-associated (Cas) gene" are used interchangeably herein. A comprehensive review of the Cas protein family is presented in Haft et al. (2005) Computational Biology, PLoS Comput Biol 1(6): e60. doi:10.1371/journal.pcbi.0010060. As described therein, 41 CRISPR-associated (Cas) gene families are described, in
- 35 addition to the four previously known gene families. It shows that CRISPR systems belong to different classes, with different repeat patterns, sets of genes, and species ranges. The number of Cas genes at a given CRISPR locus can vary between species.

[0042] Cas endonuclease relates to a Cas protein encoded by a Cas gene, wherein said Cas protein is capable of introducing a double strand break into a DNA target sequence. The Cas endonuclease is guided by a guide polynucleotide

- 40 to recognize and optionally introduce a double strand break at a specific target site into the genome of a cell (U.S. Provisional Application No. 62/023239, filed July 11, 2014). The guide polynucleotide/Cas endonuclease system includes a complex of a Cas endonuclease and a guide polynucleotide that is capable of introducing a double strand break into a DNA target sequence. The Cas endonuclease unwinds the DNA duplex in close proximity of the genomic target site and cleaves both DNA strands upon recognition of a target sequence by a guide RNA if a correct protospacer-adjacent
- 45 motif (PAM) is approximately oriented at the 3' end of the target sequence. [0043] The Cas endonuclease gene can be Cas9 endonuclease, or a functional fragment thereof, such as but not limited to, Cas9 genes listed in SEQ ID NOs: 462, 474, 489, 494, 499, 505, and 518 of WO2007/025097 published March 1, 2007. The Cas endonuclease gene can be any Cas9 endonuclease of a Streptococcus pyogenes, a Streptococcus thermophilus, an Streptococcus agalactiae or a Streptococcus mutans, such as but not limited to SEQ ID Nos:
- 50 571-575. The Cas endonuclease gene can be a plant, maize or soybean optimized Cas9 endonuclease, such as but not limited to a plant codon optimized streptococcus pyogenes Cas9 gene that can recognize any genomic sequence of the form N(12-30)NGG. The Cas endonuclease can be introduced directly into a cell by any method known in the art, for example, but not limited to transient introduction methods, transfection and/or topical application. [0044] In one example, the DSB target site is a Cas9 endonuclease target site selected from the group consisting of
- 55 SEQ ID NOs: 3-5, 7-11, 13-19, 21-23, 25-28, 30-34, 36-39, 43-47, 49-52, 54-58, 60, 63-66, 68-72, 74-78, 80-83, 87-90, 92-93, 95-98, 100-104, 317-320, 323-324, 327-328, 331-332, 334-337, 342-343, 346-347, 350-351, 354-355, 358-359, 365-366. 370-371, 376-377, 380-381, 384-385, 388-389, 392-393 and 396-397.

[0045] In one example, the composition is plant, plant part or seed having in its genome a genomic window comprising

at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas9 endonuclease target site, wherein said genomic window is flanked by at least a first and a second marker. The plant can be, but is not limited to, a soybean or maize plant having any genomic window described herein.

BARC_1.01_Gm01_8641430_C_T,

BARC_1.01_Gm01_8964201_T_C,

BARC_1.01_Gm01_28364595_A_G,

BARC_1.01_Gm01_28913996_A_G,

BARC 1.01 Gm01 31770743 C T,

BARC 1.01 Gm01 7856395 A C,

BARC_1.01_Gm01_8641430_C_T,

BARC 1.01 Gm01 8964201 T C,

BARC 1.01 Gm01 28364595 A G,

- [0046] In one example, the plant is a soybean plant, soybean plant part or soybean seed having in its genome a 5 genomic window comprising at least one transgenic target site for site specific integration integrated into at least one Cas9 endonuclease target site, wherein said at least one transgenic target site is genetically linked to at least a first genetic marker and a second genetic marker, wherein said first genetic marker is selected from the group consisting of BARC_1.01_Gm01_7775299_G_A, BARC_1.01_Gm01_6984873_T_C, BARC_1.01_Gm01_7856395_A_C,
- BARC 1.01 Gm01 8569887 A G, BARC_1.01_Gm01_8601858_C_T, 10 BARC_1.01_Gm01_8674202_A_C, BARC_1.01_Gm01_8933345_C_T, BARC_1.01_Gm01_28179606_A_G, BARC_1.01_Gm01_9014216_T_G, BARC 1.01 Gm01 28536363 G A, BARC 1.01 Gm01 28599526 G A, BARC 1.01 Gm01 29284158 A G, BARC 1.01 Gm01 32683433 G A, or BARC 1.01 Gm01 34327255 C T; and said second genetic marker is select-
- 15 ed from the group consisting BARC_1.01_Gm01_8569887_A_G, BARC_1.01_Gm01_8674202_A_C, BARC 1.01 Gm01 9014216 T G, BARC_1.01_Gm01_28536363_G_A, 20
- BARC 1.01 Gm01 31202345 C T, of BARC 1.01 Gm01 7775299 G A, BARC_1.01_Gm01_8601858_C_T, BARC 1.01 Gm01 8933345 C T, BARC 1.01 Gm01 28179606 A G, BARC_1.01_Gm01_28599526_G_A,
 - BARC_1.01_Gm01_28913996_A_G, BARC_1.01_Gm01_31202345_C_T, BARC_1.01_Gm01_29284158_A_G, BARC_1.01_Gm01_31770743_C_T, BARC_1.01_Gm01_32683433_G_A, BARC_1.01_Gm01_34327255_C_T, or BARC_1.01_Gm01_36994849_A_G. [0047] In one example, the plant is a soybean plant, soybean plant part or soybean seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration integrated into at least one
- Cas9 endonuclease target site, wherein said at least one transgenic target site is genetically linked to at least a first 25 genetic marker and a second genetic marker, wherein said first genetic marker is located between Gm01:6984873 and Gm01:34327255 on the soybean physical map, wherein said second genetic marker is located between Gm01:7775299 and Gm01:36994849 on the soybean physical map.

[0048] In one example, the plant is a maize plant, maize plant part or maize seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas9 30 endonuclease target site, wherein said genomic window is flanked by at least a first and a second marker selected from the group consisting of: SYN12545, SYN12536, SYN14645, PZE-101023852, PZE-101024424, SYN25022, SYN31156, SYN31166, SYN22238 or SYN20196, PZE-101205031, PUT-163A-148951459-517, PZE-101205904, PZE-101206569

- or SYN24492, PZE-103000166, PZE-103000238, PZE-103000307, SYN6355 or PZE-103001421, PZE-110099037, PZE-110099048, PZE-110100195, PZE-110100685 and PZE-110101412. 35 [0049] The present invention is directed to a maize plant, maize plant part or maize seed having in its genome a
- genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double-strand-break target site, wherein said genomic window is flanked by:
 - a) at least a first marker comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and,
- 40 b) at least a second marker comprising SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and

wherein said double-strand-break target site is a Cas9 endonuclease target site selected from the group consisting of SEQ ID NO: 3-5 or 7-11 or an active variant, capable of being recognized and cleaved by a double strand break-inducing agent, with at least 95% sequence identity to said Cas9 endonuclease target site.

- 45 [0050] In another example, the plant is a soybean plant, soybean plant part or soybean seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas9 endonuclease target site, wherein said genomic window is flanked by at least a first and a second marker selected from the group consisting of:, BARC 1.01 Gm04 45591011 C T, BARC 1.01 Gm04 45613405 T C, BARC 1.01 Gm04 45800267 T C, BARC 1.01 Gm04 45697256 G A, BARC 1.01 Gm04 45739051 A C,
- 50 BARC_1.01_Gm04_45857325_T_C, BARC_1.01_Gm04_45857325_T_C, BARC_1.01_Gm04_45883080_A_G, BARC 1.01 Gm04 45903617 T C, BARC 1.01 Gm04 46000185 C A or BARC 1.01 Gm04 46113406 T G, BARC 1.01 Gm06 46915875 T C, BARC 1.01 Gm06 47524452 G T, BARC 1.01 Gm06 47561262 C T, BARC 1.01 Gm06 47625670 C T, BARC 1.01 Gm06 47631544 T C, BARC 1.01 Gm06 47789229 C T, BARC 1.01 Gm06 47821576 T G, BARC 1.01 Gm06 47829363 A C, BARC_1.01_Gm06_47833095_A_G, 55 BARC_1.01_Gm06_47847021_G_T, BARC_1.01_Gm06_47895876_G_A, BARC_1.01_Gm06_48221293_T_C or BARC 1.01 Gm01 6984873 T C, BARC_1.01_Gm01_7775299_G_A, BARC_1.01_Gm06_48528885_G_T, BARC 1.01 Gm01 7856395 A C, BARC 1.01 Gm01 8569887 A G, BARC 1.01 Gm01 8601858 C T, BARC_1.01_Gm01_8674202_A_C, BARC_1.01_Gm01_8641430_C_T, BARC_1.01_Gm01_8933345_C_T,

 BARC_1.01_Gm01_8964201_T_C,
 BARC_1.01_Gm01_9014216_T_G,
 BARC_1.01_Gm01_28179606_A_G,

 BARC_1.01_Gm01_28364595_A_G,
 BARC_1.01_Gm01_28536363_G_A,
 BARC_1.01_Gm01_28599526_G_A,

 BARC_1.01_Gm01_28913996_A_G,
 BARC_1.01_Gm01_29284158_A_G,
 BARC_1.01_Gm01_31202345_C_T,

 BARC_1.01_Gm01_31770743_C_T,
 BARC_1.01_Gm01_32683433_G_A,
 BARC_1.01_Gm01_34327255_C_T and

 BARC_1.01_Gm01_36994849_A_G.
 BARC_1.01_Gm01_32683433_G_A,
 BARC_1.01_Gm01_34327255_C_T and

- ⁵ BARC_1.01_Gm01_36994849_A_G.
 [0051] In one example, the plant is a soybean or maize plant, wherein the genomic window described herein is not more than 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 5, 10 cM in length. In the maize plant, maize plant part or maize seed of the invention the genomic window is not more than 0.1, 0.2, 0.3, 0.4, 0.5, 1 or 2 cM in length.
- [0052] In one example, the plant is a soybean or maize plant, wherein the genomic window comprises a transgene, wherein the transgene confers a trait selected from the group consisting of herbicide tolerance, insect resistance, disease resistance, male sterility, site-specific recombination, abiotic stress tolerance, altered phosphorus, altered antioxidants, altered fatty acids, altered essential amino acids, altered carbohydrates, herbicide tolerance, insect resistance and disease resistance. Such maize plants are according to the invention.
- [0053] In one example, the plant is a soybean or maize plant, wherein the genomic window comprises further comprises at least a second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, thirteenth, fourteenth, fifteenth, or sixteenth transgenic target site for site specific integration integrated into at least a second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, thirteenth, fourteenth, fifteenth, or sixteenth double-strand-break target site.
- [0054] In one example which includes embodiments of the invention, the plant is a soybean or maize plant, wherein the genomic window comprises at least one transgenic SSI target site integrated in a Cas9 endonuclease site, wherein said at least one transgenic target site for site specific integration comprises a first recombination site and a second recombination site, wherein said first and said second recombination site are dissimilar with respect to one another.
- [0055] In one example which includes embodiments of the invention, the plant is a soybean or maize plant, wherein the genomic window comprises at least one transgenic SSI target site integrated in a Cas9 endonuclease site, wherein said at least one transgenic target site for site specific integration further comprises a polynucleotide of interest flanked by said first recombination site and said second recombination site.

[0056] As used herein, the term "guide polynucleotide", relates to a polynucleotide sequence that can form a complex with a Cas endonuclease (such as but not limited to a Cas9 endonuclease) and enables the Cas endonuclease to recognize and optionally cleave a DNA target site (U.S. Provisional Application No. 62/023239, filed July 11, 2014). The

- ³⁰ guide polynucleotide can be a single molecule or a double molecule. The guide polynucleotide sequence can be a RNA sequence, a DNA sequence, or a combination thereof (a RNA-DNA combination sequence). Optionally, the guide polynucleotide can comprise at least one nucleotide, phosphodiester bond or linkage modification such as, but not limited, to Locked Nucleic Acid (LNA), 5-methyl dC, 2,6-Diaminopurine, 2'-Fluoro A, 2'-Fluoro U, 2'-O-Methyl RNA, phosphorothioate bond, linkage to a cholesterol molecule, linkage to a polyethylene glycol molecule, linkage to a spacer 18
- 35 (hexaethylene glycol chain) molecule, or 5' to 3' covalent linkage resulting in circularization. A guide polynucleotide that solely comprises of ribonucleic acids is also referred to as a "guide RNA". A guide RNA can include a fusion of two RNA molecules, a crRNA (CRISPR RNA) comprising a variable targeting domain, and a tracrRNA. In one example, the guide RNA comprises a variable targeting domain of 12 to 30 nucleotide sequences and a RNA fragment that can interact with a Cas endonuclease.
- 40 [0057] The guide polynucleotide can be a double molecule (also referred to as duplex guide polynucleotide) comprising a first nucleotide sequence domain (referred to as Variable Targeting domain or VT domain) that is complementary to a nucleotide sequence in a target DNA and a second nucleotide sequence domain (referred to as Cas endonuclease recognition domain or CER domain) that interacts with a Cas endonuclease polypeptide. The CER domain of the double molecule guide polynucleotide comprises two separate molecules that are hybridized along a region of complementarity.
- ⁴⁵ The two separate molecules can be RNA, DNA, and/or RNA-DNA- combination sequences. In some examples, the first molecule of the duplex guide polynucleotide comprising a VT domain linked to a CER domain is referred to as "crDNA" (when composed of a contiguous stretch of DNA nucleotides) or "crRNA" (when composed of a contiguous stretch of RNA nucleotides), or "crDNA-RNA" (when composed of a contiguous stretch of a combination of DNA and RNA nucleotides). The crNucleotide can comprise a fragment of the cRNA naturally occurring in Bacteria and Archaea. In one example, the size of the
- fragment of the cRNA naturally occurring in Bacteria and Archaea that is present in a crNucleotide disclosed herein can range from, but is not limited to, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more nucleotides. In some examples the second molecule of the duplex guide polynucleotide comprising a CER domain is referred to as "tracrRNA" (when composed of a contiguous stretch of RNA nucleotides) or "tracrDNA" (when composed of a contiguous stretch of DNA nucleotides) or "tracrDNA-RNA" (when composed of a combination of DNA and RNA nucleotides In one
- ⁵⁵ example, the RNA that guides the RNA/ Cas9 endonuclease complex, is a duplexed RNA comprising a duplex crRNAtracrRNA.

[0058] The guide polynucleotide can also be a single molecule comprising a first nucleotide sequence domain (referred to as Variable Targeting domain or VT domain) that is complementary to a nucleotide sequence in a target DNA and a

second nucleotide domain (referred to as <u>Cas</u> endonuclease recognition domain or CER domain) that interacts with a Cas endonuclease polypeptide. By "domain" it is meant a contiguous stretch of nucleotides that can be RNA, DNA, and/or RNA-DNA-combination sequence. The VT domain and / or the CER domain of a single guide polynucleotide can comprise a RNA sequence, a DNA sequence, or a RNA-DNA-combination sequence. In some examples the single

- ⁵ guide polynucleotide comprises a crNucleotide (comprising a VT domain linked to a CER domain) linked to a tracrNucleotide (comprising a CER domain), wherein the linkage is a nucleotide sequence comprising a RNA sequence, a DNA sequence, or a RNA-DNA combination sequence. The single guide polynucleotide being comprised of sequences from the crNucleotide and tracrNucleotide may be referred to as "single guide RNA" (when composed of a contiguous stretch of RNA nucleotides) or "single guide DNA" (when composed of a contiguous stretch of DNA nucleotides) or "single guide DNA"
- RNA-DNA" (when composed of a combination of RNA and DNA nucleotides). In one example of the disclosure, the single guide RNA comprises a cRNA or cRNA fragment and a tracrRNA or tracrRNA fragment of the type II CRISPR/Cas system that can form a complex with a type II Cas endonuclease, wherein said guide RNA/Cas endonuclease complex can direct the Cas endonuclease to a plant genomic target site, enabling the Cas endonuclease to introduce a double strand break into the genomic target site. One aspect of using a single guide polynucleotide versus a duplex guide
- ¹⁵ polynucleotide is that only one expression cassette needs to be made to express the single guide polynucleotide. [0059] The term "variable targeting domain" or "VT domain" is used interchangeably herein and includes a nucleotide sequence that is complementary to one strand (nucleotide sequence) of a double strand DNA target site. The % complementation between the first nucleotide sequence domain (VT domain) and the target sequence can be at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 63%, 65%, 66%, 67%, 68%, 69%, 70%,
- ²⁰ 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%. The variable target domain can be at least 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides in length. In some examples, the variable targeting domain comprises a contiguous stretch of 12 to 30 nucleotides. The variable targeting domain can be composed of a DNA sequence, a RNA sequence, a modified DNA sequence, a modified RNA sequence, or any combination thereof.
- [0060] The term "Cas endonuclease recognition domain" or "CER domain" of a guide polynucleotide is used interchangeably herein and includes a nucleotide sequence (such as a second nucleotide sequence domain of a guide polynucleotide), that interacts with a Cas endonuclease polypeptide. The CER domain can be composed of a DNA sequence, a RNA sequence, a modified DNA sequence, a modified RNA sequence (see for example modifications described herein), or any combination thereof.
- 30 [0061] The nucleotide sequence linking the crNucleotide and the tracrNucleotide of a single guide polynucleotide can comprise a RNA sequence, a DNA sequence, or a RNA-DNA combination sequence. In one example, the nucleotide sequence linking the crNucleotide and the tracrNucleotide of a single guide polynucleotide can be at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
- ³⁵ 71, 72, 73, 74, 75, 76, 77, 78, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100 nucleotides in length. In another example, the nucleotide sequence linking the crNucleotide and the tracrNucleotide of a single guide polynucleotide can comprise a tetraloop sequence, such as, but not limiting to a GAAA tetraloop sequence. [0062] Nucleotide sequence modification of the guide polynucleotide, VT domain and/or CER domain can be selected from, but not limited to, the group consisting of a 5' cap, a 3' polyadenylated tail, a riboswitch sequence, a stability control
- 40 sequence, a sequence that forms a dsRNA duplex, a modification or sequence that targets the guide poly nucleotide to a subcellular location, a modification or sequence that provides for tracking, a modification or sequence that provides a binding site for proteins, a Locked Nucleic Acid (LNA), a 5-methyl dC nucleotide, a 2,6-Diaminopurine nucleotide, a 2'-Fluoro A nucleotide, a 2'-Fluoro U nucleotide; a 2'-O-Methyl RNA nucleotide, a phosphorothioate bond, linkage to a cholesterol molecule, linkage to a polyethylene glycol molecule, linkage to a spacer 18 molecule, a 5' to 3' covalent
- ⁴⁵ linkage, or any combination thereof. These modifications can result in at least one additional beneficial feature, wherein the additional beneficial feature is selected from the group of a modified or regulated stability, a subcellular targeting, tracking, a fluorescent label, a binding site for a protein or protein complex, modified binding affinity to complementary target sequence, modified resistance to cellular degradation, and increased cellular permeability.
 [0063] The DSB-inducing agent can be provided via a polynucleotide encoding the nuclease. Such a polynucleotide
- 50 encoding a nuclease can be modified to substitute codons having a higher frequency of usage in a plant, as compared to the naturally occurring polynucleotide sequence. For example the polynucleotide encoding the DSB-inducing agent can be modified to substitute codons having a higher frequency of usage in a maize or soybean plant, as compared to the naturally occurring polynucleotide sequence.
- [0064] Active variants and fragments of DSB-inducing agent i.e. an engineered endonuclease) can comprise at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the native endonuclease, wherein the active variants retain the ability to cut at a desired DSB target site and hence retain double-strand-break-inducing activity. Assays for double-strand-break-inducing activity are known and generally measure the overall activity and specificity of the endonuclease on DNA substrates containing the DSB target site.

[0065] The DSB-inducing agent may be introduced by any means known in the art. For example, a plant having the DSB target site in its genome is disclosed. The DSB-inducing agent may be transiently expressed or the polypeptide itself can be directly provided to the cell. Alternatively, a nucleotide sequence capable of expressing the DSB-inducing agent may be stably integrated into the genome of the plant. In the presence of the corresponding DSB target site and

- the DSB-inducing agent, the donor DNA is inserted into the transformed plant's genome. Alternatively, the components of the system may be brought together by sexually crossing transformed plants. Thus a sequence encoding the DSB-inducing agent and/or target site can be sexually crossed to one another to allow each component of the system to be present in a single plant. The DSB-inducing agent may be under the control of a constitutive or inducible promoter. Such promoters of interest are discussed in further detail elsewhere herein.
- 10 [0066] Methods and compositions are disclosed herein which establish and use plants, plant parts, plant cells and seeds having stably incorporated into their genome a transgenic target site for site-specific integration (also referred to as transgenic SSI target site) where the transgenic SSI target site is integrated into the target site of a DSB-inducing agent. As used herein, a transgenic SSI target site is "integrated" into a DSB target site when a DSB-inducing agent induces a double-strand break in the DSB target site and a homologous recombination event thereby inserts the transgenic
- SSI target site within the boundaries of the original DSB target site (see for example Figure 2A-2D). It is recognized that the position within a given DSB target site in which the transgenic SSI target integrates will vary depending on where the double strand break is induced by the DSB-inducing agent. The sequence of the DSB target site need not immediately flank the boundaries of the transgenic SSI target. For example, sequences 5' and 3' to the transgenic SSI target found on the donor DNA may also be integrated into the DSB target site.
- ²⁰ **[0067]** As outlined above, plants, plant cells and seeds having a transgenic SSI target site integrated at a DSB target site are disclosed herein.

[0068] In one example, the composition is a plant, plant part or seed having in its genome at least one transgenic target site for site specific integration (SSI) integrated into at least one Cas endonuclease target site. In one example, the Cas endonuclease target site is a Cas9 endonuclease target site. In one example, the plant is a monocot or a dicot.

- ²⁵ The invention provides a maize plant, maize plant part or maize seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double-strand-break target site, wherein said genomic window is flanked by:
 - a) at least a first marker comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and,
 - b) at least a second marker comprising SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and

30

wherein said double-strand-break target site is a Cas9 endonuclease target site selected from the group consisting of SEQ ID NO: 3-5 or 7-11 or an active variant, capable of being recognized and cleaved by a double strand break-inducing agent, with at least 95% sequence identity to said Cas9 endonuclease target site.

- 35 [0069] Various methods can be used to integrate the transgenic SSI target site at the DSB target site. Such methods employ homologous recombination to provide integration of the transgenic SSI target site at the endonuclease DSB target site. In the methods disclosed herein, the transgenic SSI target site is provided to the plant cell in a donor DNA construct. A "donor DNA" (also referred to as Repair DNA) can include a DNA construct that comprises a transgenic SSI target site for site-specific integration. The donor DNA construct can further comprise a first and a second region of
- 40 homology that flank the transgenic SSI target site sequence (see for example Figure 2B). The first and second regions of homology of the donor DNA share homology to a first and a second genomic region, respectively, present in or flanking the DSB target site of the plant genome. By "homology" is meant DNA sequences that are similar. For example, a "region of homology to a genomic region" that is found on the donor DNA is a region of DNA that has a similar sequence to a given "genomic region" in the plant genome. A region of homology can be of any length that is sufficient to promote
- ⁴⁵ homologous recombination at the cleaved DSB target site. For example, the region of homology can comprise at least 5-10, 5-15, 5-20, 5-25, 5-30, 5-35, 5-40, 5-45, 5- 50, 5-55, 5-60, 5-65, 5- 70, 5-75, 5-80, 5-85, 5-90, 5-95, 5-100, 5-200, 5-300, 5-400, 5-500, 5-600, 5-700, 5-800, 5-900, 5-1000, 5-1100, 5-1200, 5-1300, 5-1400, 5-1500, 5-1600, 5-1700, 5-1800, 5-1900, 5-2000, 5-2100, 5-2200, 5-2300, 5-2400, 5-2500, 5-2600, 5-2700, 5-2800. 5-2900, 5-3000, 5-3100 or more bases in length such that the region of homology has sufficient homology to undergo homologous recombination
- with the corresponding genomic region. "Sufficient homology" indicates that two polynucleotide sequences have sufficient structural similarity to act as substrates for a homologous recombination reaction.
 [0070] As used herein, a "genomic region" is a segment of a chromosome in the genome of a plant cell that is present on either side of the DSB target site or, alternatively, also comprises a portion of the DSB target site. The genomic region can comprise at least 5-10, 5-15, 5-20, 5-25, 5-30, 5-35, 5-40, 5-45, 5- 50, 5-55, 5-60, 5-65, 5- 70, 5-75, 5-80, 5-85,
- ⁵⁵ 5-90, 5-95, 5-100, 5-200, 5-300, 5-400, 5-500, 5-600, 5-700, 5-800, 5-900, 5-1000, 5-1100, 5-1200, 5-1300, 5-1400, 5-1500, 5-1600, 5-1700, 5-1800, 5-1900, 5-2000, 5-2100, 5-2300, 5-2300, 5-2500, 5-2600, 5-2700, 5-2800.
 5-2900, 5-3000, 5-3100 or more bases such that the genomic region has sufficient homology to undergo homologous recombination with the corresponding region of homology.

[0071] The structural similarity between a given genomic region and the corresponding region of homology found on the donor DNA can be any degree of sequence identity that allows for homologous recombination to occur. For example, the amount of homology or sequence identity shared by the "region of homology" of the donor DNA and the "genomic region" of the plant genome can be at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%,

- ⁵ 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, such that the sequences undergo homologous recombination.
 [0072] The region of homology on the donor DNA can have homology to any sequence flanking the DSB target site. While in some examples the regions of homology share significant sequence homology to the genomic sequence immediately flanking the target site, it is recognized that the regions of homology can be designed to have sufficient
- ¹⁰ homology to regions that may be further 5' or 3' to the DSB target site. In still other examples, the regions of homology can also have homology with a fragment of the DSB target site along with downstream genomic regions. In one example, the first region of homology further comprises a first fragment of the DSB target site and the second region of homology comprises a second fragment of the DSB target site, wherein the first and second fragments are dissimilar.
 [0073] Homologous recombination includes the exchange of DNA fragments between two DNA molecules at the sites
- of homology. The frequency of homologous recombination is influenced by a number of factors. Different organisms vary with respect to the amount of homologous recombination and the relative proportion of homologous to non-homologous recombination. Generally, the length of the region of homology affects the frequency of homologous recombination events, the longer the region of homology, the greater the frequency. The length of the homology region needed to observe homologous recombination is also species-variable. In many cases, at least 5 kb of homology has been utilized,
- ²⁰ but homologous recombination has been observed with as little as 25-50 bp of homology. See, for example, Singer et al., (1982) Cell 31:25-33; Shen and Huang, (1986) Genetics 112:441-57; Watt et al., (1985) Proc. Natl. Acad. Sci. USA 82:4768-72, Sugawara and Haber, (1992) Mol Cell Biol 12:563-75, Rubnitz and Subramani, (1984) Mol Cell Biol 4:2253-8; Ayares et al., (1986) Proc. Natl. Acad. Sci. USA 83:5199-203; Liskay et al., (1987) Genetics 115:161-7. [0074] Once a double-strand break is induced in the DNA, the cell's DNA repair mechanism is activated to repair the
- ²⁵ break. Error-prone DNA repair mechanisms can produce mutations at double-strand break sites. The most common repair mechanism to bring the broken ends together is the nonhomologous end-joining (NHEJ) pathway (Bleuyard et al., (2006) DNA Repair 5:1-12). The structural integrity of chromosomes is typically preserved by the repair, but deletions, insertions, or other rearrangements are possible (Siebert and Puchta, (2002) Plant Cell 14:1121-31; Pacher et al., (2007) Genetics 175:21-9).
- 30 [0075] Alternatively, the double-strand break can be repaired by homologous recombination between homologous DNA sequences. Once the sequence around the double-strand break is altered, for example, by exonuclease activities involved in the maturation of double-strand breaks, gene conversion pathways can restore the original structure if a homologous sequence is available, such as a homologous chromosome in non-dividing somatic cells, or a sister chromatid after DNA replication (Molinier et al., (2004) Plant Cell 16:342-52). Ectopic and/or epigenic DNA sequences may also
- ³⁵ serve as a DNA repair template for homologous recombination (Puchta, (1999) Genetics 152:1173-81). [0076] DNA double-strand breaks appear to be an effective factor to stimulate homologous recombination pathways (Puchta et al., (1995) Plant Mol Biol 28:281-92; Tzfira and White, (2005) Trends Biotechnol 23:567-9; Puchta, (2005) J Exp Bot 56:1-14). Using DNA-breaking agents, a two- to nine-fold increase of homologous recombination was observed between artificially constructed homologous DNA repeats in plants (Puchta et al., (1995) Plant Mol Biol 28:281-92). In
- maize protoplasts, experiments with linear DNA molecules demonstrated enhanced homologous recombination between plasmids (Lyznik et al., (1991) Mol Gen Genet 230:209-18).
 [0077] Once a double-strand break is introduced in the DSB target site by the DSB inducing agent (such as a Cas9 endonuclease), the first and second regions of homology of the donor DNA can undergo homologous recombination with their corresponding genomic regions of homology resulting in exchange of DNA between the donor and the genome.

As such, the disclosed method results in the integration of the target site of the donor DNA into the double-strand break in the DSB target site in the plant genome (see for example Figure 2 D).
 [0078] The donor DNA may be introduced by any means known in the art. For example, a plant having a DSB target site is disclosed. The donor DNA may be provided by any transformation method known in the art including, for example, Agrobacterium-mediated transformation or biolistic particle bombardment. The donor DNA may be present transiently

- ⁵⁰ in the cell or it could be introduced via a viral replicon. In the presence of the DBS inducing agent and the DSB target site, the donor DNA is inserted into the transformed plant's genome.
 [0079] In one example, the method is a method for introducing into the genome of a plant cell a transgenic target site for site-specific integration, the method comprising: (a) providing a plant cell comprising in its genome an endogenous target site for a Cas endonuclease; (b) providing a Cas endonuclease and a guide polynucleotide, wherein the Cas
- ⁵⁵ endonuclease is capable of forming a complex with said guide polynucleotide, wherein said complex is capable of inducing a double-strand break in said endogenous target site, and wherein the endogenous target site is located between a first and a second genomic region; (c) providing a donor DNA comprising the transgenic target site for site-specific integration located between a first region of homology to said first genomic region and a second region of homology to

said second genomic region, wherein the transgenic target site comprises a first and a second recombination site, wherein the first and the second recombination sites are dissimilar with respect to one another; (d) contacting the plant cell with the guide polynucleotide, the donor DNA and the Cas endonuclease; and, (e) identifying at least one plant cell from (d) comprising in its genome the transgenic target site integrated at said endogenous target site.

- ⁵ **[0080]** In one example, the endogenous target site for a Cas endonuclease is selected from the group consisting of SEQ ID NO: 3-5, 7-11, 13-19, 21-23, 25-28, 30-34, 36-39, 43-47, 49-52, 54-58, 60, 63-66, 68-72, 74-78, 80-83, 87-90, 92-93, 95-98, 100-104, 436-439, 442-443, 446-447, 450-451, 453-456, 461-462, 465-466, 469-470, 473-474, 477-478, 484-485, 489-490, 495-496, 499-500, 503-504, 507-508, 511-512 and 515-516 or a functional fragment thereof.
- [0081] As described in the previous section, the transgenic SSI target site can be provided in a donor DNA which undergoes homologous recombination with the genomic DNA at the cleaved DSB target site resulting in integration of the transgenic SSI target site into the genome of the plant cell.

[0082] The transgenic SSI target site can comprise various components. The terms "transgenic SSI target site", "transgenic target site for site specific integration (SSI)", and "transgenic target site for SSI" are used interchangeably herein and refer to a polynucleotide comprising a nucleotide sequence flanked by at least two recombination sites. In

- ¹⁵ some embodiments, the recombination sites of the transgenic SSI target site are dissimilar and non-recombinogenic with respect to one another. One or more intervening sequences may be present between the recombination sites of the transgenic SSI target site. Intervening sequences of particular interest would include linkers, adapters, selectable markers, polynucleotides of interest, promoters and/or other sites that aid in vector construction or analysis. In addition, the recombination sites of the transgenic SSI target site can be located in various positions, including, for example,
- within intronic sequences, coding sequences, or untranslated regions.
 [0083] The transgenic SSI target site can comprise 1, 2, 3, 4, 5, 6 or more recombination sites. In one embodiment, the transgenic SSI target site comprises a first recombination site and a second recombination site wherein the first and the second recombination site are dissimilar and non-recombinogenic to each other (see for example the transgenic SSI target site depicted in Figure 2B). In a further embodiment, the transgenic SSI target site comprises a third recom-
- ²⁵ bination site between the first recombination site and the second recombination site. In such embodiments, the first, second and third recombination sites may be dissimilar and non-recombinogenic with respect to one another. Such first, second and third recombination sites are able to recombine with their corresponding or identical recombination site when provided with the appropriate recombinase. The various recombination sites and recombinases encompassed by the methods and compositions are described in detail elsewhere herein.
- ³⁰ **[0084]** The recombination sites employed in the methods and compositions disclosed herein can be "corresponding" sites or "dissimilar" sites. By "corresponding recombination sites" or a "set of corresponding recombination sites" is intended that the recombination sites have the same or corresponding nucleotide sequence. A set of corresponding recombination sites, in the presence of the appropriate recombinase, will efficiently recombine with one another (i.e., the corresponding recombination sites are recombinogenic).
- ³⁵ **[0085]** In other embodiments, the recombination sites are dissimilar. By "dissimilar recombination sites" or a "set of dissimilar recombination sites" is intended that the recombination sites are distinct (i.e., have at least one nucleotide difference).

[0086] The recombination sites within "a set of dissimilar recombination sites" can be either recombinogenic or non-recombinogenic with respect to one other. By "recombinogenic" is intended that the set of recombination sites are capable

- 40 of recombining with one another. Thus, suitable sets of "recombinogenic" recombination sites for use in the methods and compositions disclosed herein include those sites where the relative excision efficiency of recombination between the recombinogenic sites is above the detectable limit under standard conditions in an excision assay, typically, greater than 2%, 5%, 10%, 20%, 50%, 100%, or greater.
- [0087] By "non-recombinogenic" is intended the set of recombination sites, in the presence of the appropriate recombinase, will not recombine with one another or recombination between the sites is minimal. Thus, suitable "non-recombinogenic" recombination sites for use in the methods and compositions disclosed herein include those sites that recombine (or excise) with one another at a frequency lower than the detectable limit under standard conditions in an excision assay, typically, lower than 2%, 1.5%, 1%, 0.75%, 0.5%, 0.25%, 0.1%, 0.075, 0.005%, 0.001%.
- **[0088]** Each recombination site within the "set of non-recombinogenic sites" is biologically active and therefore can recombine with an identical site. Accordingly, it is recognized that any suitable non-recombinogenic recombination sites may be utilized, including a FRT site or an active variant thereof, a LOX site or active variant thereof, any combination thereof, or any other combination of non-recombinogenic recombination sites known in the art. FRT sites that can be employed in the methods and compositions disclosed herein can be found, for example, in US Publication No. 2011-0047655.
- ⁵⁵ **[0089]** In a specific embodiment, at least one of the first, the second and the third recombination site comprises FRT1 (SEQ ID NO: 576), FRT5 (SEQ ID NO: 577), FRT6 (SEQ ID NO: 578), FRT12 (SEQ ID NO: 579) or FRT87 (SEQ ID NO: 580). In a specific embodiment, the first recombination site is FRT1, the second recombination site is FRT12 and the third recombination site is FRT87.

[0090] The methods also comprise introducing into the plant cell comprising the integrated transgenic SSI target site a transfer cassette. The transfer cassette comprises various components for the incorporation of polynucleotides of interest into the plant genome. As defined herein, the "transfer cassette" comprises at least a first recombination site, a polynucleotide of interest, and a second recombination site, wherein the first and second recombination sites are dissimilar

⁵ and non-recombinogenic and correspond to the recombination sites in the transgenic SSI target site. The transfer cassette is also immediately flanked by the recombination sites. It is recognized that any combination of restriction sites can be employed in the transfer cassettes to provide a polynucleotide of interest.

10

[0091] In one example, the transfer cassette comprises the first recombination site, a first polynucleotide of interest, and the second recombination site. In such methods, the first and second recombination sites of the transfer cassette are recombinogenic (i.e. identical or corresponding) with the first and second recombination sites of the transgenic SSI target site, respectively.

[0092] The recombination sites of the transfer cassette may be directly contiguous with the polynucleotide of interest or there may be one or more intervening sequences present between one or both ends of the polynucleotide of interest and the recombination sites. Intervening sequences of particular interest would include linkers, adapters, additional

¹⁵ polynucleotides of interest, markers, promoters and/or other sites that aid in vector construction or analysis. It is further recognized that the recombination sites can be contained within the polynucleotide of interest (i.e., such as within introns, coding sequence, or untranslated regions).

[0093] In a specific example, the transfer cassette further comprises at least one coding region operably linked to a promoter that drives expression in the plant cell. As discussed elsewhere herein, a recombinase is disclosed that rec-

- 20 ognizes and implements recombination at the recombination sites of the transgenic SSI target site and the transfer cassette. The recombinase can be provided by any means known in the art and is described in detail elsewhere herein. In a specific example, the coding region of the transfer cassette encodes a recombinase that facilitates recombination between the first and the second recombination sites of the transfer cassette and the transgenic SSI target site, or the first and the second and the third recombination sites of the transfer cassette and the transgenic SSI target site, or the first and the
- third recombination sites of the transfer cassette and the transgenic SSI target site.
 [0094] Methods for selecting plant cells with integration at the transgenic SSI target site, such as selecting for cells expressing a selectable marker, are known in the art. As such, the methods further comprise recovering a fertile plant from the plant cell comprising in its genome the transfer cassette at the transgenic SSI target site.
 [0096] Any network plant cells of the transfer cassette at the transgenic SSI target site.
- [0095] Any polynucleotide of interest (i.e., the "polypeptide of interest") may be provided to the plant cells in the transfer cassettes, transgenic SSI target sites or directly in the DSB target sites of the methods disclosed herein. It is recognized that any polynucleotide of interest can be provided, integrated into the plant genome at the transgenic SSI target site by site-specific integration or directly into a DSB target site as described herein, and expressed in a plant. The methods disclosed herein, provide for at least 1, 2, 3, 4, 5, 6 or more polynucleotides of interest to be integrated into a specific site in the plant genome.
- ³⁵ **[0096]** In one example, the method is a method of integrating a polynucleotide of interest into a transgenic target site in the genome of a plant cell, the method comprising: (a) providing at least one plant cell comprising in its genome a transgenic target site for site-specific integration, wherein the transgenic target site is integrated into an endogenous target site for a Cas endonuclease, and wherein the transgenic target site is, (i) a target site comprising a first and a second recombination site; or (ii) the target site of (i) further comprising a third recombination site between the first
- 40 recombination site and the second recombination site, wherein the Cas endonuclease is capable of inducing a doublestrand break in the endogenous target site, wherein the first, the second, and the third recombination sites are dissimilar with respect to one another, (b) introducing into the plant cell of (a) a transfer cassette comprising, (iii) the first recombination site, a first polynucleotide of interest, and the second recombination site, (iv) the second recombination site, a second polynucleotide of interest, and the third recombination sites, or (v) the first recombination site, a third polynucle-
- ⁴⁵ otide of interest, and the third recombination sites; (c) providing a recombinase that recognizes and implements recombination at the first and the second recombination sites, at the second and the third recombination sites, or at the first and third recombination sites; and (d) selecting at least one plant cell comprising integration of the transfer cassette at the target site.
- [0097] In one example, the method is a method of integrating a polynucleotide of interest into a plant having in its genome a genomic window comprising at least one Cas9 endonuclease target site, the method comprising: (a) providing at least one plant cell comprising a target site for a Cas endonuclease located in said genomic window, (b) providing a Cas endonuclease and a guide polynucleotide, wherein the Cas endonuclease is capable of forming a complex with said guide polynucleotide, wherein said complex is capable of inducing a double-strand break in said Cas9 endonuclease target site, and wherein the Cas9 endonuclease target site is located between a first and a second genomic region; (c)
- ⁵⁵ providing a donor DNA comprising a polynucleotide of interest located between a first region of homology to said first genomic region and a second region of homology to said second genomic region; (d) contacting the plant cell with the guide polynucleotide, the donor DNA and the Cas endonuclease; and, (e) identifying at least one plant cell from (d) comprising in its genome polynucleotide of interest integrated at said Cas9 endogenous target site.

[0098] Various changes in phenotype are of interest, including modifying the fatty acid (oil) composition in a plant, altering the amino acid content of a plant, altering a plant's pathogen defense mechanism, and the like. These results can be achieved by providing expression of heterologous products (i.e. polynucleotides of interest) or increased expression of endogenous products in plants. Alternatively, the results can be achieved by providing for a reduction of expression

- of one or more endogenous products, particularly enzymes or cofactors in the plant. These changes result in a change in phenotype of the transformed plant.
 [0099] In one example, at least one of the first, the second, and the third polynucleotides of interest comprises a nucleotide sequence for gene silencing, a nucleotide sequence encoding a phenotypic marker, or a nucleotide sequence encoding a protein providing an agronomic advantage.
- 10 [0100] Polynucleotides of interest are reflective of the commercial markets and interests of those involved in the development of the crop. Crops and markets of interest change, and as developing nations open up world markets, new crops and technologies will emerge also. In addition, as our understanding of agronomic traits and characteristics such as yield and heterosis increase, the choice of genes for transformation will change accordingly. Polynucleotides/polypeptides of interest include, but are not limited to, herbicide-tolerance coding sequences, insecticidal coding sequences,
- ¹⁵ nematicidal coding sequences, antimicrobial coding sequences, antifungal coding sequences, antiviral coding sequences, es, abiotic and biotic stress tolerance coding sequences, or sequences modifying plant traits such as yield, grain quality, nutrient content, starch quality and quantity, nitrogen fixation and/or utilization, and oil content and/or composition. More specific polynucleotides of interest include, but are not limited to, genes that improve crop yield, polypeptides that improve desirability of crops, genes encoding proteins conferring resistance to abiotic stress, such as drought, nitrogen, temper-
- 20 ature, salinity, toxic metals or trace elements, or those conferring resistance to toxins such as pesticides and herbicides, or to biotic stress, such as attacks by fungi, viruses, bacteria, insects, and nematodes, and development of diseases associated with these organisms.

[0101] An "herbicide resistance protein" or a protein resulting from expression of an "herbicide resistance-encoding nucleic acid molecule" includes proteins that confer upon a cell the ability to tolerate a higher concentration of an herbicide

- than cells that do not express the protein, or to tolerate a certain concentration of an herbicide for a longer period of time than cells that do not express the protein. Herbicide resistance traits may be introduced into plants by genes coding for resistance to herbicides that act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea-type herbicides, genes coding for resistance to herbicides that act to inhibit the action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene), glyphosate (e.g., the EPSP synthase gene and the GAT gene), HPPD inhibitors
- (e.g, the HPPD gene) or other such genes known in the art. See, for example, US Patent Nos. 7,626,077, 5,310,667, 5,866,775, 6,225,114, 6,248,876, 7,169,970, 6,867,293, and US Provisional Application No. 61/401,456.
 [0102] Agronomically important traits such as oil, starch, and protein content can be genetically altered in addition to using traditional breeding methods. Modifications include increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and also modification of starch. Hordothionin
- ³⁵ protein modifications are described in U.S. Patent Nos. 5,703,049, 5,885,801, 5,885,802, and 5,990,389. Another example is lysine and/or sulfur rich seed protein encoded by the soybean 2S albumin described in U.S. Patent No. 5,850,016, and the chymotrypsin inhibitor from barley, described in Williamson et al. (1987) Eur. J. Biochem. 165:99-106.
 [0103] Commercial traits can also be encoded on a polynucleotide of interest that could increase for example, starch for ethanol production, or provide expression of proteins. Another important commercial use of transformed plants is the
- production of polymers and bioplastics such as described in U.S. Patent No. 5,602,321. Genes such as β-Ketothiolase, PHBase (polyhydroxyburyrate synthase), and acetoacetyl-CoA reductase (see Schubert et al. (1988) J. Bacteriol. 170:5837-5847) facilitate expression of polyhyroxyalkanoates (PHAs).
 [0104] Derivatives of the coding sequences can be made by site-directed mutagenesis to increase the level of prese-

[0104] Derivatives of the coding sequences can be made by site-directed mutagenesis to increase the level of preselected amino acids in the encoded polypeptide. For example, the gene encoding the barley high lysine polypeptide (BHL)

- ⁴⁵ is derived from barley chymotrypsin inhibitor, U.S. Application Serial No. 08/740,682, filed November 1, 1996, and WO 98/20133. Other proteins include methionine-rich plant proteins such as from sunflower seed (Lilley et al. (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs, ed. Applewhite (American Oil Chemists Society, Champaign, Illinois), pp. 497-502; herein incorporated by reference); corn (Pedersen et al. (1986) J. Biol. Chem. 261:6279; Kirihara et al. (1988) Gene 71:359); and rice (Musumura et al. (1989) Plant Mol.
- 50 Biol. 12:123). Other agronomically important genes encode latex, Floury 2, growth factors, seed storage factors, and transcription factors. Polynucleotides that improve crop yield include dwarfing genes, such as Rht1 and Rht2 (Peng et al. (1999) Nature 400:256-261), and those that increase plant growth, such as ammonium-inducible glutamate dehydrogenase. Polynucleotides that improve desirability of crops include, for example, those that allow plants to have reduced saturated fat content, those that boost the nutritional value of plants, and those that increase grain protein.
- ⁵⁵ Polynucleotides that improve salt tolerance are those that increase or allow plant growth in an environment of higher salinity than the native environment of the plant into which the salt-tolerant gene(s) has been introduced.
 [0105] Polynucleotides/polypeptides that influence amino acid biosynthesis include, for example, anthranilate synthase (AS; EC 4.1.3.27) which catalyzes the first reaction branching from the aromatic amino acid pathway to the biosynthesis

of tryptophan in plants, fungi, and bacteria. In plants, the chemical processes for the biosynthesis of tryptophan are compartmentalized in the chloroplast. See, for example, US Pub. 20080050506. Additional sequences of interest include Chorismate Pyruvate Lyase (CPL) which refers to a gene encoding an enzyme which catalyzes the conversion of chorismate to pyruvate and pHBA. The most well characterized CPL gene has been isolated from *E. coli* and bears the CanBank assession number M06269. See US Patent No. 7.261.911

- ⁵ GenBank accession number M96268. See, US Patent No. 7,361,811. [0106] These polynucleotide sequences of interest may encode proteins involved in providing disease or pest resistance. By "disease resistance" or "pest resistance" is intended that the plants avoid the harmful symptoms that are the outcome of the plant-pathogen interactions. Pest resistance genes may encode resistance to pests that have great yield drag such as rootworm, cutworm, European Corn Borer, and the like. Disease resistance and insect resistance genes
- ¹⁰ such as lysozymes or cecropins for antibacterial protection, or proteins such as defensins, glucanases or chitinases for antifungal protection, or *Bacillus thuringiensis* endotoxins, protease inhibitors, collagenases, lectins, or glycosidases for controlling nematodes or insects are all examples of useful gene products. Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (U.S. Patent No. 5,792,931); avirulence (avr) and disease resistance (R) genes (Jones et al. (1994) Science 266:789; Martin et al. (1993) Science 262:1432; and Mindrinos et al.
- (1994) Cell 78:1089); and the like.
 [0107] Furthermore, it is recognized that the polynucleotide of interest may also comprise antisense sequences complementary to at least a portion of the messenger RNA (mRNA) for a targeted gene sequence of interest. Antisense nucleotides are constructed to hybridize with the corresponding mRNA. Modifications of the antisense sequences may be made as long as the sequences hybridize to and interfere with expression of the corresponding mRNA. In this manner,
- antisense constructions having 70%, 80%, or 85% sequence identity to the corresponding antisense sequences may be used. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, or greater may be used.
 [0108] In addition, the polynucleotide of interest may also be used in the sense orientation to suppress the expression of endogenous genes in plants. Methods for suppressing gene expression in plants using polynucleotides in the sense
- orientation are known in the art. The methods generally involve transforming plants using polyindcleotides in the series promoter that drives expression in a plant operably linked to at least a portion of a nucleotide sequence that corresponds to the transcript of the endogenous gene. Typically, such a nucleotide sequence has substantial sequence identity to the sequence of the transcript of the endogenous gene, generally greater than about 65% sequence identity, about 85% sequence identity, or greater than about 95% sequence identity. See, U.S. Patent Nos. 5,283,184 and 5,034,323.
- 30 [0109] The polynucleotide of interest can also be a phenotypic marker. A phenotypic marker is screenable or a selectable marker that includes visual markers and selectable markers whether it is a positive or negative selectable marker. Any phenotypic marker can be used. Specifically, a selectable or screenable marker comprises a DNA segment that allows one to identify, or select for or against a molecule or a cell that contains it, often under particular conditions. These markers can encode an activity, such as, but not limited to, production of RNA, peptide, or protein, or can provide a binding site for DNA markers and selectable or a cell that contains and selectable or a cell that bills.
- ³⁵ binding site for RNA, peptides, proteins, inorganic and organic compounds or compositions and the like. [0110] Examples of selectable markers include, but are not limited to, DNA segments that comprise restriction enzyme sites; DNA segments that encode products which provide resistance against otherwise toxic compounds including antibiotics, such as, spectinomycin, ampicillin, kanamycin, tetracycline, Basta, neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT)); DNA segments that encode products which are otherwise lacking in the
- 40 recipient cell (e.g., tRNA genes, auxotrophic markers); DNA segments that encode products which can be readily identified (e.g., phenotypic markers such as β-galactosidase, GUS; fluorescent proteins such as green fluorescent protein (GFP), cyan (CFP), yellow (YFP), red (RFP), and cell surface proteins); the generation of new primer sites for PCR (e.g., the juxtaposition of two DNA sequence not previously juxtaposed), the inclusion of DNA sequences not acted upon or acted upon by a restriction endonuclease or other DNA modifying enzyme, chemical, etc.; and, the inclusion of a DNA
- sequences required for a specific modification (e.g., methylation) that allows its identification.
 [0111] Additional selectable markers include genes that confer resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D).
 [0112] A site-specific recombination system can be employed in a variety of ways to manipulate the transgenic SSI target site that has been integrated at the DSB transgenic SSI target site. The site-specific recombination system employs various components which are described in detail below and in U.S. Patent Nos. 6187994, 6262341, 6331661 and
- 6300545.
 [0113] Various recombination sites can be employed in the methods and compositions disclosed herein (i.e. in the various transgenic SSI target sites or transfer cassettes disclosed herein). By "recombination site" is intended a naturally
- occurring recombination site and active variants thereof. Many recombination systems are known in the art and one of
 skill will recognize the appropriate recombination site to be used with the recombination system of interest. As discussed herein, various combinations of recombination sites can be employed including, sets of dissimilar sites and corresponding recombination sites and/or dissimilar and non-recombinogenic sites can be used in the various methods disclosed herein. Accordingly, any suitable recombination site or set of recombination sites may be utilized herein, including a FRT site,

a biologically active variant of a FRT site (i.e. a mutant FRT site), a LOX site, a biologically active variant of a LOX site (i.e. a mutant LOX site), any combination thereof, or any other combination of recombination sites known in the art. Examples of FRT sites include but are not limited to, for example, the wild type FRT site (FRT1, SEQ ID NO: 576), and various mutant FRT sites, including but not limited to, FRT5 (SEQ ID NO: 577), FRT6 (SEQ ID NO: 578), FRT12 (SEQ

- ⁵ ID NO: 579) and FRT87 (SEQ ID NO: 580). See, for example, U.S. Patent No. 6,187,994 as well as FRT62 described in U.S. Patent No. 8,318493.
 [0114] Recombination sites from the Cre/Lox site-specific recombination system can also be used. Such recombination sites include, for example, wild type LOX sites and mutant LOX sites. An analysis of the recombination activity of mutant LOX sites is presented in Lee et al. (1998) Gene 216:55-65. Also, see for example, Schlake and Bode (1994) Biochemistry
- ¹⁰ 33:12746-12751; Huang et al. (1991) Nucleic Acids Research 19:443-448; Sadowski (1995) In Progress in Nucleic Acid Research and Molecular Biology Vol. 51, pp. 53-91; Cox (1989) In Mobile DNA, Berg and Howe (eds) American Society of Microbiology, Washington D.C., pp. 116-670; Dixon et al. (1995) Mol. Microbiol. 18:449-458; Umlauf and Cox (1988) EMBO 7:1845-1852; Buchholz et al. (1996) Nucleic Acids Research 24:3118-3119; Kilby et al. (1993) Trends Genet. 9:413-421; Rossant and Geagy (1995) Nat. Med. 1: 592-594; Albert et al. (1995) The Plant J. 7:649-659; Bayley et al.
- (1992) Plant Mol. Biol. 18:353-361; Odell et al. (1990) Mol. Gen. Genet. 223:369-378; Dale and Ow (1991) Proc. Natl. Acad. Sci. USA 88:10558-10562; Qui et al. (1994) Proc. Natl. Acad. Sci. USA 91:1706-1710; Stuurman et al. (1996) Plant Mol. Biol. 32:901-913; Dale et al. (1990) Gene 91:79-85; Albert et al. (1995) The Plant J. 7:649-659 and WO 01/00158.
- [0115] Active variants and fragments of recombination sites (i.e. SEQ ID NOS: 576-580) are also encompassed by the compositions and methods disclosed herein. Fragments of a recombination site retain the biological activity of the recombination site and hence facilitate a recombination event in the presence of the appropriate recombinase. Thus, fragments of a recombination site may range from at least about 5, 10, 15, 20, 25, 30, 35, 40 nucleotides, and up to the full-length of a recombination site. Active variants can comprise at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the native recombination site, wherein the active
- variants retain biological activity and hence facilitate a recombination event in the presence of the appropriate recombinase. Assays to measure the biological activity of recombination sites are known in the art. See, for example, Senecoll et al. (1988) J. Mol. Biol. 201:406-421; Voziyanov et al. (2002) Nucleic Acid Research 30:7, U.S. Patent No. 6,187,994, WO/01/00158, and Albert et al. (1995) The Plant Journal 7:649-659.
- [0116] Recombinases are also employed in the methods and compositions disclosed herein. By "recombinase" is intended a native polypeptide that catalyzes site-specific recombination between compatible recombination sites. For reviews of site-specific recombinases, see Sauer (1994) Current Opinion in Biotechnology 5:521-527; and Sadowski (1993) FASEB 7:760-767. The recombinase used in the methods can be a naturally occurring recombinase or a biolog-ically active fragment or variant of the recombinase. Recombinases useful in the methods and compositions include recombinases from the Integrase and Resolvase families, biologically active variants and fragments thereof, and any
- other naturally occurring or recombinantly produced enzyme or variant thereof that catalyzes conservative site-specific recombination between specified DNA recombination sites.
 [0117] The Integrase family of recombinases has over one hundred members and includes, for example, FLP, Cre, Int, and R. For other members of the Integrase family, see for example, Esposito et al. (1997) Nucleic Acid Research
- 25:3605-3614 and Abremski et al. (1992) Protein Engineering 5:87-91. Other recombination systems include, for example,
 the streptomycete bacteriophage phi C31 (Kuhstoss et al. (1991) J. Mol. Biol. 20:897-908); the SSV1 site-specific recombination system from *Sulfolobus shibatae* (Maskhelishvili et al. (1993) Mol. Gen. Genet. 237:334-342); and a retroviral integrase-based integration system (Tanaka et al. (1998) Gene 17:67-76). In other examples, the recombinase is one that does not require cofactors or a supercoiled substrate. Such recombinases include Cre, FLP, or active variants or fragments thereof.
- ⁴⁵ [0118] The FLP recombinase is a protein that catalyzes a site-specific reaction that is involved in amplifying the copy number of the two-micron plasmid of *S. cerevisiae* during DNA replication. As used herein, FLP recombinase refers to a recombinase that catalyzes site-specific recombination between two FRT sites. The FLP protein has been cloned and expressed. See, for example, Cox (1993) Proc. Natl. Acad. Sci. U.S.A. 80:4223-4227. The FLP recombinase for use in the methods and with the compositions may be derived from the genus *Saccharomyces*. One can also synthesize a
- ⁵⁰ polynucleotide comprising the recombinase using plant-preferred codons for optimal expression in a plant of interest. A recombinant FLP enzyme encoded by a nucleotide sequence comprising maize preferred codons (FLPm) that catalyzes site-specific recombination events is known. See, for example, U.S. Patent 5,929,301. Additional functional variants and fragments of FLP are known. See, for example, Buchholz et al. (1998) Nat. Biotechnol. 16:617-618, Hartung et al. (1998) J. Biol. Chem. 273:22884-22891, Saxena et al. (1997) Biochim Biophys Acta 1340(2):187-204, and Hartley et al. (1980)
- ⁵⁵ Nature 286:860-864.

[0119] The bacteriophage recombinase Cre catalyzes site-specific recombination between two *lox* sites. The Cre recombinase is known in the art. See, for example, Guo et al. (1997) Nature 389:40-46; Abremski et al. (1984) J. Biol. Chem. 259:1509-1514; Chen et al. (1996) Somat. Cell Mol. Genet. 22:477-488; Shaikh et al. (1977) J. Biol. Chem.

272:5695-5702; and, Buchholz et al. (1998) Nat. Biotechnol. 16:617-618. The Cre polynucleotide sequences may also be synthesized using plant-preferred codons. Such sequences (moCre) are described in WO 99/25840.

[0120] It is further recognized that a chimeric recombinase can be used in the methods. By "chimeric recombinase" is intended a recombinant fusion protein which is capable of catalyzing site-specific recombination between recombination

- ⁵ sites that originate from different recombination systems. That is, if a set of functional recombination sites, characterized as being dissimilar and non-recombinogenic with respect to one another, is utilized in the methods and compositions and comprises a FRT site and a LoxP site, a chimeric FLP/Cre recombinase or active variant or fragment thereof will be needed or, alternatively, both recombinases may be separately provided. Methods for the production and use of such chimeric recombinases or active variants or fragments thereof are described in WO 99/25840.
- ¹⁰ **[0121]** By utilizing various combinations of recombination sites in the transgenic SSI target sites and the transfer cassettes disclosed herein, the methods provide a mechanism for the site-specific integration of polynucleotides of interest into a specific site in the plant genome. The methods also allow for the subsequent insertion of additional polynucleotides of interest into the specific genomic site.
- [0122] In one example, providing the recombinase comprises integrating into the genome of the plant cell a nucleotide
 sequence encoding the recombinase. In a specific example, the recombinase is FLP. In yet another example, the FLP recombinase is synthesized using maize-preferred codons or soybean-preferred codons.
 [0123] As used herein, "providing" can include any method that allows for an amino acid sequence and/or a polynu-

cleotide to be brought together with the recited components. A variety of methods are known in the art for the introduction of nucleotide sequence into a plant. Any means can be used to bring together the various components of the recombination

- 20 system (i.e., the transgenic SSI target site, transfer cassette, and the appropriate recombinase), including, for example, transformation and sexual crossing. See, also, WO99/25884. In addition, as discussed elsewhere herein, the recombinase may also be provided by the introduction of the polypeptide or mRNA into the cell.
 [0124] Active variants and fragments of recombinases (i.e. FLP or Cre) are also encompassed by the compositions
- and methods disclosed herein. Such active variants can comprise at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%,
 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the native recombinase, wherein the active variants retain biological activity and hence implement a recombination event. Assays for recombinase activity are known and generally measure the overall activity of the enzyme on DNA substrates containing recombination sites.
 [0125] As discussed above, various methods can be used to insert polynucleotides of interest into the transgenic SSI
- (0125) As discussed above, validus methods can be used to insert polyndcleotides of interest into the transgenic SSI target sites, and transfer cassettes that can be used to insert a polynucleotide of interest into a plant or plant cell are described in PCT/US12/47202 application filed July 18, 2012. In short, once the transgenic SSI target site has integrated into the DSB target site or once the transfer cassette has integrated into the transgenic SSI target site, the appropriate selective agent can be employed to identify the plant cell having the desired DNA construct. Once a transgenic SSI target site has been established within the genome, additional recombination sites may be introduced by incorporating such sites
- ³⁵ within the nucleotide sequence of the transfer cassette. Thus, once a transgenic SSI target site has been established, it is possible to subsequently add or alter sites through recombination. Such methods are described in detail in WO 99/25821.

[0126] In one example, multiple genes or polynucleotides of interest can be stacked at the transgenic SSI target site in the genome of the plant. For example, as illustrated in Table 1, scheme D, the transgenic SSI target site integrated

- 40 at the DSB target site can comprise the following components: RSF1::P1::R1::S1::T1-P2::NT1::T2-P3::R2-R3::RSF2, where RSF is a fragment of the DSB target site, P is a promoter active in a plant, R is a recombination site, S is the selection marker, T is a termination region, and NT is a polynucleotide of interest. The following transfer cassette comprising the following components could be introduced: R2::S2::T3-P4::NT2::T4-R3 (RSF = DSB target site fragment; P = promoter active in a plant; R = recombination site; S = selection marker; T = terminator region; NT = polynucleotide
- of interest; the symbol :: implies a fusion between adjacent elements and implies that the sequences are put together to generate an in frame fusion that results in a properly expressed and functional gene product). The plant with this transfer cassette integrated at the transgenic SSI target site, can then be selected for based on the second selection marker. In this manner, multiple sequences can be stacked at predetermined locations in the transgenic SSI target site. Various alterations can be made to the stacking method described above and still achieve the desired outcome of having the polynucleotides of interest stacked in the genome of the plant.
- 50 the polynucleotides of interest stacked in the genome of the plant. [0127] Methods and compositions are disclosed herein that combine a DSB-inducing-agent system, such as for example a guide polynucleotide/Cas endonuclease system (as described in US patent application 14/463687 filed on August 20, 2014 and US patent application 14/463691 filed on August 20, 2014) with a site-specific recombinase system which allow, for example, for improved methods and compositions for the targeted insertion of a sequence of interest
- ⁵⁵ in the genome of a plant. The methods disclosed herein comprise introducing into the genome of a plant cell a transgenic SSI target site into a DSB target site, wherein the transgenic SSI target site can optionally comprise a polynucleotide of interest.

[0128] By "introducing" is intended presenting to the plant the transgenic SSI target site in such a manner that the

sequence gains access to the interior of a cell of the plant. Methods for introducing sequences into plants are known in the art and include, but are not limited to, stable transformation methods, transient transformation methods, virusmediated methods, and sexual breeding. Thus, "introduced" in the context of inserting a nucleic acid fragment (e.g., various components of the site-specific integration system disclosed herein) into a cell, means "transfection" or "trans-

- ⁵ formation" or "transduction" and includes reference to the incorporation of a nucleic acid fragment into a eukaryotic or prokaryotic cell where the nucleic acid fragment may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid, or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).
- [0129] In some examples, the plant cells, plants and seeds employed in the methods and compositions have a DNA construct stably incorporated into their genome. By "stably incorporated" or "stably introduced" is intended the introduction of a polynucleotide into the plant such that the nucleotide sequence integrates into the genome of the plant and is capable of being inherited by progeny thereof. Any protocol may be used for the stable incorporation of the DNA constructs or the various components of the site-specific integration system employed herein.
- [0130] Transformation protocols as well as protocols for introducing polypeptides or polynucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing polypeptides and polynucleotides into plant cells include microinjection (Crossway et al. (1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606, Agrobacterium-mediated transformation (U.S. Patent No. 5,563,055 and U.S. Patent No. 5,981,840), direct gene transfer (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, U.S. Patent Nos.
- 4,945,050; U.S. Patent No. 5,879,918; U.S. Patent No. 5,886,244; and, 5,932,782; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); McCabe et al. (1988) Biotechnology 6:923-926); and Lec1 transformation (WO 00/28058). Also see Weissinger et al. (1988) Ann. Rev. Genet. 22:421-477; Sanford et al. (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al. (1988) Plant Physiol. 87:671-674 (soybean); McCabe et al. (1988) Bio/Technology 6:923-926 (soybean); Finer and McMullen
- (1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh et al. (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al. (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); U.S. Patent Nos. 5,240,855; 5,322,783; and, 5,324,646; Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fromm et al. (1990) Biotechnology 8:833-839 (maize); Hooykaas-Van Slogteren et al. (1984) Nature (London) 311:763-764; U.S. Patent No. 5,736,369 (cereals); Bytebier et al. (1987) Proc.
- Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet et al. (1985) in The Experimental Manipulation of Ovule Tissues, ed. Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al. (1990) Plant Cell Reports 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation); Li et al. (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens).
- [0131] In other examples, any of the polynucleotides employed herein may be introduced into plants by contacting plants with a virus or viral nucleic acids. Generally, such methods involve incorporating a desired polynucleotide within a viral DNA or RNA molecule. It is recognized that a sequence employed in the methods or compositions disclosed herein may be initially synthesized as part of a viral polyprotein, which later may be processed by proteolysis *in vivo* or
- in vitro to produce the desired recombinant protein. Further, it is recognized that promoters employed herein also encompass promoters utilized for transcription by viral RNA polymerases. Methods for introducing polynucleotides into plants and expressing a protein encoded therein, involving viral DNA or RNA molecules, are known in the art. See, for example, U.S. Patent Nos. 5,889,191, 5,889,190, 5,866,785, 5,589,367, 5,316,931, and Porta et al. (1996) Molecular Biotechnology 5:209-221.
- ⁴⁵ [0132] In other examples, various components of the site-specific integration system can be provided to a plant using a variety of transient transformation methods. "Transient transformation" is intended to mean that a polynucleotide is introduced into the host (i.e., a plant) and expressed temporally. Such transient transformation methods include, but are not limited to, the introduction of any of the components of the site-specific integration system or active fragments or variants thereof directly into the plant or the introduction of the transcript into the plant. Such methods include, for
- 50 example, microinjection or particle bombardment. See, for example, Crossway et al. (1986) Mol Gen. Genet. 202:179-185; Nomura et al. (1986) Plant Sci. 44:53-58; Hepler et al. (1994) Proc. Natl. Acad. Sci. 91: 2176-2180 and Hush et al. (1994) The Journal of Cell Science 107:775-784. Alternatively, the polynucleotide can be transiently transformed into the plant using techniques known in the art. Such techniques include viral vector system and the precipitation of the polynucleotide in a manner that precludes subsequent release of the DNA. Thus, the transcription from the particle-
- ⁵⁵ bound DNA can occur, but the frequency with which it is released to become integrated into the genome is greatly reduced. Such methods include the use of particles coated with polyethylimine (PEI; Sigma #P3143).
 [0133] The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5:81-84. These plants may then be grown, and either pollinated

with the same transformed strain or different strains, and the resulting progeny having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved. In this manner, transformed seed having the recited DNA construct stably incorporated into their genome is provided.

- ⁵ construct stably incorporated into their genome is provided.
 [0134] In one example, the plant cell, a plant, a plant part and a seed having a transgenic SSI target site integrated at a DSB target site comprises a transgenic SSI target site comprising in the following order, a first recombination site, a second recombination site and wherein the first and the second recombination sites are dissimilar and non-recombinogenic with respect to one another. The transgenic SSI target site can further comprise a polynucleotide of interest
- ¹⁰ between the first and the second recombination sites. The recombination sites can be any combination of recombination sites known in the art. For example, the recombination sites can be a FRT site, a mutant FRT site, a LOX site or a mutant LOX site.

[0135] In specific examples, the transgenic SSI target site of the plant cell, plant, plant part and seed further comprises a third recombination site between the first and the second recombination site, wherein the third recombination site is

- ¹⁵ dissimilar and non-recombinogenic to the first and the second recombination sites. The first, second, and third recombination sites can comprise, for example, FRT1, FRT5, FRT6, FRT12, FRT62 (described in US patent US8318493 issued on November 27, 2012), or FRT87. Also, disclosed is a plant cell, plant, or seed wherein the first recombination site is FRT1, the second recombination site is FRT12 and the third recombination site is FRT87.
- [0136] As used herein, the term plant includes plant cells, plant protoplasts, plant cell tissue cultures from which a plant can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers, and the like. Grain is intended to mean the mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants, and mutants of the regenerated plants are also included herein, provided that these parts comprise the recited DNA construct.
- ²⁵ **[0137]** A transgenic plant includes, for example, a plant which comprises within its genome a heterologous polynucleotide introduced by a transformation step. The heterologous polynucleotide can be stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct. A transgenic plant can also comprise more than one heterologous polynucleotide within its genome. Each heterologous polynucleotide may confer a different trait to the
- 30 transgenic plant. A heterologous polynucleotide can include a sequence that originates from a foreign species, or, if from the same species, can be substantially modified from its native form. Transgenic can include any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been altered by the presence of heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic. The alterations of the genome (chromosomal or extra-chromosomal) by conventional plant breeding
- ³⁵ methods, by the genome editing procedure described herein that does not result in an insertion of a foreign polynucleotide, or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation are not intended to be regarded as transgenic.

[0138] In certain examples of the disclosure, a fertile plant is a plant that produces viable male and female gametes

- 40 and is self-fertile. Such a self-fertile plant can produce a progeny plant without the contribution from any other plant of a gamete and the genetic material contained therein. Other examples of the disclosure can involve the use of a plant that is not self-fertile because the plant does not produce male gametes, or female gametes, or both, that are viable or otherwise capable of fertilization. As used herein, a "male sterile plant" is a plant that does not produce male gametes that are viable or otherwise capable of fertilization. As used herein, a "female sterile plant" is a plant that does not produce
- ⁴⁵ female gametes that are viable or otherwise capable of fertilization. It is recognized that male-sterile and female-sterile plants can be female-fertile and male- fertile, respectively. It is further recognized that a male fertile (but female sterile) plant can produce viable progeny when crossed with a female fertile plant and that a female fertile (but male sterile) plant can produce viable progeny when crossed with a male fertile plant.
- [0139] The components of the site-specific integration system disclosed herein may be used for transformation of any plant species, including, but not limited to, monocots and dicots. Examples of plant species of interest include, but are not limited to, corn (maize) (*Zea mays*), *Brassica* sp. (e.g., B. *napus, B. rapa, B. juncea*), particularly those *Brassica* species useful as sources of seed oil, alfalfa (*Medicago sativa*), rice (Oryza sativa), rye (*Secale cereale*), sorghum (*Sorghum bicolor, Sorghum vulgare*), millet (e.g., pearl millet (*Pennisetum glaucum*), proso millet (*Panicum miliaceum*), foxtail millet (*Setaria italica*), finger millet (*Eleusine coracana*)), sunflower (*Helianthus annuus*), safflower (*Carthamus*)
- ⁵⁵ tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana),

fig (*Ficus casica*), guava (*Psidium guajava*), mango (*Mangifera indica*), olive (*Olea europaea*), papaya (*Carica papaya*), cashew (*Anacardium occidentale*), macadamia (*Macadamia integrifolia*), almond (*Prunus amygdalus*), sugar beets (*Beta vulgaris*), sugarcane (*Saccharum spp.*), oats, barley, vegetables, ornamentals, and conifers.

- [0140] Vegetables include tomatoes (*Lycopersicon esculentum*), lettuce (e.g., *Lactuca sativa*), green beans (*Phaseolus vulgaris*), lima beans (*Phaseolus limensis*), peas (*Lathyrus* spp.), and members of the genus *Cucumis* such as cucumber (*C. sativus*), cantaloupe (*C. cantalupensis*), and musk melon (*C. melo*). Ornamentals include azalea (*Rhododendron* spp.), hydrangea (*Macrophylla hydrangea*), hibiscus (*Hibiscus rosasanensis*), roses (Rosa spp.), tulips (*Tulipa* spp.), daffodils (*Narcissus* spp.), petunias (*Petunia hybrida*), carnation (*Dianthus caryophyllus*), poinsettia (*Euphorbia pulcherrima*), and chrysanthemum.
- ¹⁰ **[0141]** Conifers that may be employed include, for example, pines such as loblolly pine (*Pinus taeda*), slash pine (*Pinus elliotii*), ponderosa pine (*Pinus ponderosa*), lodgepole pine (*Pinus contorta*), and Monterey pine (*Pinus radiata*); Douglas-fir (*Pseudotsuga menziesii*); Western hemlock (*Tsuga canadensis*); Sitka spruce (*Picea glauca*); redwood (*Sequoia sempervirens*); true firs such as silver fir (*Abies amabilis*) and balsam fir (*Abies balsamea*); and cedars such as Western red cedar (*Thuja plicata*) and Alaska yellow-cedar (*Chamaecyparis nootkatensis*). In specific examples,
- ¹⁵ plants are crop plants (for example, corn, alfalfa, sunflower, *Brassica,* soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.). In other examples, corn and soybean plants are optimal, and in yet other examples corn plants are optimal.

[0142] Other plants of interest include grain plants that provide seeds of interest, oil-seed plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc. Oil-seed plants include

²⁰ cotton, soybean, safflower, sunflower, *Brassica*, maize, alfalfa, palm, coconut, etc. Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc. The invention is concerned with maize plants.
 [0143] It is recognized that the plant having stably incorporated the DNA construct can be further characterized for

site-specific integration potential, agronomic potential, and copy number. See, U.S. Patent No. 6,187,994.
 [0144] Depending on the polynucleotide(s) of interest incorporated into the transgenic SSI target site, the transgenic

- plants, plant cells, or seeds comprising a transgenic SSI target site with a polynucleotide(s) of interest disclosed herein may have a change in phenotype, including, but not limited to, an altered pathogen or insect defense mechanism, an increased resistance to one or more herbicides, an increased ability to withstand stressful environmental conditions, a modified ability to produce starch, a modified level of starch production, a modified oil content and/or composition, a modified carbohydrate content and/or composition, a modified fatty acid content and/or composition, a modified ability
- to utilize, partition and/or store nitrogen, and the like.
 [0145] Disclosed herein are polynucleotides or nucleic acid molecules comprising the various components of the DSB-inducing-agent system, such as for example a guide polynucleotide/Cas endonuclease system (as described in US patent application 14/463687 filed on August 20, 2014 and US patent application 14/463691 filed on August 20, 2014)
- ³⁵ and the site-specific integration system (transgenic SSI target site, a donor DNA, a transfer cassette, various site-specific recombination sites, site-specific recombinases, polynucleotides of interest or any active variants or fragments thereof). Also disclosed are nucleic acid molecules comprising any of the various transgenic SSI target sites disclosed herein integrated at the DSB target site in the plant genome.
- [0146] The terms "polynucleotide," "polynucleotide sequence," "nucleic acid sequence," and "nucleic acid fragment" are used interchangeably herein. These terms encompass nucleotide sequences and the like. A polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof. The use of the term "polynucleotide" is not intended to limit the present invention to polynucleotides comprising DNA. Those of ordinary skill in the art will recognize that polynucleotide
- ⁴⁵ otides, can comprise ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides. Such deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues. The polynucleotides provided herein also encompass all forms of sequences including, but not limited to, single-stranded forms, doublestranded forms, hairpins, stem-and-loop structures, and the like.
- [0147] The compositions disclosed herein can comprise an isolated or substantially purified polynucleotide. An "isolated" or "purified" polynucleotide is substantially or essentially free from components that normally accompany or interact with the polynucleotide as found in its naturally occurring environment. Thus, an isolated or purified polynucleotide is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Optimally, an "isolated" polynucleotide is free of sequences (optimally protein encoding sequences) that naturally flank the polynucleotide (i.e., sequences located
- ⁵⁵ at the 5' and 3' ends of the polynucleotide) in the genomic DNA of the organism from which the polynucleotide is derived. For example, in various examples, the isolated polynucleotide can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequence that naturally flank the polynucleotide in genomic DNA of the cell from which the polynucleotide is derived.

[0148] The terms "recombinant polynucleotide" and "recombinant DNA construct" are used interchangeably herein. A recombinant construct can comprise an artificial or heterologous combination of nucleic acid sequences, e.g., regulatory and coding sequences that are not found together in nature. For example, a transfer cassette can comprise restriction sites and a heterologous polynucleotide of interest. In other examples, a recombinant construct may comprise regulatory

- ⁵ sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. Such a construct may be used by itself or may be used in conjunction with a vector. If a vector is used, then the choice of vector is dependent upon the method that will be used to transform host cells as is well known to those skilled in the art. For example, a plasmid vector can be used. The skilled artisan is well aware of the genetic elements that must be present on the vector
- ¹⁰ in order to successfully transform, select and propagate host cells comprising any of the isolated nucleic acid fragments disclosed herein. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al., EMBO J. 4:2411-2418 (1985); De Almeida et al., Mol. Gen. Genetics 218:78-86 (1989)), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of
- ¹⁵ mRNA expression, immunoblotting analysis of protein expression, or phenotypic analysis, among others. [0149] In specific examples, one or more of the components of the site-specific integration system described herein can be provided in an expression cassette for expression in a plant or other organism or cell type of interest. The cassette can include 5' and 3' regulatory sequences operably linked to a polynucleotide disclosed herein. "Operably linked" is intended to mean a functional linkage between two or more elements. For example, an operable linkage between a
- ²⁰ polynucleotide of interest and a regulatory sequence (i.e., a promoter) is a functional link that allows for expression of the polynucleotide of interest. Operably linked elements may be contiguous or non-contiguous. When used to refer to the joining of two protein coding regions, by operably linked is intended that the coding regions are in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes. Such an expression cassette is
- ²⁵ provided with a plurality of restriction sites and/or recombination sites for insertion of a recombinant polynucleotide to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.

[0150] The expression cassette can include in the 5'-3' direction of transcription, a transcriptional and translational initiation region (i.e., a promoter), a recombinant polynucleotide disclosed herein, and a transcriptional and translational

- 30 termination region (i.e., termination region) functional in plants. The regulatory regions (i.e., promoters, transcriptional regulatory regions, and translational termination regions) and/or a polynucleotide disclosed herein may be native/analogous to the host cell or to each other. Alternatively, the regulatory regions and/or a polynucleotide disclosed herein may be heterologous to the host cell or to each other. As used herein, "heterologous" in reference to a sequence is a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native
- ³⁵ form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous polynucleotide is from a species different from the species from which the polynucleotide was derived, or, if from the same/analogous species, one or both are substantially modified from their original form and/or genomic locus, or the promoter is not the native promoter for the operably linked polynucleotide. Alternatively, the regulatory regions and/or a recombinant polynucleotide disclosed herein may be entirely synthetic.
- 40 [0151] The termination region may be native with the transcriptional initiation region, may be native with the operably linked recombinant polynucleotide, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous) to the promoter, the recombinant polynucleotide, the plant host, or any combination thereof. Convenient termination regions are available from the Ti-plasmid of *A. tumefaciens*, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991) Mol. Gen. Genet. 262:141-144; Proudfoot (1991) Cell
- ⁴⁵ 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141-149; Mogen et al. (1990) Plant Cell 2:1261-1272; Munroe et al. (1990) Gene 91:151-158; Ballas et al. (1989) Nucleic Acids Res. 17:7891-7903; and Joshi et al. (1987) Nucleic Acids Res. 15:9627-9639.

[0152] In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation. Toward this end, adapters or linkers may be employed to join the DNA

⁵⁰ fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, *in vitro* mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.

[0153] A number of promoters can be used in the expression cassettes disclosed herein. The promoters can be selected based on the desired outcome. It is recognized that different applications can be enhanced by the use of different promoters in the expression cassettes to modulate the timing, location and/or level of expression of the polynucleotide of interest. Such expression constructs may also contain, if desired, a promoter regulatory region (e.g., one conferring inducible, constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific/selective expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site,

and/or a polyadenylation signal.

[0154] In some examples, an expression cassette disclosed herein can be combined with constitutive, tissue-preferred, or other promoters for expression in plants. Examples of constitutive promoters include the cauliflower mosaic virus (CaMV) 35S transcription initiation region, the 1'- or 2'-promoter derived from T-DNA of Agrobacterium tumefaciens, the

- ⁵ ubiquitin 1 promoter, the Smas promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Pat. No. 5,683,439), the Nos promoter, the pEmu promoter, the rubisco promoter, the GRP1-8 promoter and other transcription initiation regions from various plant genes known to those of skill. If low level expression is desired, weak promoter(s) may be used. Weak constitutive promoters include, for example, the core promoter of the Rsyn7 promoter (WO 99/43838 and U.S. Pat. No. 6,072,050), the core 35S CaMV promoter, and the like. Other constitutive promoters include, for example, U.S. Pat.
- Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; and 5,608,142. See also, U.S. Pat. No. 6,177,611.

[0155] Examples of inducible promoters are the Adh1 promoter which is inducible by hypoxia or cold stress, the Hsp70 promoter which is inducible by heat stress, the PPDK promoter and the pepcarboxylase promoter which are both inducible by light. Also useful are promoters which are chemically inducible, such as the In2-2 promoter which is safener induced

- (U.S. Pat. No. 5,364,780), the ERE promoter which is estrogen induced, and the Axig1 promoter which is auxin induced and tapetum specific but also active in callus (PCT US01/22169).
 [0156] Examples of promoters under developmental control include promoters that initiate transcription preferentially in certain tissues, such as leaves, roots, fruit, seeds, or flowers. An exemplary promoter is the anther specific promoter 5126 (U.S. Pat. Nos. 5,689,049 and 5,689,051). Examples of seed-preferred promoters include, but are not limited to,
- 27 kD gamma zein promoter and waxy promoter, Boronat, A. et al. (1986) Plant Sci. 47:95-102; Reina, M. et al. Nucl. Acids Res. 18(21):6426; and Kloesgen, R. B. et al. (1986) Mol. Gen. Genet. 203:237-244. Promoters that express in the embryo, pericarp, and endosperm are disclosed in U.S. Pat. No. 6,225,529 and PCT publication WO 00/12733.
 [0157] Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible
- ²⁵ promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1a promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest
- ³⁰ include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl. Acad. Sci. USA 88:10421-10425 and McNellis et al. (1998) Plant J. 14(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (1991) Mol. Gen. Genet. 227:229-237, and U.S. Pat. Nos. 5,814,618 and 5,789,156).

[0158] Tissue-preferred promoters can be utilized to target enhanced expression of a polynucleotide of interest within

- a particular plant tissue. Tissue-preferred promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al. (1997) Mol. Gen Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2):157-168; Rinehart et al. (1996) Plant Physiol. 112(3):1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol. 112(2):513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Probl. Cell Differ.
- 20:181-196; Orozco et al. (1993) Plant Mol Biol. 23(6):1129-1138; Matsuoka et al. (1993) Proc Natl. Acad. Sci. USA 90(20):9586-9590; and Guevara-Garcia et al. (1993) Plant J. 4(3):495-505. Such promoters can be modified, if necessary, for weak expression.

[0159] Leaf-preferred promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant L 3:509-18: Orazo et al. (1993) Plant Mol. Biol. 23(6):1129-1138: and Matsuoka et al. (1993) Proc. Natl.

- (1993) Plant J. 3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590. In addition, the promoters of cab and rubisco can also be used. See, for example, Simpson et al. (1958) EMBO J 4:2723-2729 and Timko et al. (1988) Nature 318:57-58.
 [0160] Root-preferred promoters are known and can be selected from the many available from the literature or isolated
- *de novo* from various compatible species. See, for example, Hire et al. (1992) Plant Mol. Biol. 20(2):207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10):1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mol. Biol. 14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of *Agrobacterium tumefaciens*); and Miao et al. (1991) Plant Cell 3(1): 11-22 (full-length cDNA clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean). See also Bogusz et al. (1990) Plant Cell 2(7):633-641, where two root-specific promoters isolated from
- ⁵⁵ hemoglobin genes from the nitrogen-fixing nonlegume *Parasponia andersonii* and the related non-nitrogen-fixing nonlegume *Trema tomentosa* are described. The promoters of these genes were linked to a β-glucuronidase reporter gene and introduced into both the nonlegume *Nicotiana tabacum* and the legume *Lotus corniculatus*, and in both instances root-specific promoter activity was preserved. Leach and Aoyagi (1991) describe their analysis of the promoters of the

highly expressed rolC and rolD root-inducing genes of *Agrobacterium rhizogenes* (see Plant Science (Limerick) 79(1):69-76). They concluded that enhancer and tissue-preferred DNA determinants are dissociated in those promoters. Teeri *et al.* (1989) used gene fusion to lacZ to show that the Agrobacterium T-DNA gene encoding octopine synthase is especially active in the epidermis of the root tip and that the TR2' gene is root specific in the intact plant and stimulated

- ⁵ by wounding in leaf tissue, an especially desirable combination of characteristics for use with an insecticidal or larvicidal gene (see EMBO J. 8(2):343-350). The TR1' gene, fused to nptll (neomycin phosphotransferase II) showed similar characteristics. Additional root-preferred promoters include the VfENOD-GRP3 gene promoter (Kuster et al. (1995) Plant Mol. Biol. 29(4):759-772); and rolB promoter (Capana et al. (1994) Plant Mol. Biol. 25(4):681-691. See also U.S. Pat. Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179. The phaseolin gene (Murai et al. 1094)
- al. (1983) Science 23:476-482 and Sengopta-Gopalen et al. (1988) PNAS 82:3320-3324.
 [0161] The expression cassette containing the polynucleotides disclosed herein can also comprise a selectable marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal com-
- ¹⁵ pounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D) and sulfonylureas. Additional selectable markers include phenotypic markers such as beta-galactosidase and fluorescent proteins such as green fluorescent protein (GFP) (Su et al. (2004) Biotechnol. Bioeng. 85:610-9 and Fetter et al. (2004) Plant Cell 16:215-28), cyan fluorescent protein (CYP) (Bolte et al. (2004) J. Cell Science 117:943-54 and Kato et al. (2002) Plant Physiol. 129:913-42), and yellow fluorescent protein (PhiYFP.TM. from Evrogen; see, Bolte et al. (2004)
- J. Cell Science 117:943-54). The above list of selectable marker genes is not meant to be limiting. Any selectable marker gene can be used in the compositions presented herein.
 [0162] Where appropriate, the sequences employed in the methods and compositions (i.e., the polynucleotide of interest, the recombinase, the endonuclease, etc.) may be optimized for increased expression in the transformed plant. That is, the genes can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell
- and Gowri (1990) Plant Physiol. 92:1-11 for a discussion of host-preferred codon usage. Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S. Patent Nos. 5,380,831, and 5,436,391, and Murray et al. (1989) Nucleic Acids Res. 17:477-498.

[0163] Fragments and variants of the various components of the DSB-inducing-agent system, such as for example the guide polynucleotide/Cas endonuclease system and the site-specific integration system (transgenic SSI target site,

- ³⁰ a donor DNA, a transfer cassette, various site-specific recombination sites, site-specific recombinases, polynucleotides of interest or any active variants or fragments thereof) are also encompassed herein. By "fragment" is intended a portion of the polynucleotide or a portion of the amino acid sequence and hence protein encoded thereby. Fragments of a polynucleotide may encode protein fragments that retain the biological activity of the native protein (i.e., a fragment of a recombinase implements a recombination event). As used herein, a "native" polynucleotide or polypeptide comprises
- ³⁵ a naturally occurring nucleotide sequence or amino acid sequence, respectively. Thus, fragments of a polynucleotide may range from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length polynucleotide. A fragment of a polynucleotide that encodes a biologically active portion of a protein employed in the methods or compositions will encode at least 15, 25, 30, 50, 100, 150, 200, or 250 contiguous amino acids, or up to the total number of amino acids present in a full-length protein. Alternatively, fragments of a polynucleotide that are useful
- 40 as a hybridization probe generally do not encode fragment proteins retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about 10, 20, 30, 40, 50, 60, 70, 80 nucleotides or up to the full length sequence.

[0164] A biologically active portion of a polypeptide can be prepared by isolating a portion of one of the polynucleotides encoding the portion of the polypeptide of interest and expressing the encoded portion of the protein (e.g., by recombinant

- expression *in vitro*), and assessing the activity of the portion of the polypeptide. For example, polynucleotides that encode fragments of a recombinase polypeptide can comprise nucleotide sequence comprising at least 16, 20, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, or 1,400 nucleotides, or up to the number of nucleotides present in a nucleotide sequence employed in the methods and compositions disclosed herein.
- ⁵⁰ **[0165]** "Variants" is intended to mean substantially similar sequences. For polynucleotides, a variant comprises a polynucleotide having deletions (i.e., truncations) at the 5' and/or 3' end; deletion and/or addition of one or more nucleotides at one or more internal sites in the native polynucleotide; and/or substitution of one or more nucleotides at one or more sites in the native polynucleotide. For polynucleotides, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the polypeptides employed
- ⁵⁵ in the compositions and methods disclosed herein. Naturally occurring allelic variants such as these, or naturally occurring allelic variants of polynucleotides can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant polynucleotides also include synthetically derived polynucleotides, such as those generated, for example, by using site-directed muta-

genesis. Generally, variants of a particular polynucleotide employed in the methods and compositions disclosed herein will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular polynucleotide as determined by sequence alignment programs and parameters as described elsewhere herein.

- ⁵ **[0166]** Variants of a particular polynucleotide employed in the methods and compositions disclosed herein (i.e., Cas 9 endonucleases, DSB target sites, transgenic SSI target sites, recombinases, recombination sites, and polynucleotides of interest) can also be evaluated by comparison of the percent sequence identity between the polypeptide encoded by a variant polynucleotide and the polypeptide encoded by the reference polynucleotide. Thus, for example, an isolated polynucleotide that encodes a polypeptide with a given percent sequence identity to the polypeptide are disclosed.
- Percent sequence identity between any two polypeptides can be calculated using sequence alignment programs and parameters described elsewhere herein. Where any given pair of polynucleotides disclosed herein is evaluated by comparison of the percent sequence identity shared by the two polypeptides they encode, the percent sequence identity between the two encoded polypeptides is at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity.
- ¹⁵ **[0167]** "Variant" protein is intended to mean a protein derived from the native protein by deletion (so-called truncation) of one or more amino acids at the N-terminal and/or C-terminal end of the native protein; deletion and/or addition of one or more amino acids at one or more internal sites in the native protein; or substitution of one or more amino acids at one or more internal sites in the native protein; or substitution of one or more amino acids at one or more internal sites in the native protein; or substitution of one or more amino acids at one or more internal sites in the native protein. Variant proteins employed in the methods and compositions disclosed herein are biologically active, that is they continue to possess the desired biological activity of the native protein. Such variants
- ²⁰ may result from, for example, genetic polymorphism or from human manipulation. Biologically active variants of a native protein disclosed herein will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs and parameters described elsewhere herein. A biologically active variant of a protein disclosed herein may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10,
- ²⁵ such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue. [0168] Proteins may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of the recombinase proteins can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel
- 30 et al. (1987) Methods in Enzymol. 154:367-382; U.S. Patent No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff et al. (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.). Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be preferable.
- ³⁵ **[0169]** Thus, the polynucleotides used herein can include the naturally occurring sequences, the "native" sequences, as well as mutant forms. Likewise, the proteins used in the methods disclosed herein encompass both naturally occurring proteins as well as variations and modified forms thereof. Obviously, the mutations that will be made in the polynucleotide encoding the variant polypeptide must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See, EP Patent Application Publication No.
- 40 75,444.

[0170] The deletions, insertions, and substitutions of the protein sequences encompassed herein are not expected to produce radical changes in the characteristics of the protein. However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays.

- ⁴⁵ [0171] Variant polynucleotides and proteins also encompass sequences and proteins derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, for example, one or more different recombinase coding sequences can be manipulated to create a new recombinase protein possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined *in vitro* or
- in vivo. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Patent Nos. 5,605,793 and 5,837,458.
- [0172] The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides. As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a fulllength cDNA or gene sequence, or the complete cDNA or gene sequence. As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence

in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap populate is twiced, and is subtracted from the number of matches.

- ⁵ a gap penalty is typically introduced and is subtracted from the number of matches.
 [0173] Sequence relationships can be analyzed and described using computer-implemented algorithms. The sequence relationship between two or more polynucleotides, or two or more polypeptides can be determined by determining the best alignment of the sequences, and scoring the matches and the gaps in the alignment, which yields the percent sequence identity, and the percent sequence similarity. Polynucleotide relationships can also be described based on a
- 10 comparison of the polypeptides each encodes. Many programs and algorithms for the comparison and analysis of sequences are well-known in the art.
 101741 "Sequence identity" or "identity" in the context of nucleic acid or polypeptide sequences refers to the nucleic.

[0174] "Sequence identity" or "identity" in the context of nucleic acid or polypeptide sequences refers to the nucleic acid bases or amino acid residues in two sequences that are the same when aligned for maximum correspondence over a specified comparison window.

- ¹⁵ **[0175]** The term "percentage of sequence identity" refers to the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences
- to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the results by 100 to yield the percentage of sequence identity. Useful examples of percent sequence identities include, but are not limited to, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%, or any integer percentage from 50% to 100%. These identities can be determined using any of the programs described herein.
- ²⁵ [0176] Sequence alignments and percent identity or similarity calculations may be determined using a variety of comparison methods designed to detect homologous sequences including, but not limited to, the MegAlign[™] program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Within the context of this application it will be understood that where sequence analysis software is used for analysis, that the results of the analysis will be based on the "default values" of the program referenced, unless otherwise specified. As used herein "default values"
- ³⁰ will mean any set of values or parameters that originally load with the software when first initialized. [0177] The "Clustal V method of alignment" corresponds to the alignment method labeled Clustal V (described by Higgins and Sharp, (1989) CABIOS 5:151-153; Higgins et al., (1992) Comput Appl Biosci 8:189-191) and found in the MegAlign™ program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). For multiple alignments, the default values correspond to GAP PENALTY=10 and GAP LENGTH PENALTY=10. Default parameters
- ³⁵ for pairwise alignments and calculation of percent identity of protein sequences using the Clustal method are KTUPLE=1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. For nucleic acids these parameters are KTUPLE=2, GAP PENALTY=5, WINDOW=4 and DIAGONALS SAVED=4. After alignment of the sequences using the Clustal V program, it is possible to obtain a "percent identity" by viewing the "sequence distances" table in the same program. [0178] The "Clustal W method of alignment" corresponds to the alignment method labeled Clustal W (described by
- Higgins and Sharp, (1989) CABIOS 5:151-153; Higgins et al., (1992) Comput Appl Biosci 8:189-191) and found in the MegAlign™ v6.1 program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Default parameters for multiple alignment (GAP PENALTY=10, GAP LENGTH PENALTY=0.2, Delay Divergen Seqs (%)=30, DNA Transition Weight=0.5, Protein Weight Matrix=Gonnet Series, DNA Weight Matrix=IUB). After alignment of the sequences using the Clustal W program, it is possible to obtain a "percent identity" by viewing the "sequence distances"
- table in the same program.
 [0179] "BLAST" is a searching algorithm provided by the National Center for Biotechnology Information (NCBI) used to find regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance of matches to identify sequences having sufficient similarity to a query sequence such that the similarity would not be predicted to have occurred randomly. BLAST reports the identified sequences and their local alignment to the query sequence.
- ⁵⁰ identified sequences and their local alignment to the query sequence.
 [0180] It is well understood by one skilled in the art that many levels of sequence identity are useful in identifying polypeptides from other species or modified naturally or synthetically wherein such polypeptides have the same or similar function or activity. Useful examples of percent identities include, but are not limited to, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%, or any integer percentage from 50% to 100%. Indeed, any integer amino acid identity
- ⁵⁵ from 50% to 100% may be useful in describing the present disclosure, such as 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%.

[0181] Sequence identity/similarity values can also be obtained using GAP Version 10 (GCG, Accelrys, San Diego, CA) using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix (Henikoff and Henikoff (1989) Proc.

- ⁵ Natl. Acad. Sci USA 89:10915); or any equivalent program thereof. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10
- [0182] GAP uses the algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times
- the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the GCG Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.
- [0183] GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is
- the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold.
 [0184] The components of a genomic window, (i.e. double-strand-break target sites, transgenic SSI target sites integrated into a DSB target site, randomly inserted transgenic SSI target sites, and/or genomic loci of interest) can be brought together by various methods to create a complex trait locus.
- 30 [0185] One such method is by crossing plants comprising various transgenic SSI target sites integrated into one or more DSB target sites and/or genomic loci of interest having in a given genomic window different genomic insertion sites and selecting for plants having undergone a recombination event such that the desired combination of target sites and/or genomic loci of interest are present in the same plant. Such breeding techniques can thereby be employed to create a complex trait locus in a plant. Examples of Complex Trait Loci comprising transgenic SSI target sites and/or genomic
- ³⁵ loci of interest in a genomic window produced by crossing members of an SSI library of randomly integrated SSI target sites are described US patent application 13/748704, filed January 24, 2014. Examples of Complex Trait Loci comprising engineered meganuclease target sites and/or genomic loci of interest in a genomic window produced by breeding are described in US patent application 13/427138, filed on March 22, 2013. Described herein is a method of producing a Complex Trait Loci by introducing transgenic SSI sites into a DSB target site such as but not limited to a Cas endonuclease
- 40 target site located in close proximity to a genomic locus of interest (a native gene, a mutated or edited gene, a region of interest on a plant chromosome, a transgene) in a genomic window.
 [0186] In one example, the method comprises a method of producing a complex trait locus in the genome of a plant comprising: (a) providing a first plant having within a genomic window at least a first transgenic target site for site specific integration integrated into a first Cas9 endonuclease target site, and wherein said genomic window is about 10cM in
- ⁴⁵ length and said first plant does not comprise a first genomic locus of interest; (b) breeding to said first plant a second plant, wherein said second plant comprises in said genomic window the first genomic locus of interest and said second plant does not comprise said first transgenic target site; and, (c) selecting a progeny plant from step (b) comprising said first transgenic target site and said genomic locus of interest; wherein said first transgenic target site and said first genomic locus of interest; wherein said first transgenic target site and said first genomic locus of interest; wherein said first transgenic target site and said first genomic locus of interest; wherein said first transgenic target site and said first genomic locus of interest; wherein said progeny plant.
- ⁵⁰ **[0187]** In one example, the method comprises a method of producing a complex trait locus in the genome of a plant comprising : (a) providing a first plant having within a genomic window at least a first transgenic target site for site specific integration integrated into a first Cas9 endonuclease target site and a second transgenic target site for site specific integration integrated into a second Cas9 endonuclease target site, wherein said genomic window is about 10cM in length, and wherein said first transgenic target site and said second transgenic target site have a different genomic
- ⁵⁵ insertion site, wherein said first plant does not comprise a first genomic locus of interest; (b) breeding to said first plant a second plant, wherein said second plant comprises in said genomic window the first genomic locus of interest, wherein said second plant does not comprise said first transgenic target site or said second transgenic target site in the genomic window; and, (c) selecting a progeny plant from step (b) comprising said first transgenic target site, said second transgenic

target site and said first genomic locus of interest; wherein each of said first transgenic target site, said second transgenic target site and said first genomic locus of interest have a different genomic insertion site in said progeny plant. The genomic window can be about 5 cM in length and wherein each of said first transgenic target site, said second transgenic target site, and said genomic locus of interest in said progeny plant segregate independently from one another at a rate of about 5% to 0.1%.

[0188] In one example, the method of producing a complex trait locus described herein further comprises (a) breeding to said progeny plant a third plant comprising a second genomic locus of interest, wherein said third plant comprises in said genomic window said second genomic locus of interest, wherein said third plant does not comprise said first transgenic target site, said second transgenic target site or said first genomic locus of interest in said genomic window;

5

- ¹⁰ and, (b) selecting a second progeny plant from step (a) comprising said first transgenic target site, said second transgenic target site, said first genomic locus of interest, and said second genomic locus of interest; wherein each of said first transgenic target site, said second transgenic target site, said second genomic locus of interest and said second genomic locus of interest have a different genomic insertion site in said second progeny plant; and, wherein each of said first transgenic target site, said second transgenic target site, said first genomic locus of interest, or said second genomic
- ¹⁵ locus of interest in said second progeny plant segregate independently from one another at a rate of about 10% to about 0.1%.

[0189] In one example, the method comprises a method of producing a complex trait locus in the genome of a plant comprising (a) providing a first plant having within a genomic window at least a first transgenic target site for site specific integration integrated into a first Cas9 endonuclease target site, wherein said first plant does not comprise a first genomic

- ²⁰ locus of interest, and wherein said genomic window : (i) is flanked by at least a first marker comprising SYN12545, SYN12536, SYN14645, PZE-101023852, PZE-101024424, SYN25022, SYN31156, SYN31166 or SYN22238 and at least a second marker comprising SYN12536, SYN14645, PZE-101023852, PZE-101024424, SYN25022, SYN31156, SYN31166, SYN22238 or SYN20196; or, (ii) is flanked by at least a first marker comprising PZE-101205031, PUT-163A-148951459-517, PZE-101205904 or PZE-101206569 and at least a second marker comprising PUT-163A-
- ²⁵ 148951459-517, PZE-101205904, PZE-101206569 or SYN24492; or, (iii) is flanked by at least a first marker comprising PZE-103000166, PZE-103000238, PZE-103000307 or SYN6355 and at least a second marker comprising PZE-103000238, PZE-103000307, SYN6355 or PZE-103001421; or, (iv) is flanked by at least at least a first marker comprising PZE-110099037, PZE-110099048, PZE-110100195 or PZE-110100685 and at least a second marker comprising PZE-110099048, PZE-110100195, PZE-110100685 or PZE-110101412 (b) breeding to said first plant a second plant, wherein
- 30 said second plant comprises in said genomic window the first genomic locus of interest and said second plant does not comprise said first transgenic target site; and, (c) selecting a progeny plant from step (b) comprising said first transgenic target site and said genomic locus of interest; wherein said first transgenic target site and said first genomic locus of interest have different genomic insertion sites in said progeny plant.
- [0190] As used herein, "breeding" is the genetic manipulation of living organisms. Plants are bred through techniques that take advantage of the plant's method of pollination. A plant is self-pollinated if pollen from one flower is transferred to the same or another flower of the same plant. A plant is sib-pollinated when individuals within the same family or line are used for pollination. A plant is cross-pollinated if the pollen comes from a flower on a different plant from a different family or line. In a breeding application, a breeder initially selects and crosses two or more parental plants. As used herein, "crossing" can refer to a simple X by Y cross, or the process of backcrossing, depending on the context.
- 40 [0191] Methods are disclosed herein to either establish a complex trait locus or to break the complex trait locus apart using breeding techniques. For example, a first plant comprising a first transgenic SSI target site integrated in a DSB target site (or a plant comprising an altered DSB target site) within a genomic window, and the first plant does not comprise a first genomic locus of interest, can be crossed with a second plant comprising the first genomic locus of interest within the same genomic window and the second plant does not comprise said first transgenic SSI target site
- 45 (or altered DSB target site) within the genomic window. A progeny plant is then selected comprising both the first transgenic SSI target site (or altered DSB target site) and the first genomic locus of interest within the genomic window. Selecting a progeny plant comprising both the transgenic SSI target site and the genomic locus of interest can be done through various methods. For example, a phenotypic analysis can be performed whereby the activity of a marker or an introduced sequence is detected in the progeny plant. Alternative methods that assay for markers which are specific to
- 50 the genomic locus of interest and the transgenic SSI target site include techniques such as PCR, hybridization, Isozyme electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed PCR (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment length Polymorphisms (AFLPs), Simple Sequence Repeats (SSRs), and Single Nucleotide Polymorphisms (SNPs).
- ⁵⁵ [0192] In non-limiting examples, the complex trait locus can comprise (1) a transgenic SSI target site integrated into a DSB target site and a genomic locus of interest having different genomic insertion sites in said genomic window; (2) 2 transgenic SSI target sites integrated into two DSB target sites and a genomic locus of interest having different genomic insertion sites in said genomic window; (3) 2 transgenic SSI target sites integrated into two DSB target sites and 2

genomic loci of interest having different genomic insertion sites in said genomic window; (4) a genomic locus of interest and a transgenic SSI target site integrated into a DSB target site comprising one or more polynucleotides of interest wherein said genomic locus of interest and transgenic target site have different genomic insertion sites; (5) a transgenic target site integrated into a DSB target site and a genomic locus of interest comprising a transgene, each having a

- ¹⁰ site integrated into a second DSB target site comprising a third and a fourth dissimilar recombination sites, wherein each of said genomic locus of interest, first transgenic target site and second transgenic target site has a different genomic insertion site; (9) a genomic locus of interest, a first transgenic target site integrated into a DSB target site comprising a first and a second dissimilar recombination sites, a second transgenic target site comprising a third and a fourth dissimilar recombination sites and a third transgenic target site integrated into a third DSB target site comprising a fifth
- ¹⁵ and a sixth dissimilar recombination sites, wherein each of said genomic locus of interest, first transgenic target site, second transgenic target site and third transgenic target site has a different genomic insertion site; (10) a first transgenic target site integrated into a first DSB target site and a second transgenic target site integrated into a second DSB target site wherein the second transgenic target site comprises different dissimilar recombination sites as the first transgenic target site and a genomic locus of interest, each having a different genomic insertion site; (11) a first transgenic target
- site integrated into a first DSB target site, a second transgenic target site integrated into a second DSB target site wherein the second transgenic target site comprises the same dissimilar recombination sites as the first transgenic target site, and a genomic locus of interest, each having a different genomic insertion site; (12) a first transgenic target site integrated into a first DSB target site, a second transgenic target site integrated into a second DSB target site wherein the dissimilar recombination sites comprise a FRT site or a mutant FRT site, and a genomic locus of interest, each having a different
- ²⁵ genomic insertion site; (13) a first transgenic target site integrated into a first DSB target site and a second transgenic target site integrated into second DSB target site wherein the dissimilar recombination sites comprise a FRT1, FRT5, a FRT6, a FRT7, a FRT12, or a FRT87 site, and a genomic locus of interest, each having a different genomic insertion site; or (14) a first transgenic target site integrated into a first DSB target site and a second transgenic target site integrated into a second DSB target site wherein the dissimilar recombination sites comprise a FRT1, FRT5, a FRT6, a FRT7, a FRT12, or a FRT87 site, and a genomic locus of interest, each having a different genomic insertion site; or (14) a first transgenic target site integrated into a first DSB target site and a second transgenic target site integrated into a second DSB target site wherein the dissimilar recombination sites comprise a FRT1 and a FRT87 site, and a genomic locus of interest, each having a different genomic integration site.
- [0193] A complex trait locus comprising multiple transgenic SSI target sites integrated into multiple DSB target sites, genomic loci of interest and/or polynucleotides of interest can be produced within a genomic window in the genome of a plant.

[0194] A non-limiting example of how two traits can be stacked into the genome at a genetic distance of, for example,

- ³⁵ 5 cM from each other is described as follows: A first plant comprising a first transgenic target site integrated into a first DSB target site within the genomic window and not having the first genomic locus of interest is crossed to a second transgenic plant, comprising a genomic locus of interest at a different genomic insertion site within the genomic window and the second plant does not comprise the first transgenic target site. About 5% of the plant progeny from this cross will have both the first transgenic target site integrated into a first DSB target site and the first genomic locus of interest.
- 40 integrated at different genomic insertion sites within the genomic window. Progeny plants having both sites in the defined genomic window can be further crossed with a third transgenic plant comprising a second transgenic target site integrated into a second DSB target site and/or a second genomic locus of interest within the defined genomic window and lacking the first transgenic target site and the first genomic locus of interest. Progeny are then selected having the first transgenic target site, the first genomic locus of interest and the second genomic locus of interest integrated at different genomic
- ⁴⁵ insertion sites within the genomic window. Such methods can be used to produce a transgenic plant comprising a complex trait locus having at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15, 16, 17, 19, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or more transgenic target sites integrated into DSB target sites and/or genomic loci of interest integrated at different sites within the genomic window. In such a manner, various complex trait loci can be generated.
 [0195] In one non-limiting example, a method of producing a complex trait locus in the genome of a plant comprises
- ⁵⁰ providing a first plant having within a genomic window of about 10 cM in length at least a first transgenic target site integrated into a first DSB target site and does not comprise a first genomic region of interest. The genomic window can be any desired length as described elsewhere herein. The method involves breeding the first plant to a second plant which comprises in a different genomic insertion site within the same genomic window a first genomic locus of interest and does not comprise the first transgenic target site integrated into a first DSB target site, and selecting a progeny plant
- ⁵⁵ comprising the first transgenic target site and the genomic locus of interest. In another example, the method further involves providing a first plant having within a genomic window a first transgenic target site integrated into a first DSB target site and a second transgenic target site integrated into a second DSB target site having different genomic insertion sites wherein the first plant does not comprise a genomic locus of interest. Breeding the first plant with a second plant

where the second plant comprises a genomic locus of interest within the genomic window and does not comprise the first and second transgenic target sites, and selecting for a progeny plant comprising the first transgenic target site, the second transgenic target site and the genomic locus of interest all having different genomic insertion sites within the genomic window. The first transgenic target site, the second transgenic target site and the genomic target site, the second transgenic target site and the genomic locus of interest all having different genomic locus of interest of

- ⁵ the progeny plants can segregate independently from one another at a rate of about 10-0.1%, about 10-0.5%, about 10-1%, about 10-5%, about 9-0.1%, about 9-0.5%, about 9-1%, about 9-5%, about 8-0.1%, about 8-0.5%, about 8-1%, about 8-4%, about 7-0.1%, about 7-0.5%, about 7-1%, about 7-4%, about 6-0.1%, about 6-0.5%, about 6-1%, about 6-3%, about 5-0.1%, about 5-0.5%, about 5-1%, about 4-0.1%, about 4-0.5%, about 4-1%, about 3-0.1%, about 3-0.5%, about 3-1%, about 2-0.5%, about 1-0.1% or about 1-0.5%.
- [0196] In this way, it is recognized that the plants disclosed herein can be crossed to produce a complex trait locus comprising any combination of the various genomic windows, double-strand-break target sites, transgenic SSI target sites, genomic loci of interest, and/or polynucleotides of interest described herein.
 [0197] The previous section describes various methods for creating a complex trait locus by adding transgenic SSI
- target sites integrated into a DSB target sites and/or genomic loci of interest to a genomic window thereby making a complex trait locus. It is recognized that a complex trait locus can also be altered by removing or breeding-away certain target sites (double-strand-break target sites and/or transgenic SSI target sites) and/or genomic loci of interest. The complex trait loci disclosed herein are designed such that each altered double-strand-break target sites and/or genomic locus of interest has a different genomic insertion site and can segregate independently. Such a design allows traits to be bred into the genomic window and also to breed traits out of the genomic window.
- ²⁰ **[0198]** The breeding methods described above for combining traits into a genomic window can also be employed to remove traits from a genomic window by breeding away the trait.

[0199] The method of altering a complex trait locus by breeding away comprises providing a first plant comprising a double-strand-break target sites and/or transgenic SSI target sites and/or genomic locus of interest to be removed and crossing the first plant with a second plant that does not have the particular double-strand-break target sites and/or

²⁵ transgenic SSI target sites and/or genomic locus of interest in the genomic window. The resulting progeny lacking the double-strand-break target sites and/or transgenic SSI target sites and/or genomic locus of interest would then be selected.

[0200] The transgenic target sites integrated into a DSB target site disclosed herein comprise at least one recombination site, as described elsewhere herein, which can be utilized for direct insertion of one or more polynucleotides of interest

³⁰ into the target site. Thus, a complex trait locus comprising various target sites can be manipulated by site-specific integration methods. Such methods are described in detail in WO 99/25821. This method allows removing, adding and/or replacing various polynucleotides of interest within transgenic target sites of an established complex trait locus by employing site-specific recombination. Alternatively, the transgenic target site can be altered in a plant before the plant is utilized in breeding methods to produce a complex trait locus.

EXAMPLES

35

[0201] In the following Examples, unless otherwise stated, parts and percentages are by weight and degrees are Celsius. It should be understood that these Examples, while including embodiments of the disclosure, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can make various changes and modifications of the disclosure to adapt it to various usages and conditions.

EXAMPLE 1

⁴⁵ DNA constructs for guide RNA/Cas endonuclease systems for maize genome modifications

[0202] To test the guide RNA/Cas endonuclease system in maize, the Cas9 gene from *Streptococcus pyogenes* M1 GAS (SF370) (SEQ ID NO: 308) was maize codon optimized per standard techniques known in the art and the potato ST-LS1 intron was introduced in order to eliminate its expression in *E. coli* and *Agrobacterium*. To facilitate nuclear

- ⁵⁰ localization of the Cas9 protein in maize cells, *Simian virus* 40 (SV40) monopartite amino terminal nuclear localization signal (MAPKKKRKV, SEQ ID NO: 309) and *Agrobacterium tumefaciens* bipartite VirD2 T-DNA border endonuclease carboxyl terminal nuclear localization signal (KRPRDRHDGELGGRKRAR, SEQ ID NO: 310) were incorporated at the amino and carboxyl-termini of the Cas9 open reading frame respectively. The maize optimized Cas9 gene was operably linked to a maize Ubiquitin promoter by standard molecular biological techniques. A maize optimized Cas9 expression cassette is listed in SEQ ID NO: 311.
 - **[0203]** The maize U6 polymerase III promoter (SEQ ID NO: 312) was used to express guide RNAs which direct Cas9 nuclease to designated genomic sites (as described in US patent application 14/463687 filed on August 20, 2014). The guide RNA coding sequence was 77 bp long and comprised a 12-30 bp variable targeting domain from a chosen maize

genomic target site on the 5' end maize U6 polymerase III terminator (as described in US patent application 14/463687 filed on August 20, 2014).

[0204] To improve the co-expression and presence of the Cas9 endonuclease and the guide RNA to form a protein/RNA complex, the Cas9 endonuclease and guide RNA expression cassettes were linked into a single DNA construct. A

- ⁵ 450-470 bp sequence containing the guide RNA coding sequence comprising the 12-30 bp variable targeting domain from the chosen maize genomic target site, and part of the U6 promoter were synthesized (Integrated DNA Technologies, Inc. 1710 Commercial Park, Coralville, Iowa 52241, USA). The sequence was then cloned to the backbone already having the Cas9 expression cassette and the rest of the U6 promoter (for example bp 6741-7405 from SEQ ID NO: 106) of the gRNA expression cassette through restrict sites of BstBI/HindIII, which was then used to transform maize cells to
- test the maize optimized guide RNA/Cas system for genome modification. Similar DNA constructs were made to target different genomic sites using guide RNAs containing different target sequences as described in Example 3.

EXAMPLE 2

20

¹⁵ Selection of maize genomic windows for the introduction of Site Specific Integration (SSI) transgenic target sites by the guide RNA/Cas endonuclease system and Complex Trait Loci development

[0205] Four maize genomic regions (also referred to as genomic windows, Figure 1) were identified for the production of Complex Trait Loci comprising a combination of transgenic target sites for SSI introduced into that genomic window by a maize optimized guide RNA/ Cas9 endonuclease system described herein (Figure 2A-2D).

[0206] The first maize genomic window that was identified for development of a Complex Trait Locus (CTL) spans from ZM01: 12987435 (flanked by public SNP marker SYN12545) to Zm01:15512479 (flanked by public SNP marker SYN20196) on chromosome 1 (Figure 4). Table 1 shows the physical and genetic map position (if available) for a multitude of maize SNP markers (Ganal, M. et al, A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome. PloS one, December

and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome. PloS one, December 08, 2011DOI: 10.1371) and Cas endonuclease target sites (31 sites) within the genomic window of interest on the maize chromosome 1.

30	Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position (PUB B73v3)	Genetic Position(PUB B73v3)	Genetic Position (PHI)
	SYN12545*	1	12987435	36.9	50.35
35	SYN12536*	2	12988556	36.9	50.36
	49-CR2	3	13488227		50.87
	50-CR1	4	13554078		50.95
40	51-CR1	5	13676343		51.06
	SYN14645*	6	13685871	37.4	51.07
	41-CR2	7	13830316		51.27
	72-CR1	8	13841735		51.33
45	71-CR1	9	13846794		51.32
	81-CR1	10	13967499		51.45
	73-CR1	11	13986903		51.48
50	PZE-101023852*	12	14030843	37.6	51.53
	14-CR4	13	14038610		51.54
55	74-CR1	14	14089937		51.61
	75-CR1	15	14226763		51.68
	84-CR1	16	14233410		51.68
	76-CR1	17	14245535		51.69

Table 1. Genomic Window comprising a Complex Trait Locus (CTL1) on Chromosome 1 of maize

100	ntin	11041
11.11		ueur
		~~~,

5	Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position (PUB B73v3)	Genetic Position(PUB B73v3)	Genetic Position (PHI)
	77-CR1	18	14344614		51.72
	78-CR1	19	14380330		51.75
	PZE-101024424*	20	14506833	37.8	51.81
0	79-CR1	21	14577827		51.84
	85-CR1	22	14811592		51.95
	19-CR1	23	14816379		51.95
5	SYN25022*	24	14851517	37.8	51.97
	86-CR1	25	14951113		52.54
	08-CR1	26	14955364		52.56
20	43-CR1	27	15006039		52.8
0	11-CR1	28	15066942		53.15
	SYN31156*	29	15070918	39.9	53.16
	47-CR2	30	15081190		53.21
?5	80-CR1	31	15084949		53.23
	52-CR2	32	15088711		53.25
	87-CR1	33	15158706		53.57
20	88-CR1	34	15162366		53.59
0	SYN31166*	35	15169575	40.9	53.62
	45-CR1	36	15177228		53.66
	10-CR3	37	15274433		54.56
5	44-CR2	38	15317833		54.16
	46-CR2	39	15345674		54.43
	SYN22238*	40	15491134	41.7	54.99
40	SYN20196*	41	15512479	41.9	55.48

45

[0207] The second maize genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Zm01:253.78 MM (flanked by public SNP marker PZE-101205031) to Zm01: 257 MM (flanked by public SNP marker SYN24492) on chromosome 1 (Figure 5). Table 2 shows the physical and genetic map position (if available) for a multitude of maize SNP markers (Ganal, M. et al (2011) PloS one, DOI: 10.1371) and Cas endonuclease target sites (15 sites) within this genomic window of interest on the maize chromosome 1.

50

Table 2. Genomic Window comprising a Complex Trait Locus 2 (CTL2) on Chromosome 1 of maize

Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP sequence (SEQ ID NO:)	Physical position (PUB B73v3)	Genetic Position (PUB B73v3)	Genetic Position (PHI)
PZE-101205031*	42	253779529	185.7	230.5
62-CR1	43	253823089		230.55
27-CR1	44	254009239		230.83

55

5	Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP sequence (SEQ ID NO:)	Physical position (PUB B73v3)	Genetic Position (PUB B73v3)	Genetic Position (PHI)
	27-CR3	45	254009251		230.83
	63-CR1	46	254022286		230.85
10	64-CR1	47	254064681		230.92
	PUT-163A-148951459-517*	48	254154625	-	231.06
	30-CR2	49	254323740		231.38
15	30-CR1	50	254323749		231.38
	65-CR1	51	254362279		231.47
	66-CR1	52	254528255		231.69
	PZE-101205904*	53	254809233	-	232.1
20	67-CR1	54	254810763		232.1
	68-CR1	55	254873093		232.2
	34-CR1	56	255390916		232.82
25	34-CR3	57	255390924		232.82
	34-CR2	58	255390944		232.82
	PZE-101206569*	59	255763233	-	233.29
	69-CR1	60	255783594		233.31
30	SYN24492*	61	256998852	188.6	234.74

#### (continued)

[0208] The third maize genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Zm03: 742991 (flanked by public SNP marker PZE-103000166) to Zm03: 1614189 (flanked by public SNP marker PZE-103001421) on chromosome 3 (Figure 6). Table 3 shows the physical and genetic map position (if available) for a multitude of maize SNP markers (Ganal, M. et al (2011) PloS one, DOI: 10.1371) and Cas endonuclease target sites (18 sites) within this genomic window of interest on the maize chromosome 3.

Table 3. Genomic Window comprising a Complex Trait Locus 3 (CTL3) on Chromosome 3 of maize

40	Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position (PUB B73v3)	Genetic Position (PUB B73v3)	Genetic position (PHI)
	PZE-103000166*	62	742991	-	3.44
45	chr3-TS1	63	899135		4.04
	chr-TS2	64	1036161		4.62
50	chr3-TS3	65	1037353		4.63
	chr-TS4	66	1083686		4.81
50	PZE-103000238*	67	1106831	-	4.91
	Chr3-TS6	68	1172164		5.55
55	Chr3-TS7	69	1218009		5.56
	Chr3-TS10	70	1219548		5.93
	Chr3-TS11	71	1223674		5.94

36
Name of public SN or Cas endonuclea	P markers (*) ase target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position (PUB B73v3)	Genetic Position (PUB B73v3)	Genetic position (PHI)
Chr3-TS	512	72	1223862		5.95
PZE-10300	0307*	73	1233863	-	5.62
Chr3-T	S9	74	1270677		5.70
Chr3-T	S8	75	1272057		5.69
Chr3-TS	513	76	1337819		6.12
Chr3-TS	514	77	1386369		6.32
Chr3-TS	515	78	1459144		6.71
SYN635	55*	79	1554858	0.4	6.88
Chr3-TS	516	80	1559776		6.90
Chr3-TS	517	81	1561991		6.91
Chr3-TS	518	82	1563993		6.92
Chr3-TS	519	83	1577833		6.98
PZE-10300	1421*	84	1614189		7.22

### (continued)

25

[0209] The fourth maize genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Zm10: 143.75MM (flanked by public SNP marker PZE-110099037) to Zm10: 144.62MM (flanked by public SNP marker PZE-110101412) on chromosome 10 (Figure 7). Table 4 shows the physical and genetic map position (if available) for a multitude of maize SNP markers (Ganal, M. et al (2011) PloS one, DOI: 10.1371) and Cas endonuclease target sites (15 sites) within this genomic window of interest on the maize chromosome 10.

[0210] The internal and public genetic position are not all aligned to the same order for this region, this could due to the wrong assembly either the public or internal.

Table 4. Genomic Wind	ow comprising a Comple	ex Trait Locus 4 (CTL4) o	n Chromosome 10 of maize
-----------------------	------------------------	---------------------------	--------------------------

35	Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position (PUB B73v3)	GeneticPosition (PUBB73v3)	Genetic Position (PHI B73v2)
	PZE-110099037*	85	143748355	93.5	128.26
40	PZE-110099048*	86	143749018	-	128.25
	chr10-TS4	87	143820705		128.16
	chr10-TS3	88	143824753		128.14
45	chr10-TS2	89	143826830		128.13
	chr10-TS1	90	143836660		128.09
	SYN29534*	91	144045172	94.6	129.11
	chr10-TS5	92	144087077		129.23
50	chr10-TS6	93	144174303		129.45
	PZE-110100195*	94	144177211	94.8	129.46
	chr10-TS7	95	144208739		129.54
55	chr10-TS8	96	144209967		129.55
	chr10-TS10	97	144350690		130.41
	chr10-TS9	98	144358655		130.16

Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical position (PUB B73v3)	GeneticPosition (PUBB73v3)	Genetic Position (PHI B73v2)
PZE-110100685*	99	144410276	96.6	131.79
chr10-TS16	100	144416223		131.17
chr10-TS15	101	144417106		131.16
chr10-TS14	102	144421928		131.11
chr10-TS13	103	144438323		130.95
chr10-TS12	104	144438619		130.94
PZE-110101412*	105	144620418	98.4	132.71

### (continued)

### 10

# 15

40

45

50

55

### EXAMPLE 3

²⁰ Guide RNA expression cassettes, Cas9 endonuclease expression cassettes and donor DNA's for introduction of transgenic target sites for SSI in a maize genomic window.

[0211] The maize U6 maize U6 polymerase III promoter (SEQ ID NO: 312) was used to express guide RNAs to direct Cas9 nuclease to designated genomic target sites. A maize codon optimized Cas9 endonuclease expression cassette and a guide RNA expression cassette were linked in a first plasmid that was co-delivered with a second plasmid comprising 25 a donor DNA (repair DNA) cassette (Figure 2C). The donor DNA contained FRT1/FRT87(6) recombination sites for site specific integration, flanking the NPTII marker: terminator (Figure 2B) which upon integration by homologous recombination with the guide RNA/Cas system created the FRT1/FRT87(6) target lines for SSI technology application (Figure 2D). [0212] The guide RNA (gRNA)/Cas9 DNA constructs targeting various maize genomic sites that were constructed for the introduction of transgenic SSI target sites into Cas endonuclease target sites through homologous recombination 30 are listed in Table 5 and Table 7. Table 6 and Table 8 list the guide RNAs that were expressed from the guide RNA constructs. The bases of the guide RNA that comprise the variable targeting domain are listed in the Tables 6 and 8 as well. For example, the first 19 bases of SEQ ID NO: 267 (base 1-19) comprise the variable targeting domain of guide RNA 49-CR2 (Table 6). All the guide RNA/Cas9 constructs differed only in the 17-25 bp guide RNA variable targeting domain targeting the maize genomic target sites. All the donor DNA constructs differed only in the homologous regions 35 such as ZM-SEQX(HR1) and ZM-SEQY(HR2). These guide RNA/Cas9 DNA constructs and donor DNAs were co-

delivered into an elite maize genome by the stable transformation procedure described in Example 4.

Table 5. Guide RNA/Cas9 used in maize Stable Transformation for the Complex Trait Locus on ZM01-CTL1

Experiment	Guide RNA/Cas9	SEQ ID NO:
49-CR2	ZM-U6:49CR2+UBI:CAS9 (PHP70573)	106
50-CR1	ZM-U6:50CR1+UBI:CAS9 (PHP70586)	107
51-CR1	ZM-U6:51CR1+UBI:CAS9 (PHP70581)	108
41-CR2	ZM-U6:41CR2+UBI:CAS9 (PHP70582)	109
72-CR1	ZM-U6:72CR1+UBI:CAS9 (PHP70588)	110
71-CR1	ZM-U6:71CR1+UBI:CAS9 (PHP70587)	111
81-CR1	ZM-U6:81CR1+UBI:CAS9 (PHP70589)	112
73-CR1	ZM-U6:73CR1+UBI:CAS9 (PHP70590)	113
14-CR4	ZM-U6:14CR4+UBI:CAS9 (PHP70591)	114
74-CR1	ZM-U6:74CR1+UBI:CAS9 (PHP70592)	115
75-CR1	ZM-U6:75CR1+UBI:CAS9 (PHP70593)	116
84-CR1	ZM-U6:84CR1+UBI:CAS9 (PH P70594)	117

# (continued)

	Experiment	Guide RNA/Cas9	SEQ ID NO:
5	76-CR1	ZM-U6:76CR1+UBI:CAS9 (PHP70595)	118
0	77-CR1	ZM-U6:77CR1+UBI:CAS9 (PHP70596)	119
	78-CR1	ZM-U6:78CR1+UBI:CAS9 (PHP70597)	120
	85-CR1	ZM-U6:85CR1+UBI:CAS9 (PHP70599)	121
10	19-CR1	ZM-U6I:19CR1+UBI:CAS9 (PHP70577)	122
	86-CR1	ZM-U6:86CR1+UBI:CAS9 (PHP70600)	123
	8-CR1	ZM-U6:8CR1+UBI:CAS9 (PHP71193)	124
15	43-CR1	ZM-U6:43CR1+UBI:CAS9 (PHP70583)	125
	11-CR1	ZM-U6:11CR1+UBI:CAS9 (PH P70584)	126
	47-cR2	ZM-U6:47CR2+UBI:CAS9 (PHP70574)	127
	80-CR1	ZM-U6:80CR1+UBI:CAS9 (PHP70601)	128
20	52-CR2	ZM-U6:52CR2+UBI:CAS9 (PHP70602)	129
	87-CR1	ZM-U6:87CR1+UBI:CAS9 (PHP70603)	130
	88-CR1	ZM-U6:88CR1+UBI:CAS9 (PHP70604)	131
25	45-CR1	ZM-U6:45CR1+UBI:CAS9 (PHP70605)	132
	10-CR3	ZM-U6:10CR3+UBI:CAS9 (PHP70580)	133
	44-CR2	ZM-U6:44CR2+UBI:CAS9 (PHP70575)	134
	46-CR2	ZM-U6:46CR2+UBI:CAS9 (PHP70585)	135

Quide DNA nome		
Guide RNA name	SEQ ID NO:	Variable targeting domai
49-CR2	267	Base 1-19
50CR1	268	Base 1- 19
51-CR1	269	Base 1-21
41-CR2	270	Base 1- 21
72-CR1	271	Base 1- 20
71-CR1	272	Base 1- 22
81-CR1	273	Base 1-20
73-CR1	274	Base 1-19
14-CR4	275	Base 1-20
74-CR1	276	Base 1-19
75-CR1	277	Base 1- 20
84-CR1	278	Base 1- 20
76-CR1	279	Base 1- 21
77-CR1	280	Base 1- 22
78-CR1	281	Base 1-20
85-CR1	282	Base 1-19

### (continued)

Variable targeting domains

Base 1-24

Base 1-21

Base 1-18

Base 1-21

Base 1- 18

Base 1- 22

Base 1-24

Base 1-19

Base 1-20

Base 1-23

Base 1-21

Base 1-18

Base 1-19

Base 1-20

SEQ ID NO:

283

284

285

286

287

288

289

290

291

292

293

294

295

296

5

Guide RNA name

19-CR1

86-CR1

8-CR1

43-CR1

11-CR1

47-CR1

80-CR1

52-CR2

87-CR1

88-CR1

45-CR1

10-CR3

44-CR2

46-CR2

1	0

15

20

#### 20

25

30

35

40

Table 7. Guide RNA/Cas9 used in Maize Stable Transformation for the Complex Trait Locus 2 (CTL2) on Zm01

Experiment	Guide RNA/Cas9	SEQ ID NO:
62-CR1	ZM-U6:62CR1+UBI:CAS9 (PHP71924)	136
27-CR1	ZM-U6:27CR1+UBI:CAS9 (PHP71918)	137
63-CR1	ZM-U6:63CR1+UBI:CAS9 (PHP71925)	138
64-CR1	ZM-U6:64CR1+UBI:CAS9 (PHP71926)	139
30-CR1	ZM-U6:30CR1+UBI:CAS9 (PHP71920)	140
65-CR1	ZM-U6:65CR1+UBI:CAS9 (PHP71927)	141
66-CR1	ZM-U6:66CR1+UBI:CAS9 (PHP71928)	142
67-CR1	ZM-U6:67CR1+UBI:CAS9 (PHP71930)	143
68-CR1	ZM-U6:68CR1+UBI:CAS9 (PHP71931)	144
34-CR1	ZM-U6:34CR1+UBI:CAS9 (PHP71922)	145
69-CR1	ZM-U6:69CR1+UBI:CAS9 PHP71932)	146

Guide RNA name	SEQ ID NO:	Variable targeting domains
62-CR1	297	Base 1-20
27-CR1	298	Base 1-22
63-CR1	299	Base 1- 19
64-CR1	300	Base 1- 22
30-CR1	301	Base 1-22
65-CR1	302	Base 1- 22

55

### (continued)

Guide RNA name	SEQ ID NO:	Variable targeting domains
66-CR1	303	Base 1-23
67-CR1	304	Base 1-19
68-CR1	305	Base 1- 20
34-CR1	306	Base 1- 20
69-CR1	307	Base 1-22

### EXAMPLE 4

# Delivery of the guide RNA/Cas9 endonuclease system DNA to maize by stable transformation

**[0213]** The guide RNA/Cas9 DNA constructs and donor DNAs described in Example 3 were co-delivered to an elite maize genome by the stable transformation procedure described below. Transformation of maize immature embryos using particle delivery is performed as follows.

- [0214] Maize ears are husked and surface sterilized in 30% Clorox bleach plus 0.5% Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are isolated and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560Y medium for 4 hours and then aligned within the 2.5-cm target zone in preparation for bombardment. Alternatively, isolated embryos are placed on 560L (Initiation medium) and placed in the dark at temperatures ranging from 26°C to 37°C for 8 to 24 hours prior to placing on 560Y for 4 hours at 26°C prior to bombardment as described above.
- [0215] Plasmids containing the double strand brake inducing agent and donor DNA are constructed using standard molecular biology techniques and co-bombarded with plasmids containing the developmental genes ODP2 (AP2 domain transcription factor ODP2 (Ovule development protein 2); US20090328252 A1) and Wushel (US2011/0167516).
   [0216] The plasmids and DNA of interest are precipitated onto 0.6 μm (average diameter) gold pellets using a propri-
- etary lipid-polymer mixture of a water-soluble cationic lipid transfection reagent as follows. DNA solution is prepared on ice using 1 μg of plasmid DNA and optionally other constructs for co-bombardment such as 50 ng (0.5 μl) of each plasmid containing the developmental genes ODP2 (AP2 domain transcription factor ODP2 (Ovule development protein 2); US20090328252 A1, published December 31, 2009) and Wushel. To the pre-mixed DNA, 20 μl of prepared gold particles (15 mg/ml) and 1μl A of the water-soluble cationic lipid transfection reagent is added in water and mixed
- ³⁵ carefully. Gold particles are pelleted in a microfuge at 10,000 rpm for 1 min and supernatant is removed. The resulting pellet is carefully rinsed with 100 ml of 100% EtOH without resuspending the pellet and the EtOH rinse is carefully removed. 105 μl of 100% EtOH is added and the particles are resuspended by brief sonication. Then, 10 μl is spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment. [0217] The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the
- ⁴⁰ precipitation period, the tubes are centrifuged briefly, liquid is removed, and the particles are washed with 500 ml 100% ethanol, followed by a 30 second centrifugation. Again, the liquid is removed, and 105 μl 100% ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA particles are briefly sonicated. 10 μl of the tungsten/DNA particles is spotted onto the center of each macrocarrier, after which the spotted particles are allowed to dry about 2 minutes before bombardment.
- [0218] The sample plates are bombarded at level #4 with a Biorad Helium Gun. All samples receive a single shot at 450 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA.
   [0219] Following bombardment, the embryos are incubated on 560P (maintenance medium) for 12 to 48 hours at temperatures ranging from 26C to 37C, and then placed at 26C. After 5 to 7 days the embryos are transferred to a selection medium containing 150 mg/liter Geneticin (G418), and sub-cultured every 2 weeks at 26C. After approximately
- ⁵⁰ 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. ⁵⁰ Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to a lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormone-free medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to a 2.5" pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to Classic 600 pots (1.6 gallon) and grown to maturity.
- ⁵⁵ Plants are monitored and scored for transformation efficiency, and/or modification of regenerative capabilities.
   [0220] Initiation medium (560L) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000X SIGMA-1511), 0.5 mg/l thiamine HCl, 20.0 g/l sucrose, 1.0 mg/l 2,4-D, and 2.88 g/l L-proline (brought to volume)

with D-I H2O following adjustment to pH 5.8 with KOH); 2.0 g/I Gelrite (added after bringing to volume with D-I H2O); and 8.5 mg/l silver nitrate (added after sterilizing the medium and cooling to room temperature).

[0221] Maintenance medium (560P) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000X SIGMA-1511), 0.5 mg/l thiamine HCl, 30.0 g/l sucrose, 2.0 mg/l 2,4-D, and 0.69 g/l L-proline (brought to volume with D-I H2O following adjustment to pH 5.8 with KOH); 3.0 g/l Gelrite (added after bringing to volume with D-I

- 5 H2O); and 0.85 mg/l silver nitrate (added after sterilizing the medium and cooling to room temperature). [0222] Bombardment medium (560Y) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000X SIGMA-1511), 0.5 mg/l thiamine HCl, 120.0 g/l sucrose, 1.0 mg/l 2,4-D, and 2.88 g/l L-proline (brought to volume with D-I H2O following adjustment to pH 5.8 with KOH); 2.0 g/l Gelrite (added after bringing to volume with D-I
- 10 H2O); and 8.5 mg/l silver nitrate (added after sterilizing the medium and cooling to room temperature). [0223] Selection medium (560R) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000X SIGMA-1511), 0.5 mg/l thiamine HCl, 30.0 g/l sucrose, and 2.0 mg/l 2,4-D (brought to volume with D-I H2O following adjustment to pH 5.8 with KOH); 3.0 g/l Gelrite (added after bringing to volume with D-I H2O); and 0.85 mg/l silver nitrate and 3.0 mg/l Geneticin (G418) (both added after sterilizing the medium and cooling to room temperature).
- 15 [0224] Plant regeneration medium (288J) comprises 4.3 g/I MS salts (GIBCO 11117-074), 5.0 ml/I MS vitamins stock solution (0.100 g nicotinic acid, 0.02 g/l thiamine HCL, 0.10 g/l pyridoxine HCL, and 0.40 g/l glycine brought to volume with polished D-I H2O) (Murashige and Skoog (1962) Physiol. Plant. 15:473), 100 mg/l myo-inositol, 0.5 mg/l zeatin, 60 g/l sucrose, and 1.0 ml/l of 0.1 mM abscisic acid (brought to volume with polished D-I H2O after adjusting to pH 5.6); 3.0 g/l Gelrite (added after bringing to volume with D-I H2O); and 1.0 mg/l indoleacetic acid and 3.0 mg/l Geneticin
- 20 (G418) (added after sterilizing the medium and cooling to 60°C). Hormone-free medium (272V) comprises 4.3 g/l MS salts (GIBCO 11117-074), 5.0 ml/I MS vitamins stock solution (0.100 g/l nicotinic acid, 0.02 g/l thiamine HCL, 0.10 g/l pyridoxine HCL, and 0.40 g/l glycine brought to volume with polished D-I H2O), 0.1 g/l myo-inositol, and 40.0 g/l sucrose (brought to volume with polished D-I H2O after adjusting pH to 5.6); and 6 g/l bacto-agar (added after bringing to volume with polished D-I H2O), sterilized and cooled to 60°C. 25

# **EXAMPLE 5**

Detection of site-specific Non-Homologous-End Joining (NHEJ) (indicative of target site mutation) mediated by the guide RNA/Cas9 system in stably transformed maize

30

[0225] Genomic DNA was extracted from stable maize shoots (obtained from maize events described in Example 3-4) on maturation plates and analyzed by quantitative PCR using a 7900 real time PCR system (Applied Biosystems, Foster City, CA) with target site-specific primers and FAM-labeled fluorescence probe to check copy number changes of the double strand break target sites. The qPCR analysis was done in duplex reactions with Alcohol DeHydrogenases (ADH)

35 as the endogenous controls. The endogenous control probe ADH was labeled with VIC and the gene-specific probes for all the target sites were labeled with FAM for the simultaneous detection of both fluorescent probes (Applied Biosystems). PCR reaction data were captured and analyzed using the sequence detection software provided with the 7900 real time PCR system and the gene copy numbers were calculated using the relative guantification methodology (Applied Biosystems). The primers and probes for obtaining the target site copy number using qPCR at each site were as listed 40

in Table 9 (SEQ ID NO: 147-266).

Table 9. Primers/Probes used in qPCR analyses of transgenic maize events

	CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
45 50			49CR2 MGB Probe	AGCGCCCAGCACC	147
	1	49CR2	49CR2_F_1	GATTGGACGTGCGGCTGT	148
			49CR2_R_1	TAGCCATCGCGTGCCC	149
	1	50-CR1	50CR1 MGB Probe	CTGCCGTTGTTGTTCA	150
			50CR1_F_1	TGTGTGAATCCCATTTCTCCTAGA	151
				50CR1_R_1	AGGTGAAGGATCGGTCGAGA
55		51-CR1	51CR1 MGB Probe	TAGGTAGAAATGTGAAGGTC	153
	1		51CR1_F_1	AGAGGTTGAGACGCTCCACG	154
			51CR1_R_1	GTGCGTGCTTTGTTTGTTTCTT	155

	CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
_			41CR2 MGB Probe	CCCAAGTAGCAATTACA	156
5	1	41-CR2	41CR2_F_1	GGCTAGGTAATGGTTGAATCTACATATTA	157
			41CR2_R_1	TTCTGCGTTTGCTCGCCT	158
			72CR1 MGB Probe	ACTTCTCCAATGCGTCACA	159
10	1	72-CR1	72CR1_F_1	AGAAGCAGGCTCGCCAGAA	160
			72CR1_R_1	GCAACCCCTCCTCGTCT	161
			71CR1 MGB Probe	CCTCCATCCTTTTACCTC	162
15	1	71-CR1	71CR1_F_1	CAGTTGCTGGTATGCCTTGCT	163
10			71CR1_R_1	GCACAGGAGCAACCAGAATCA	164
			81CR1 MGB Probe	TTGCTGATGGATCAAT	165
	1	81-CR1	81CR1_F_1	GGAGAAGAGGTGCCTTGGC	166
20			81CR1_R_1	TATGTTAGCCCTAATCTCGACCGT	167
			73CR1 MGB Probe	TAGTCCAGTCTTGTCATCGT	168
	1	73-CR1	73CR1_F_1	CTTACCATCTTTCATCCTTCGTCTT	169
25			73CR1_R_1	TCCAGTGCATATCGCAGTTCC	170
			14CR4 MGB Probe	CAAATCCTAAGGAGGACCAT	171
	1	14-CR4	14CR4_F_1	TCCGACATAAATCTGTGGTCACAT	172
			14CR4_R_1 74CR1 MGB	CGCTTCTACCATATGTAGTTGTTGC	173
30			Probe	TACTCCATGTGGTCATTGT	174
	1	74-CR1	74CR1_F_1	TCTGTCGCTCGTCCAAATCC	175
			74CR1_R_1	CAGGTGGGGAAGCACGAC	176
35		75-CR1	75CR1 MGB Probe	TTGCCGGTCGATGCT	177
	1		75CR1_F_1	CGCTTTTTTCTCCTGCTATTCTG	178
			75CR1_R_1	AAGACAGGCAGTGCCAGAGG	179
			84CR1 MGB Probe	CCTAAACCTACTCTCTTGAGC	180
40	1	84-CR1	84CR1_F_1	TGACACTTTGTATTGGTGCTCTTG	181
			84CR1_R_1	CAAAGGAAAGGGGAGTAACCAAC	182
			76CR1 MGB Probe	TCTGAATACCCGCTCTAG	183
45	1	76-CR1	76CR1_F_1	TTCATCTATCCTAATGAGACATCCTCA	184
			76CR1_R_1	AGGGTCATAATGCAAGACTCGAAT	185
			77CR1 MGB Probe	TAGTTCCACTCTCGGCAAC	186
	1	77-CR1	77CR1_F_1	TGGTGAGAGAGAGGGCTTTTGG	187
50			77CR1_R_1	ACACCTAGCCTAGATGCCTCAGTC	188
			78CR1 MGB Probe	CCAAGCCTCTGCATCT	189
	1	78-CR1	78CR1_F_1	CGAACCTTGTCCGCGTC	190
55			78CR1_R_1	CAAAGTCCCAGAGAGCTTGTTATC	191

	CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
F			85CR1 MGB Probe	TGCTCCTTTATCACTAGGTAT	192
5	1	85-CR1	85CR1_F_1	GAATAAACTAGACGAAAAATGAGGTTGAC	193
			85CR1_R_1	AGGACTGATGAGACTTGTCTTGAGC	194
			19CR1 MGB Probe	TTTGCCAATTCTTTC	195
10	1	19-CR1	19CR1_F_1	GCAAAAGCTCTTAGAATATCCCTTTC	196
			19CR1_R_1	AGCTATAATAAAGTCTTCCCCTCTAGTT	197
			86CR1 MGB Probe	ATTCTCTGTTAAGGAATGACT	198
15	1	86-CR1	86CR1_F_1	CGGAGCATTTTTCTCCCCA	199
			86CR1_R_1	TGACTACGGATGTCAATGGAGAA	200
			43CR1 MGB Probe	CCTGCTACTGCGAACC	201
	1	43-CR1	43CR1_F_1	CCAACCAGCGGCAGAGG	202
20			43CR1_R_1	GCAGCGTACATGGCTCATG	203
			11CR1 MGB Probe	TGTTCCAAATTCTCCTGCCT	204
	1	11-CR1	11CR1_F_1	GTTCTTATATCTGGCGATAACCACTT	205
25			11CR1_R_1	TTGTAGCACTTGCACGTAGTTACATA	206
			47CR2 MGB Probe	CACATACACTTGCACGGCA	207
	1	47-CR2	47CR2_F_1	TGGGAGTAGTAGTGAACGGAATACG	208
			47CR2_R_1	TCCAAAAATTATATAGCACGCACG	209
30			80CR1 MGB Probe	CGTCCAAGATTATCTCCT	210
	1	80-CR1	80CR1_F_1	CCACCACTCTCGCATAATAAGTGA	211
			80CR1_R_1	GCTTGGAATCAGTAGAATGGAACAC	212
35		52-CR2	52CR2 MGB Probe	TAGGCAATTTGTATCTTGCGC	213
	1		52CR2_F_1	ACACCTCCAGTAGCCACATCC	214
			52CR2_R_1	TGCTTTACGCTAGGTGTGTATCTTACA	215
			87CR1 MGB Probe	AAACACAGACAAGTTGG	216
40	1	87-CR1	87CR1_F_1	GAATCACATTCTCTCCTCCTCTT	217
			87CR1_R_1	CGCAGAATCGGCGAGG	218
			88CR1 MGB Probe	ACTGTCTAAATACTGGTATCTT	219
45	1	88-CR1	88CR1_F_1	GATGGAGGATAGAATTGTATCTTTTAGGA	220
			88CR1_R_1	ACTGTCTTAATTTACTCGACTCTTTCTTA	221
			45CR1 MGB Probe	ATTGCTCCTCATCCTCGA	222
	1	45-CR1	45CR1_F_1	CCACGGACTGGATTAGATAGTGGT	223
50			45CR1_R_1	TCTAGCTTTGCATCATGTCTTGAAC	224
			10CR3 MGB Probe	TGTCCCTGTATCTCCAAC	225
	1	10-CR3	10CR3_F_1	GGCAGGAATCAAGGCTCGT	226
55			10CR3_R_1	GCCTCGCCTTCGCTAGTTAA	227

	CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
-			44CR2 MGB Probe	AGCCTGAGCCCATGCA	228
5	1	44-CR2	44CR2_F_1	AGCCACCGCACTCCACC	229
			44CR2_R_1	GCTTCTGCGATCTGCGGT	230
			46CR2 MGB Probe	CCTGTGCCATCGCT	231
10	1	46-CR2	46CR2_F_1	CATGTGGCGAAGGTTGGAT	232
			46CR2_R_1	GGAAGAAAAAAGATGTTATCGAAAGC	233
			62CR1 MGB Probe	AGTTGGATATGTCTAGCCG	234
15	2	62-CR1	62CR1_F_1	TGAGGGAGAAATTAAACATCCAGC	235
10			62CR1_R_1	TTGGCGTGAAACGGAGCT	236
			27CR1 MGB Probe	TGCACCCCGTCGTC	237
	2	27-CR1	27CR1_F_1	AGAGAAAGCAGATGACACGCAC	238
20			27CR1_R_1	CAAATCCGATTACCACACATTAGC	239
			63CR1 MGB Probe	AGCTTACATCAGCTTTGGT	240
	2	63-CR1	63CR1_F_1	TCGAGATAACCCTAGAAAAAATGGTT	241
25			63CR1_R_1	GTGGTCCACCATCGAGCAA	242
			64CR1 MGB Probe	ACCGTGATTGCATTGC	243
	2	64-CR1	64CR1_F_1	TGGAAACGCTTCATATTCGGA	244
			64CR1_R_1	TCTCTCCGATGCCATTGAACTAG	245
30	2	30-CR1	30CR1_MGB Probe	AGGAAGGCAACGATG	246
			30CR1_F_1	ATGTTCGCCACCTTTATTTGC	247
			30CR1_R_1	CATCAACCCGTTCTGTCCCT	248
35		65-CR1	65CR1 MGB Probe	TCTCGGCCATGGATT	249
	2		165CR1_F_1	TGGTCGAACTCTTGCACGG	250
			65CR1_R_1	ATTTTTTGAACAAGAACCGTGGAC	251
			66CR1 MGB Probe	CTGGCCGCTAGAAC	252
40	2	66-CR1	66CR1_F_1	CGGAAAAGGAACAGTCTTGATTG	253
			66CR1_R_1	TGTGCTCTCTACCTTTGCATGTG	254
			67CR1 MGB Probe	CGGAACTGTGAGTGACG	255
45	2	67-CR1	67CR1_F_1	CTAGCCTAGCAGGAGTACGAGTTGT	256
			67CR1_R_1	TGTCCTAGTTTTTCATCTGCAATCTG	257
			68CR1 MGB Probe	ATGGTCCACTTTGATAGC	258
	2	68-CR1	68CR1_F_1	GGTCGTAGTGCCGTTGATGG	259
50			68CR1_R_1	CCAGTCCCTGTGTACGTGTGC	260
			34CR1 MGB Probe	ACACACGTACTGCGGCGT	261
	2	34-CR1	34CR1_F_1	TGTCTTTCTTGTCGCTGTGGAT	262
55			34CR1_R_1	CCACACGTCGTCCGAGTTC	263

#### (continued)

ſ	CTL	Target site	Probe/Primer Name	Sequence	SEQ ID NO:
Γ			69CR MGB Probe	AACTCGTAAACCTAGCGCT	264
	2	69-CR1	69CR1_F_1	TAGCCGAAACATGACCTCTTTGA	265
			69CR1_R_1	ACCCCAATAAAACCCCCTAGC	266

5

- **[0227]** Cas endonuclease activity was measured *in-planta* by determining the "Target Site Mutation frequency "(Tables 10-11) which is defined as: (number of events with target site modification / total number recovered events)*100 %. Hence, if 200 events were recovered and 160 events showed a mutation, the Target Site Mutation frequency is 80%. The target site mutation was measured using target site allele copy number as described in Example 18 of as described
- in US patent application 14/463687, filed on August 20, 2014. In short, if no modification of the target site was observed, the event would be called wild type (WT), both alleles are intact, target site copy number would be 2. Events with one allele modified due to double strand break, have the target site copy number reduced to 1 (one allele). Events with both alleles of the target site modified, have a copy number of 0 (null). Events that were identified to have a target site mutation included both one allele and null events.
- **[0228]** As shown in Table 10 and Table 11, the target site mutation frequency (Cas9 endonuclease activity) varied from target site to target site (ranging from between about 32 to about 98%), and most target sites' mutation frequency was above 50%. Over all, the guide RNA/Cas system was a very efficient double strand break system.

30	<u> </u>			<u> </u>
	Target	Event Recovery frequency (%)	Target Site Mutation frequency (%)	Insertion frequency (HR1+HR2) (%)
	49-CR2	19%	93%	1%(3)
35	50CR1	24%	83%	4%(8)
	41-CR2	39%	62%	3% (9)
	72-CR1	25%	93%	2%(7)
	71-CR1	27%	97%	5%(13)
40	81-CR1	22%	77%	3%(6)
Γ	73-CR1	24%	75%	3%(7)
	14-CR4	27%	98%	1%(2)
45	74-CR1	14%	80%	1%(1)
	75-CR1	20%	80%	3%(6)
	84-CR1	25%	75%	2%(6)
	76-CR1	26%	75%	7%(19)
50	77-CR1	20%	73%	3%(7)
	78-CR1	27%	57%	2%(7)
	85-CR1	19%	76%	0.5%(1)
55	19-CR1	31%	32%	0
	86-CR1	22%	85%	3%(7)
	8-CR1	21%	94%	5%(9)

Table 10. Target site mutations and site specific gene integrations induced by the guide RNA/Cas9 system on a genomic window referred to as Complex Trait Locus 1 (CTL1) on Zm01 in maize

^[0226] The "Event Recovery frequency " was calculated using the number of events recovered divided by the total number of embryos bombarded, and may indicate if an endonuclease has some toxic effect or not. Hence, if 1000 embryos were bombarded and 200 were recovered, the Event Recovery frequency is 20%. Table 10 and Table 11 indicate that for all target sites analyzed so far, the Event Recovery frequency ranged between 14% and 39%. Targets like 74-CR1 with lower event recovery (14%) indicated some toxicity for this guide RNA/Cas system. Overall, the guide RNA/Cas system used herein showed low toxicity with variation from guide to guide.

### (continued)

	Target	Event Recovery frequency (%)	Target Site Mutation frequency (%)	Insertion frequency (HR1+HR2) (%)
5	43-CR1	18%	79%	1%(2)
	11-CR1	19%	98%	4%(7)
	47-CR1	20%	86%	4%(7)
10	80-CR1	26%	98%	2%(4)
	87-CR1	23%	99%	5%(12)
	45-CR1	27%	90%	7% (20)
	44-CR2	24%	90%	4%(9)

15

### Table 11. Target Site Mutations and Site Specific Gene Integration Induced by the Guide RNA/Cas9 system on a genomic window referred to as CTL2 on Zm01 in maize

20	Target site	#Event recovery frequency (%)	Target site mutation frequency (%)	Insertion (HR1+HR2) frequency (%)
25	62-CR1	26%	95%	1%(4)
	27CR1	20%	97%	2%(4)
	63-CR1	23%	91%	6%(15)
	64-CR1	27%	84%	5%(17)
30	30CR1	20%	91%	1%(1)
	65-CR1	29%	90%	3%(13)
	More in progress.			

#### **EXAMPLE 6** 35

### Introducing transgenic SSI target sites within a maize genomic window using the guide RNA/Cas9 endonuclease system.

[0229] In order to develop a Complex Trait Locus in a genomic window of the maize genome, a method was developed to introduce transgenic SSI (site specific Integration) target sites in close proximity to a maize genomic locus of interest 40 using the guide RNA/Cas9 endonuclease system. First, a genomic window was identified into which multiple SSI target sites in close proximity can be introduced (Figure 2A, Figures 4-7, and Example 2). The DNA sequence of the genomic window was than evaluated for the presence of any double strand break target sites, specifically for the presence of any Cas9 endonuclease target sites. Any 12-30 bp genomic DNA sequence following the pattern NGG can be selected as a target site for the guide RNA/Cas9 endonuclease system. A guide RNA and a Cas endonuclease can be introduced

- 45 either through the use of expression cassettes (as described in Example 3 and Example 4, Figure 2C), or can directly be provided to a maize cell comprising any one of the Cas9 endonuclease target sites, wherein said guide RNA and Cas endonuclease are capable of forming a complex that enables the Cas endonuclease to introduce a double strand break at the Cas endonuclease target site. These maize cells were provided with a donor DNA comprising a transgenic SSI target site comprising two recombination sites (such as but not limited to FRT1, FRT87, FRT6, Figure 2B) flanked
- 50 by a first and second region of homology (Figure 2B). Optionally, the donor DNA can contain a polynucleotide of interest between the two FRT sites. These maize cells were then evaluated for the target site mutation indicating that the guide RNA/Cas endonuclease system was functional and capable of introducing a double strand break (Example 5). Upon cleavage of the Cas9 endonuclease target site, the transgenic SSI target site was introduced into the DSB target site resulting into a modified double strand break target site (aDSB, Figure 2D) comprising a transgenic SSI target site.
- 55 [0230] The integration of the transgenic SSI target sites via guide RNA/Cas9 system mediated DNA homologous recombination was determined by border-specific PCR analysis at both possible transgene genomic DNA junctions at different DSB target sites. For Example, the 5' end borders of 41-CR1 events (Figure 8) were amplified as a 660 bp

41HR1PCR amplicon by PCR with primers while the 3' borders of the same events were amplified as a 655bp HR2PCR amplicon. Any event with both the 5' border and 3' border-specific bands amplified was considered as a site-specific integration event containing the transgene target site from the donor DNA fragment. All the border-specific PCR fragments were sequenced and were all confirmed to be recombined sequences. Border PCR assays for other DSB sites were

- ⁵ carried out with the same approach with the specific border primers. On average, integration of the transgenic target sites through the guide RNA/Cas9 mediated homologous recombination occurred at 0.5% to 7% of the total recovered transgenic events (Insertion frequency, Table 10 and 11). Integration events were obtained in 28 out of 30 sites at CTL1 region, a 90% successful rate without any pre-screening indicating that the guide RNA/Cas endonuclease system is very robust and efficient system for introducing transgenic target sites at specific genomic locations.
- ¹⁰ **[0231]** The Introduction of the transgenic SSI target sites comprising the FRT1 and FRT87(or FRT6) recombination sites in these Cas9 endonuclease target sites enables the use the FLP/FRT technology to perform gene stacking by the SSI technology and develop a complex trait loci within a genomic window.

# EXAMPLE 7

15

### DNA constructs to test the guide RNA/Cas endonuclease system for soybean genome modifications

[0232] A soybean codon optimized Cas9 (SO) gene (SEQ ID NO: 313) from *Streptococcus pyogenes* M1 GAS (SF370) was expressed with a strong soybean constitutive promoter GM-EF1A2 (described in US patent 8697817, issued on April 15, 2014). A simian vacuolating virus 40 (SV40) large T-antigen nuclear localization signal PKKKRKV with a linker SRAD, (SRADPKKKRKV SEQ ID NO: 314) was added to the carboxyl terminus of the codon optimized Cas9 to facilitate transporting the codon optimized Cas9 protein to the nucleus. In some other constructs, the *Simian virus 40* (SV40) monopartite nuclear localization signal (MAPKKKRKV, SEQ ID NO: 309) was incorporated at the amino terminal and

- Agrobacterium tumefaciens bipartite VirD2 T-DNA border endonuclease nuclear localization signal (KRPRDRHDGELG ²⁵ GRKRAR; SEQ ID NO: 310) were incorporated at the carboxyl-termini of the Cas9 open reading frame respectively. The codon optimized Cas9 gene was synthesized as two pieces by GenScript USA Inc. (Piscataway, NJ) and cloned in frame downstream of the GM-EF1A2 promoter to make Cas9 expression DNA constructs (as described in US patent application 14/463687 filed on August 20, 2014)
- [0233] Approximately 0.5 kb genomic DNA sequence upstream of the first G nucleotide of a soybean U6 small nuclear RNA (snRNA) genes was selected to be used as a RNA polymerase III promoter (as described in US patent application 14/463687 filed on August 20, 2014). For example, GM-U6-13.1 promoter, (SEQ ID NO: 315), was used to express guide RNAs which direct Cas9 nuclease to designated genomic sites (as described in US patent application 14/463687 filed on August 20, 2014). The guide RNA coding sequence was 76 bp long and comprised a 19 to 20 bp variable targeting domain from a chosen soybean genomic target site on the 5' end and a tract of 4 or more T residues as a
- ³⁵ transcription terminator on the 3' end. The first nucleotide of the 20 bp variable targeting domain was a G residue to be used by RNA polymerase III for transcription initiation. If the first base is not endogenously a G residue it can be replaced with a G residue in guide RNA target sequence to accommodate RNA polymerase III, which should not sacrifice recognition specificity of the target site by the guide RNA. The U6 gene promoter and the complete guide RNA was synthesized and then cloned into an appropriate vector.
- 40 [0234] The Cas9 endonuclease and guide RNA expression cassettes were linked into a single DNA construct (as described in US patent application 14/463687 filed on August 20, 2014), which was then used to transform soybean cells to test the soybean optimized guide RNA/Cas system for genome modification. Similar DNA constructs were made to target different genomic sites using guide RNAs containing different target sequences as described in Example 9.

# 45 EXAMPLE 8

55

Selection of soybean genomic windows for the introduction of transgenic SSI target sites by the guide RNA/Cas endonuclease system and Complex Trait Loci development.

50 [0235] Three soybean genomic regions (also referred to as genomic windows) were identified for the production of Complex Trait Loci comprising a combination of transgenic SSI sites introduced into that genomic window by a soybean optimized guide RNA/ Cas9 endonuclease system described herein.

**[0236]** The first soybean genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Gm04:45593558 (flanked by public SNP marker BARC_1.01_Gm04_45591011_C_T) to Gm04:45937320 (flanked by public SNP marker BARC_1.01_Gm04_46113406_T_G) on chromosome 4 (Figure 9). Table 12 shows the physical and genetic map position for a multitude of soybean SNP markers (Song, Q et al. (2013), Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PloS one, 8(1), e54985) and Cas endonuclease target sites (D6-CR1, D6-CR3, DD49-CR2, DD49-CR3, DD43-CR1, DD43-CR2, DD38-CR1, DD38-CR2, DD52-CR1,

DD52-CR3, DD20-CR1, DD20-CR2, DD51-CR1 and DD51-CR2) within this genomic window of interest on the soybean chromosome 4. The genetic map positions of a public 4.0 soybean genetic map as well as the genetic map position of an internally derived DuPont-Pioneer map (PHB) are shown in Table 12.

# Table 12. Genomic Window comprising a Complex Trait Locus D (CTL-D) on

	Chromosome 4 of soybean.				
10	Name of public SNP markers (*)	Cas endonucleas			Genetic
	or Cas endonuclease target site	e target or SNP marker sequence		Genetic Position Public	Position PHB map
45		(SEQ ID NO:)	Physical location	4.0 map	
15	BARC_1.01_Gm04_45591011_C				
	_T (*)	316	Gm04:45591011	88.56	103.29
	D6-CR1	317	Gm04:455935584 5593579	88.59	103.30
20					

			Gm04:		
			45593565455935	88.59	103.30
	D6-CR3	318	44		
5			Gm04:456132124		
	DD49-CR2	319	5613234	88.81	103.45
			Gm04:456132464	<u> </u>	
		320	5613267	88.81	103.45
10	BARC_1.01_Gm04_45613405_1	221	Cm04.45612405	00 01	102 15
	BARC 1.01 Gm04 45697256 G	521	GIII04.43013403	00.01	103.45
	A (*)	322	Gm04:45697256	89.74	104.06
			Gm04:457319434	00.40	
15	DD43-CR1	323	5731921	90.13	104.43
			Gm04:457319174	90.13	104 43
	DD43-CR2	324	5731895	00.10	
	BARC_1.01_Gm04_45739051_A	225	0	00.04	101 51
20	$-C(^{\circ})$	325	Gm04:45739051	90.21	104.51
	C. (*)	326	Gm04:45800267	90 89	105.07
		020	Gm04:458024664	00.00	
	DD38-CR1	327	5802445	90.91	105.10
25			Gm04:458024654	QA Q1	105 10
	DD38-CR2	328	5802486	30.31	
	BARC_1.01_Gm04_45857325_T	000	0 04 45057005	04 50	405 74
	$-C(^{)}$	329	Gm04:45857325	91.52	105.74
30	BARC_1.01_Gm04_45883080_A	330	Gm04:45883080	Q1 80	105.04
	_0()	550	Gm04:45883701 4	31.00	100.04
	DD52-CR1	331	5883680	91.81	105.95
	1		Gm04:458836854	01 01	105.05
35	DD52-CR3	332	5883664	91.01	, 105.95
00	BARC_1.01_Gm04_45903617_T				
	C (*)	333	Gm04:45903617	92.03	106.11
		224	Gm04:459363114	02.40	106.27
10	DD20-CRT	334	Gm04·45936324 4	92.40	100.57
40	DD20-CR2	335	5936346	92.40	106.37
		000	Gm04:459373124	02110	
	DD51-CR1	336	5937333	92.41	106.38
45			Gm04:459372984		
45	DD51-CR2	337	5937320	92.41	106.38
	BARC_1.01_Gm04_46000185_C	220	0-04-46000405	00.40	100.00
	_A() BARC 1.01 Cm04 46113406 T	১১৪	GMU4:40UUU185	93.10	100.88
50	G (*)	339	Gm04:46113406	94,36	107.53
50					

55

**[0237]** The second soybean genomic window that was identified for the development of a Complex Trait Locus (CTL) spans from Gm06:47537067 (flanked by public SNP marker BARC_1.01_Gm06_46915875_T_C) to Gm06:47864578 (flanked by public SNP marker BARC_1.01_Gm06_48528885_G_T) on chromosome 6 (Figure 10). Table 13 shows the physical and genetic map position for a multitude of soybean SNP markers (Song, Q et al. (2013) PloS one, 8(1), e54985) and Cas endonuclease target sites (XA9-CR1, XA9-CR2, XA1-CR1, XA1-CR3, XB9-CR1, XB9-CR2, XB5-CR1, XB5-CR2, XB11-CR1, XB11-CR2) within this genomic window of interest on the soybean chromosome 6.

Table 13. Genomic Window comprising a Complex Trait Locus X (CTL-X) on

Chromosome	6	of	SO	vbean.
------------	---	----	----	--------

5	Name of public SNP markers (*) or Cas endonuclease target site	Cas endonuclease target or SNP marker sequence (SEQ ID NO:)	Physical location	Genetic Position Public 4.0 map	Genetic Position PHB map
	BARC_1.01_Gm06_46915875_T_C (*)	340	Gm06 [.] 46915875	111 69	131 45
	BARC_1.01_Gm06_47524452_G_T (*)	341	Gm06:47524452	113.11	134.14
15	XA9-CR1	342	Gm06:4753706747 537089	113.11	134.20
	XA9-CR2	343	Gm06:4753712747 537106	113.11	134.20
20	BARC_1.01_Gm06_47561262_C_T (*)	344	Gm06:47561262	113.13	134.31
	BARC_1.01_Gm06_47625670_C_T (*)	345	Gm06:47625670	113.16	134.72
25	XA1-CR1	346	Gm06:4762640147 626422	113.16	134.73
25	XA1-CR3	347	Gm06:4762639547 626374	113.16	134.73
	BARC_1.01_Gm06_47631544_T_C (*)	348	Gm06:47631544	113.16	134.77
30	BARC_1.01_Gm06_47789229_C_T (*)	349	Gm06:47789229	113.41	135.92
	XB9-CR1	350	Gm06:4780268347 802704	113.74	136.07
35	XB9-CR2	351	Gm06:4780275647 802778	113.75	136.08

	BARC_1.01_Gm06_47821576_T_G				
	(*)	352	Gm06:47821576	114.18	136.29
	BARC_1.01_Gm06_47829363_A_C				
5	(*)	353	Gm06:47829363	114.21	136.38
	XB5-CR1	354	Gm06:47830474.478 30496	114.21	136.39
	XB5-CR2	355	Gm06:47830453.478 30474	114.21	136.39
10	BARC_1.01_Gm06_47833095_A_G				
	(*)	356	Gm06:47833095	114.22	136.42
	BARC_1.01_Gm06_47847021_G_T				
	(*)	357	Gm06:47847021	114.26	136.60
15	XB11-CR1	358	Gm06:4786456947 864590	114.30	136.93
	XB11-CR2	359	Gm06:4786455747 864578	114.30	136.93
20	BARC_1.01_Gm06_47895876_G_A	360	Gm06·47895876	114 39	137 53
20	BARC 1.01 Gm06 48221293 T C			114.00	107.00
	(*)	361	Gm04:48221293	115.32	140.63
	BARC_1.01_Gm06_48528885_G_T (*)	362	Gm06:48528885	116.19	143.52
	•••••••••••••••••••••••••••••••••••••••				

**[0238]** The third soybean genomic window that was identified for the development of a Complex trait Locus (CTL) spans from Gm01:7835614 (flanked by public SNP marker BARC_1.01_Gm01_6984873_T_C) to Gm01:32717275 (flanked by public SNP marker BARC_1.01_Gm01_36994849_A_G) on chromosome 1 (Figure 11). Table 14 shows the physical and genetic map position for a multitude of soybean SNP markers (Song, Q et al. (2013). Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PloS one, 8(1), e54985) and Cas endonuclease target sites (RA1-CR1, RA1-CR2, RA3-CR1, RA3-CR2, RA13-CR1, RA13-CR2, RC9-CR1, RC9-CR2, RC19-CR1, RC19-CR2, RC1-CR1, RC1-CR2, RB1-CR1, RB1-CR2, RB7-CR1 and RB7-CR2) within this genomic window of interest on the soybean chromosome 1.

Table 14. Genomic Window comprising a Complex Trait Locus R (CTL-R) on

Genetic Position PHB map I location 73 46.69 99 48.08
73     46.69       99     48.08
99 48.08
4.4. 7005005 40.44
147835635 48.11
367835615 48.11
95 48.12
87 48.54
58 48.59
27864050548.6496864051848.64
30 48.64
02 48.73
45 49.11
01 49.16
70896789149.1609896788849.16
16 49.23
606 51.53
8902834791 51.78
9662834798 51.78
595 51.83
363 52.34
1002856507 52.42

55

	RC19-CR2	385	Gm01:285650472856506 9	52.42
5	BARC_1.01_Gm01_28599526_G_A (*)	386	Gm01:28599526	52.52
5	BARC_1.01_Gm01_28913996_A_G (*)	387	Gm01:28913996	52.98
	RC1-CR1	388	Gm01:289432062894322 8	52.99
10	RC1-CR2	389	Gm01:289432402894321 9	52.99
	BARC_1.01_Gm01_29284158_A_G (*)	390	Gm01:29284158	53.15
15	BÁRC_1.01_Gm01_31202345_C_T (*)	391	Gm01:31202345	53.31
	RB1-CR1	392	Gm01:317697913176981 3	53.47
20	RB1-CR2	393	Gm01:317698113176978 9	53.47
	BARC_1.01_Gm01_31770743_C_T (*)	394	Gm01:31770743	53.47
25	BARC_1.01_Gm01_32683433_G_A (*)	395	Gm01:32683433	54.11
	RB7-CR1	396	Gm01:327172223271724 3	54.12
20	RB7-CR2	397	Gm01:327172753271725 3	54.12
50	BARC_1.01_Gm01_34327255_C_T (*)	398	Gm01:34327255	54.80
	BÁRC_1.01_Gm01_36994849_A_G (*)	399	Gm01:36994849	56.42

35

### EXAMPLE 9

Guide RNA expression cassettes, Cas9 endonuclease expression cassettes and donor DNA's for introduction of transgenic SSI target sites in a soybean genomic window.

40

**[0239]** The soybean U6 small nuclear RNA promoters GM -U6-9.1 (SEQ ID NO: 414) or GM-U6-13.1 (SEQ ID. NO: 315) were used to express guide RNAs to direct Cas9 nuclease to designated genomic target sites (Table 15). A soybean codon optimized Cas9 endonuclease expression cassette and a guide RNA expression cassette were linked in a first plasmid that was co-delivered with a second plasmid comprising a donor DNA (repair DNA) cassette. The donor DNA contained FRT1/FRT87 recombination sites for site specific integration, flanking a selectable marker (such as but not

- ⁴⁵ contained FRT1/FRT87 recombination sites for site specific integration, flanking a selectable marker (such as but not limited to the hygromycin selectable Marker (HPT) and a terminator (such as but not limited to a nopaline synthase terminator,NOS) (Figure 2B) which upon integration by homologous recombination with the guide RNA/Cas9 endonuclease system created the FRT1/FRT87 target lines for SSI technology application (Figure 2D). [0240] The guide RNA (gRNA)/Cas9 DNA constructs targeting various soybean genomic sites that were constructed
- for the introduction of transgenic SSI target sites into Cas endonuclease target sites through homologous recombination are listed in Table 15, Table 16, and Table 17. Tables 18, 19, and 20 list the guide RNAs that were expressed from the guide RNA constructs and the bases of the guide RNA that comprise the variable targeting domain are as well. All the guide RNA/Cas9 constructs differed only in the 19 to 20 bp guide RNA variable targeting domain targeting the soybean genomic target sites. All the donor DNA constructs differed only in the homologous regions such as D6HR1 and D6HR2.
- ⁵⁵ These guide RNA/Cas9 DNA constructs and donor DNAs were co-delivered to elite (93B86) or a non-elite (Jack) soybean genome by the stable transformation procedure described in Example 10.

Table 15. Guide RNA/Cas9 used in Soybean Stable Transformation for the Complex	x Trait Locus, CTL-D, on Gm
--------------------------------------------------------------------------------	-----------------------------

	Experiment	Guide RNA/Cas9	SEQ ID NOs:
5	U6-13.1D6CR1	U6-13.1:D6CR1+EF1A2:CAS9 (QC882)	400
	U6-13.1D6CR3	U6-13.1:D6CR3+EF1A2:CAS9 (QC883)	401
	U6-13.1DD49CR2	U6-13.1:DD49CR2+EF1A2:CAS9 (QC884)	402
10	U6-13.1 DD49CR3	U6-13.1:DD49CR3+EF1A2:CAS9 (QC885)	403
10	U6-9.1 DD43CR1	U6-9.1:DD43CR1+EF1A2:CAS9 (QC799)	404
	U6-13.1 DD43CR2	U6-13.1:DD43CR2+EF1A2:CAS9 (QC816)	405
	U6-13.1 DD38CR1	U6-13.1:DD38CR1+EF1A2:CAS9 (QC886)	406
15	U6-13.1 DD38CR2	U6-13.1:DD38CR2+EF1A2:CAS9 (QC887)	407
	U6-13.1 DD52CR1	U6-13.1:DD52CR1+EF1A2:CAS9 (QC888)	408
	U6-13.1 DD52CR3	U6-13.1:DD52CR3+EF1A2:CAS9 (QC889)	409
20	U6-9.1DD20CR1	U6-9.1:DD20CR1+EF1A2:CAS9 (QC810)	410
20	U6-13.1DD20CR2	U6-13.1:DD20CR2+EF1A2:CAS9 (QC818)	411
	U6-13.1DD51CR1	U6-13.1:DD51CR1+EF1A2:CAS9 (QC890)	412
	U6-13.1DD51CR2	U6-13.1:DD51CR2+EF1A2:CAS9 (QC891)	413

Table 16. Guide RNA/Cas9 used in Soybean Stable Transformation for the Complex Trait Locus, CTL-X, on Gm06.

	Experiment	Guide RNA/Cas9	SEQ ID NOs:
30	U6-13.1XA9CR1	U6-13.1:XA9CR1+EF1A2:CAS9 (RTW1116)	415
	U6-13.1XA9CR2	U6-13.1:XA9CR2+EF1A2:CAS9 (RTW1117)	416
	U6-13.1XA1CR1	U6-9.1:XA1CR1+EF1A2:CAS9 (RTW1114)	417
	U6-13.1XA1CR3	U6-13.1:XA1CR3+EF1A2:CAS9 (RTW1181)	418
35	U6-13.1XB9CR1	U6-13.1:XB9CR1+EF1A2:CAS9 (RTW1120)	419
	U6-13.1XB9CR2	U6-13.1:XB9CR2+EF1A2:CAS9 (RTW1121)	420
	U6-13.1XB5CR1	U6-13.1:XB5CR1+EF1A2:CAS9 (RTW1118)	421
40	U6-13.1XB5CR2	U6-13.1:XB5CR2+EF1A2:CAS9 (RTW1119)	422
	U6-13.1XB11CR1	U6-13.1 :XB 11 CR 1 +EF 1 A2:CAS9 (RTW1122)	423
	U6-13.1XB11CR2	U6-13.1 :XB 11 CR2+EF 1 A2:CAS9 (RTW1123)	424

Table 17. Guide RNA/Cas9 used in Soybean Stable Transformation for the Complex Trait Locus, CTL-R, on Gm01.

Experiment	Guide RNA/Cas9	SEQ ID NOs:
U6-13.1RA1CR1	U6-13.1:RA1CR1+EF1A2:CAS9 (RTW1096)	425
U6-13.1RA1CR2	U6-13.1:RA1CR2+EF1A2:CAS9 (RTW1097)	426
U6-13.1RA3CR1	U6-13.1:RA3CR1+EF1A2:CAS9 (RTW1098)	427
U6-13.1RA3CR2	U6-13.1:RA3CR2+EF1A2:CAS9 (RTW1099)	428
U6-13.1RA13CR1	U6-13.1:RA13CR1+EF1A2:CAS9 (RTW11 00)	429
U6-13.1RA13CR2	U6-13.1 :RA13CR2+EF1A2:CAS9(RTW1101)	430

# (continued)

	Experiment	Guide RNA/Cas9	SEQ ID NOs:
5	U6-13.1RC9CR1	U6-13.1:RC9CR1+EF1A2:CAS9 (RTW1106)	431
5	U6-13.1RC9CR2	U6-13.1:RC9CR2+EF1A2:CAS9 (RTW1107)	432
	U6-13.1RC19CR1	U6-13.1:RC19CR1+EF1A2:CAS9 (RTW1108)	433
	U6-13.1RC19CR2	U6-13.1:RC19CR2+EF1A2:CAS9 (RTW1109)	434
10	U6-13.1RC1CR1	U6-13.1:RC1CR1+EF1A2:CAS9 (RTW1102)	435
	U6-13.1RC1CR2	U6-13.1:RC1CR2+EF1A2:CAS9 (RTW1103)	436
	U6-13.1RB1CR1	U6-13.1:RB1CR1+EF1A2:CAS9 (RTW1110)	437
15	U6-13.1RB1CR2	U6-13.1:RB1CR2+EF1A2:CAS9 (RTW1111)	438
	U6-13.1RB7CR1	U6-13.1:RB7CR1+EF1A2:CAS9 (RTW1179)	439
	U6-13.1RB7CR1	U6-13.1:RB7CR2+EF1A2:CAS9 (RTW1180)	440

Table 18. Guide RNAs used in soybean transformation for the Complex Trait Locus on CTL-D

Guide RNA name	SEQ ID NO:	Variable targeting domains
D6-CR1	441	Base 2-20
D6-CR3	442	Base 2-20
DD49-CR2	443	Base 1-20
DD49-CR3	444	Base 2-20
DD43-CR1	445	Base 1-20
DD43-CR2	446	Base 1-20
DD38-CR1	447	Base 2-20
DD38-CR2	448	Base 2-20
DD52-CR1	449	Base 2-20
DD52-CR3	450	Base 2-20
DD20-CR1	451	Base 1-20
DD20-CR2	452	Base 1-20
DD51-CR1	453	Base 2-20
DD51-CR2	454	Base 1-20

Table 19. Guide RNA used in soybean transformation for the Complex Trait Locus on CTL-X

Guide RNA name	SEQ ID NO:	Variable targeting domains
XA9-CR1	455	Base 1-20
XA9-CR2	456	Base 2-20
XA1-CR1	457	Base 2-20
XA1-CR3	458	Base 2-20
XB9-CR1	459	Base 2-20
XB9-CR2	460	Base 1-20
XB5-CR1	461	Base 1-20

### (continued)

Guide RNA name	SEQ ID NO:	Variable targeting domains
XB5-CR2	462	Base 2-20
XB11-CR1	463	Base 2-20
XB11-CR2	464	Base 2-20

10

5

Table 20. Guide RNA used in soybean transformation for the Complex Trait Locus on CTL-R

	Guide RNA name	SEQ ID NO:	Variable targeting domains
	RA1-CR1	465	Base 2-20
15	RA1-CR2	466	Base 2-20
	RA3-CR1	467	Base 1-20
	RA3-CR2	468	Base 1-20
	RA13-CR1	469	Base 2-20
20	RA13-CR2	470	Base 2-20
	RC9-CR1	471	Base 1-20
	RC9-CR2	472	Base 2-20
25	RC19-CR1	473	Base 1-20
	RC19-CR2	474	Base 1-20
	RC1-CR1	475	Base 1-20
	RC1-CR2	476	Base 2-20
30	RB1-CR1	477	Base 1-20
	RB1-CR2	478	Base 1-20
	RB7-CR1	479	Base 2-20
35	RB7-CR2	480	Base 1-20

### EXAMPLE 10

# <u>40</u> Delivery of the guide RNA/Cas9 endonuclease system DNA to soybean by stable transformation

[0241] The guide RNA/Cas9 DNA constructs and donor DNAs described in Example 9 were co-delivered to an elite (93B86) and/or a non-elite (Jack) soybean genome by the stable transformation procedure described below.
 [0242] Soybean somatic embryogenic suspension cultures were induced from a DuPont Pioneer proprietary elite

- cultivar 93B86 or non-elite Jack as follows. Cotyledons (~3 mm in length) were dissected from surface sterilized, immature seeds and were cultured for 6-10 weeks in the light at 26 °C on a Murashige and Skoog (MS) media containing 0.7% agar and supplemented with 10 mg/ml 2,4-D (2,4-Dichlorophenoxyacetic acid). Globular stage somatic embryos, which produced secondary embryos, were then excised and placed into flasks containing liquid MS medium supplemented with 2,4-D (10 mg/ml) and cultured in light on a rotary shaker. After repeated selection for clusters of somatic embryos that multiplied as early, globular staged embryos, the soybean embryogenic suspension cultures were maintained in 35
- ⁵⁰ ml liquid media on a rotary shaker, 150 rpm, at 26 °C with fluorescent lights on a 16:8 hour day/night schedule. Cultures were subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 ml of the same fresh liquid MS medium.

[0243] Soybean embryogenic suspension cultures were then transformed by the method of particle gun bombardment using a DuPont Biolistic[™] PDS1000/HE instrument (Bio-Rad Laboratories, Hercules, CA). To 50 µl of a 60 mg/ml 1.0 mm gold particle suspension were added in order: 30 µl of equal amount (30 ng/µl) plasmid DNA comprising, for example,

U6-9.1:DD20CR1+EF1A2:CAS9 and plasmid DNA comprising, for example, (DD20HR1-SAMS:HPT-DD20HR220 μl of 0.1 M spermidine, and 25 μl of 5 M CaCl₂. The particle preparation was then agitated for 3 minutes, spun in a centrifuge

for 10 seconds and the supernatant removed. The DNA-coated particles were then washed once in 400 µl 100% ethanol and resuspended in 45 µl of 100% ethanol. The DNA/particle suspension was sonicated three times for one second each. Then 5  $\mu$ l of the DNA-coated gold particles was loaded on each macro carrier disk.

- [0244] Approximately 300-400 mg of a two-week-old suspension culture was placed in an empty 60x15 mm Petri dish 5 and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5 to 10 plates of tissue were bombarded. Membrane rupture pressure was set at 1100 psi and the chamber was evacuated to a vacuum of 28 inches mercury. The tissue was placed approximately 3.5 inches away from the retaining screen and bombarded once. Following bombardment, the tissue was divided in half and placed back into liquid media and cultured as described above.
- 10 [0245] Five to seven days post bombardment, the liquid media was exchanged with fresh media containing 30 mg/ml hygromycin as selection agent. This selective media was refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue was observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue was removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each clonally propagated culture was treated as an independent transformation event and sub-
- 15 cultured in the same liquid MS media supplemented with 2,4-D (10 mg/ml) and 30 ng/ml hygromycin selection agent to increase mass. The embryogenic suspension cultures were then transferred to agar solid MS media plates without 2,4-D supplement to allow somatic embryos to develop. A sample of each event was collected at this stage for quantitative PCR analysis.
- [0246] Cotyledon stage somatic embryos were dried-down (by transferring them into an empty small Petri dish that 20 was seated on top of a 10 cm Petri dish containing some agar gel to allow slow dry down) to mimic the last stages of soybean seed development. Dried-down embryos were placed on germination solid media and transgenic soybean plantlets were regenerated. The transgenic plants were then transferred to soil and maintained in growth chambers for seed production. Transgenic events were sampled at somatic embryo stage or T0 leaf stage for molecular analysis.
- 25 EXAMPLE 11

# Detection of Site-specific NHEJ Mediated by the Guide RNA/Cas9 System in Stably Transformed Soybean

[0247] Genomic DNA was extracted from somatic embryo samples of soybean events generated as described in 30 Examples 9-10 and analyzed by quantitative PCR using a 7500 real time PCR system (Applied Biosystems, Foster City, CA) with target site-specific primers and FAM-labeled fluorescence probe to check copy number changes of the double strand break target sites. The qPCR analysis was done in duplex reactions with a syringolide induced protein (SIP) as the endogenous controls and a wild type 93B86 genomic DNA sample that contains one copy of the target site with 2 alleles, as the single copy calibrator. The presence or absence of the guide RNA -Cas9 expression cassette in the 35 transgenic events was also analyzed with the qPCR primer/probes for gRNA/Cas9 and for PinII. The qPCR primers/probes

for all the DSB target sites are listed in Table 21.

10	Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
+0	D6-CR1	D6-F	GAGAACGAGCACACATGTCGAT	481
		D6-R	GGTTTAGTTTGGCGTTGGTAAAA	482
		D6-T (FAM-MGB)	TGGTTTCAATCTAAGAATG	483
45	D6-CR3	D6-F2	AACCAAATAAACTCCATTCTCACGA G	484
		D6-R	GGTTTAGTTTGGCGTTGGTAAAA	482
50		D6-T (FAM-MGB)	TGGTTTCAATCTAAGAATG	483
50	DD49-CR2	DD49-F5	ATCTGCCACTTCATTTACTCAACTTG	485
		DD49-R	TGTATGGTGTCAAGTATGAAGTTTA TAGTGA	486
55		DD49-T (FAM-MGB)	AGCTTTCTCTCATCAAAA	487

# Table 21. Primers/Probes used in gPCR analyses of transgenic soybean events

	Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
5	DD49-CR3	DD49-F6	TACTACAACTCAAAGTCATATTTTTCAG G	488
		DD49-R	TGTATGGTGTCAAGTATGAAGTTTA TAGTGA	486
10		DD49-T (FAM-MGB)	AGCTTTCTCTCATCAAAA	487
	DD43-CR1	DD43-F	TTCTAGAATACCCTCCGTACGTACA A	489
15		DD43-R	CCCAGATGATTCTCTTTTCACTATTG	490
10		DD43-T(FAM-MGB)	CAAGGGACTTGTGAGTTGT	491
	DD43-CR2	DD43-F2	AAAGAAGAGGCAGACTCCAATTCCT C	492
20		DD43-R	CCCAGATGATTCTCTTTTCACTATTG	490
		DD43-T (FAM-MGB)	CAAGGGACTTGTGAGTTGT	491
	DD38-CR1	DD38-F4	TCCATTTTGTCTGTTCTCCATGGAT G	493
25		DD38-R	CACATTGTCCCAGTCACAGAAAG	494
		DD38-T (FAM-MGB)	AGATGCGGTAAATTAT	495
	DD38-CR2	DD38-F5	ACGTGATGCATCATAGATGCGG	496
30		DD38-R2	AGTGTTCTGGCACAAGGTTTACC	497
		DD38-T2 (FAM-MGB)	CTCCTCCAGTGGCCAC	498
	DD52-CR1	DD52-F	TCCCTGAAATTTGTGGTTGGTAA	499
35		DD52-R2	TACTAGGAAATGACTGTGGCAC	500
55		DD52-T (FAM-MGB)	CATGGCGTAACCCGTGAT	501
	DD52-CR3	DD52-F3	CCCTTTTAAGGAAAAAAACTACGTC AT	502
40		DD52-R4	ACATGGCACTGTAACATCAC	503
		DD52-T2 (FAM-MGB)	CCCTGAAATTTGTGGTTGG	504
	DD20- CR1&CR2	DD20-F	ATTCGGAACTGACACGACAT	505
45		DD20-R	TCGACATGCAAAGTCAAAAACC	506
		DD20-T (FAM-MGB)	ATGGAACGTGACTAAGG	507
50	DD51- CR1&CR2	DD51-F	CGATAACGAGAAGGAGATACATAAG GT	508
-		DD51-R	TGAACTTCTTCATCCCCATAATTG	509
		DD51-T (FAM-MGB)	CGTTGTTGTGTGAGGTAC	510
	RA1-CR1	RA1-F	CCAAAGGCACGTACGTAAAGG	511
55		RA1-R	TTGCAATTGTGCACTGTTTTTTT	512
		RA1-T (FAM-MGB)	AGCACATGTTCTAATGAA	513

# (continued)

	Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
5	RA1-CR2	RA1-F2	CACACACAAAAATTACCAAAGGC	514
5		RA1-R	TTGCAATTGTGCACTGTTTTTT	512
		RA1-T(FAM-MGB)	AGCACATGTTCTAATGAA	513
	RA3-CR1&CR2	RA3-F	TTTGGTGTCCACAGAATATTCGA	515
10		RA3-R	CTTTAATGCATTGTTTTGGATAGTCA TC	516
		RA3-T(FAM-MGB)	AGATGTAGTACCACACTAACTA	517
15	RA13- CR1&CR2	RA13-F	CTGCACTCACCGGCAAAGT	518
		RA13-R	ACCTCTCTATCCCTTCTTTCTTCGT	519
		RA13-T(FAM-MGB)	CTCTCCAATAAAGAGAATAGA	520
20	RC9-CR1&CR2	RC9-F	AAGTGAGATGTGGTGCGTACGTAG G	521
		RC9-R	GGTTTGTGGCTATAACTTGAGAGAA TG	522
25		RC9-T (FAM-MGB)	ATTCTTAAAAAAGATCGAAGGAC	523
	RC19- CR1&CR2	RC19-F	GAATTCAGGTCGGATCCAAGAT	524
		RC19-R	GTGCTATGGTGCTCGTGTAAGG	525
30		RC19-T (FAM-MGB)	TGAGTGATCGGAGTTTC	526
	RC1-CR1&CR2	RC1-F	CAACACCAACACCCTTTCTAACAG	527
		RC1-R2	AAGGCCCCCGTGCAGG	528
35		RC1-T (FAM-MGB)	AGCATCAAAATTGGC	529
	RB1-CR1	RB1-F	CCCCGGTTTCGTACAACAATGGCA	530
		RB1-R	CATCCTCGCTACTCTCTAAGACAAT G	531
40		RB1-T (FAM-MGB)	CTTGATCTCAATTCCG	532
	RB1-CR2	RB1-F2	AATCTATTATCCCCCGGTTTCG	533
45		RB1-R	CATCCTCGCTACTCTCTAAGACAAT G	531
10		RB1-T (FAM-MGB)	CTTGATCTCAATTCCG	532
	RB7-CR1	RB7-F1	CCCTATATGACTAGGAAAATTCAGG	534
		RB7-R	GCTACATTTGGTTGGGTCACTTG	535
50		RB7-T (FAM-MGB)	TCGGTCCCTATGCCTAT	536
	RB7-CR2	RB7-F2	CAGGTACGGACCACCACTAATGG	537
		RB7-R	GCTACATTTGGTTGGGTCACTTG	535
55		RB7-T (FAM-MGB)	TCGGTCCCTATGCCTAT	536
	XA9-CR1&CR2	XA9-F	GAAACTTTTGTGAGCAAGTAGGTAG CT	538

	Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
5		XA9-R	ATGGCAAGAACAAGACCAAAGAC	539
5		XA9-T (FAM-MGB)	AGAGTCAAGACCAATTAATGA	540
	XA1-CR1	XA1-F2	ATGAAGTGTGAGTGGGCAAGTG	541
		XA1-R	GTCCTCACCGCCATGCACT	542
10		XA1-T2 (FAM-MGB)	CGTTTCTTCCACGATTAT	543
	XA1-CR3	XA1-F	GCGTTTCTTCCACGATTATGTG	544
		XA1-R	GTCCTCACCGCCATGCACT	542
15		XA1-T (FAM-MGB)	TGGCCGCAACGACAA	545
	XB9-CR1&CR2	XB9-F	ATTATTACACAATTTAGTTGCCTGAC GG	546
20		XB9-R	TGTGGTGATAGATCCCCTTTTATAG G	547
		XB9-T (FAM-MGB)	TTTTTTCATCCAACCTTGTCA	548
	XB5-CR1	XB5-F1	GGTTCAGGTTGTTGTACGACATG	549
25		XB5-R	GTTGAATGGTATGATGTTACTGAGC TTAT	550
		XB5-T(FAM-MGB)	TTGTGGATACGGTAGTTGTG	551
30	XB5-CR2	XB5-F2	TTATTGTATGAAGACATGAATCATTG AGG	552
		XB5-R	GTTGAATGGTATGATGTTACTGAGC TTAT	550
		XB5-T (FAM-MGB)	TTGTGGATACGGTAGTTGTG	551
35	XB11-CR1	XB11-F	GTGCCATTTGCCCATTATGTATG	553
		XB11-R	CTTGTTGGTACTTCATGCTAGTAGA TTTC	554
40		XB11-T (FAM-MGB)	TGCAAGTTGGGTTATGAAATTGGT	555
	XB11-CR2	XB11-F3	CATTATGTATGATGCAAGTTGGG	556
		XB 11-R2	CATGGGTTATGATCCTCAAAGTCA	557
		XB11-T2 (FAM-MGB)	AGCTACGTGATCTGATG	558
45	gRNA/CAS9	Cas9-F	CCTTCTTCCACCGCCTTGA	559
		Cas9-R	TGGGTGTCTCTCGTGCTTTTT	560
		Cas9-T (FAM-MGB)	AATCATTCCTGGTGGAGGA	561
50	pINII	pINII-99F	TGATGCCCACATTATAGTGATTAGC	562
		pINII-13R	CATCTTCTGGATTGGCCAACTT	563
		pINII-69T (FAM-MGB)	ACTATGTGTGCATCCTT	564
	Donor DNA	Sams-76F	AGGCTTGTTGTGCAGTTTTTGA	565
55		FRT1-41R	GCGGTGAGTTCAGGCTTTTTC	566
		FRT1-63T	TGGACTAGTGGAAGTTCCTATA	567

#### (continued)

Target Site	Primer/Probe Name	Sequences	SEQ ID NOs:
SIP	SIP-130F	TTCAAGTTGGGCTTTTTCAGAAG	568
	SIP-198R	TCTCCTTGGTGCTCTCATCACA	569
	SIP-170T (VIC-MGB)	CTGCAGCAGAACCAA	570

5

- used as the single copy calibrator, events without any change of the target site would be detected as one copy herein 15 termed Wt-Homo (qPCR value >=0.7), events with one allele changed, which is no longer detectible by the target sitespecific qPCR, would be detected as half copy herein termed NHEJ-Hemi (qPCR value between 0.1 and 0.7), while events with both alleles changed would be detected as null herein termed NHEJ-Null (gPCR value =<0.1). The wide range of the gPCR values suggested that most of the events contained mixed mutant and wild type sequences of the
- target site. As shown in Table 23, the Double Strand Break (DSB) efficiency varied from site to site and from one guide 20 RNA/Cas9 endonuclease system to another on the same target. For example, the D6 CR1 provided 19% NHEJ-Hemi and 57% NHEJ-Null (a very efficient DSB reagent), in contrast, the D6 CR3 only provided 22% NHEJ-Hemi and 3% NHEJ-Null in Jack genotype. The D6 CR3 also exhibited some toxicity as was evidence by the low event generation number (37 events from D6 CR3 vs 168 events from D6 CR1).
- [0250] DD49 CR2 can be a better DSB reagent than DD49 CR3 as is evidenced by the higher NHEJ-Heni and Insertion 25 frequency (Table 22). The two guide RNA/Cas9 systems for the other sites (DD43, DD38, DD52, DD20, DD51) all provided good double strand breaks (DSB) efficiency. One set of CR for each target was also tested in elite 93B86 genotype as shown in Table 23. The DSB efficiency is very similar to the data from Jack.
- [0251] Both NHEJ-Hemi and NHEJ-Null were detected in Jack or 93B86 genotypes. The differences between NHEJ frequencies were likely caused by variations between transformation experiments. NHEJ mutations mediated by the 30 guide RNA/Cas9 system at the specific Cas9 target sites were confirmed by PCR/topo cloning/sequencing.

		parenth	eses are %).		
Project	Total event	Wt-Homo (%)	NHEJ-Hemi (%)	NHEJ-Null (%)	Insertion Frequency (%)
U6-13.1 D6CR1	168	40 (24%)	32 (19%)	96 (57%)	1 (0.6%)
U6-13.1 D6CR3	37	28 (76%)	8 (22%)	1 (3%)	0
U6-13.1 DD49CR2	121	66 (55%)	34 (28%)	21 (17%)	2 (1.6%)
U6-13.1 DD49CR3	136	113 (83%)	23(17%)	0 (0%)	0
U6-9.1 DD43 CR1	141	84 (60%)	27 (19%)	30 (21%)	1 (0.7%)
U6-13.1 DD43 CR1	152	67 (44%)	56 (37%)	29 (18%)	0
U6-13.1 DD43 CR2	156	38 (24%)	64 (41%)	54 (35%)	1 (0.6%)
U6-13.1 DD38 CR1	143	52 (36%)	79 (55%)	12 (8%)	2 (1.4%)
U6-13.1 DD38 CR2	110	34 (31%)	38 (34%)	38 (34%)	2 (1.8%)

Table 22. Target Site Mutations and Site Specific Gene Integration Induced by the Guide RNA/Cas9 system on a genomic window referred to as CTL-D on Gm04 in soybean (Jack). Numbers indicate no. of events (numbers in

^[0248] The endogenous control probe SIP-T was labeled with VIC and the gene-specific probes for all the target sites 10 were labeled with FAM for the simultaneous detection of both fluorescent probes (Applied Biosystems). PCR reaction data were captured and analyzed using the sequence detection software provided with the 7500 real time PCR system and the gene copy numbers were calculated using the relative quantification methodology (Applied Biosystems). [0249] Since the wild type Jack or 93B86 genomic DNA with two alleles of the double strand break target site was

	Project	Total event	Wt-Homo (%)	NHEJ-Hemi (%)	NHEJ-Null (%)	Insertion Frequency (%)
5	U6-13.1 DD52 CR1	177	108 (61%)	45 (25%)	24 (14%)	1 (0.6%)
	U6-13.1 DD52 CR3	150	39 (26%)	20 (13%)	91 (61%)	1 (0.7%)
10	U6-9.1 DD20 CR1	114	76 (67%)	28 (25%)	10 (9%)	0
	U6-13.1 DD20 CR1	118	58 (49%)	37 (31%)	23 (20%)	0
15	U6-13.1 DD20 CR2	111	43 (39%)	29 (26%)	39 (35%)	0
	U6-13.1 DD51 CR1	323	67 (21%)	102 (32%)	154 (48%)	4 (1.2%)
20	U6-13.1 DD51 CR2	156	62 (40%)	46 (29%)	48 (31%)	3 (1.9%)

#### (continued)

Table 23. Target Site Mutations and Site Specific Gene Integration Induced by the Guide RNA/Cas9 system on CTL D on Gm04 in elite soybean germplasm 93B86. Numbers indicate no. of events (numbers in parentheses are % of the total analyzed events)

			and total analy	200 010110).		
	Project	Total event	Wt-Homo (%)	NHEJ-Hemi (%)	NHEJ-Null (%)	Insertion frequency (%)
30	U6-13.1D6CR1	146	34 (23%)	28 (19%)	84 (58%)	0 (0%)
	U6-13.1DD49CR2	90	12 (13%)	38 (42%)	40 (44%)	In progress
	U6-9.1DD43CR1	263	53 (20%)	88 (34%)	122 (46%)	10 (3.8%)
35	U6-13.1DD38CR1	134	29 (22%)	90 (67%)	15 (11%)	2 (1.5%)
	U6-13.1DD52CR1	162	28 (17%)	84 (52%)	50 (31%)	0 (0%)
	U6-9.1DD20CR1	239	85 (36%)	77 (32%)	77 (32%)	11 (4.6%)
	U6-13.1DD51CR1	148	13 (9%)	38 (26%)	97 (66%)	In progress

40

45

### EXAMPLE 12

Introducing transgenic SSI target sites within a soybean genomic window using the guide RNA/Cas9 endonuclease system.

**[0252]** In order to develop a Complex Trait Locus in a genomic window of the soybean genome, a method was developed to introduce transgenic SSI (site specific Integration) target sites in close proximity to a soybean genomic locus of interest using the guide RNA/Cas9 endonuclease system. First, a genomic window was identified into which multiple SSI target sites in close proximity can be introduced (Figure 2A, Figures 4-7, and Figures 9-11, Example 8).

- ⁵⁰ The DNA sequence of the genomic window was than evaluated for the presence of any double strand break target sites, specifically for the presence of any Cas9 endonuclease target sites. Any 23 bp genomic DNA sequence following the pattern N(20)NGG can be selected as a target site for the guide RNA/Cas9 endonuclease system. A guide RNA and a Cas endonuclease can be introduced either through the use of expression cassettes (as described in Example 9 and Example 10), or can directly be introduced into a soybean cell comprising any one of the Cas9 endonuclease target
- ⁵⁵ sites, wherein said guide RNA and Cas endonuclease are capable of forming a complex that enables the Cas endonuclease to introduce a double strand break at the Cas endonuclease target site. These soybean cells were provided with a donor DNA comprising a transgenic SSI target site comprising two recombination sites (such as but not limited to be a site of the case to introduce a site of the case to introduce a double strand break at the Case endonuclease target site. These soybean cells were provided with a donor DNA comprising a transgenic SSI target site comprising two recombination sites (such as but not limited to be a site of the case to introduce a double strand break at the Case endonuclease target site.

FRT1, FRT87, FRT6, Figure 2B) flanked by a first and second region of homology (Figure 2B). Optionally, the donor DNA can contain a polynucleotide of interest between the two FRT sites. These soybean cells were then evaluated for the presence of NHEJ indicating that the guide RNA/Cas endonuclease system was functional and capable of introducing a double strand break (Example 11). Upon cleavage of the Cas9 endonuclease target site, the transgenic SSI target

- ⁵ site was introduced into the DSB target site resulting into a modified double strand break target site (aDSB, Figure 2D) comprising a transgenic SSI target site.
   [0253] The integration of the transgenic SSI sites via guide RNA/Cas9 system mediated DNA homologous recombination was determined by border-specific PCR analysis at both possible transgene genomic DNA junctions at different DSB target sites using two primer pairs. For Example, the 5' end borders of DD38CR1 events were amplified as a 1241
- ¹⁰ bp PCR amplicon by PCR with while the 3' borders of the same events were amplified as a 1210 bp PCR amplicon. Any events with both the 5' border and 3' border-specific bands amplified were considered as site-specific integration events through homologous recombination containing the transgene from the donor DNA. All the border-specific PCR fragments were sequenced and were all confirmed to be recombined sequences as expected from homologous recombination. Border PCR assays for other DSB sites were carried out with the same approach with the specific border primers. On
- ¹⁵ average, gene integration through the guide RNA/Cas9 mediated homologous recombination occurred at 0.6% to 4% of the total transgenic events (Insertion frequency, Table 22 and Table 23) in either Jack or 93B86 genotype.
   [0254] The Introduction of the FRT1 and FRT87 sites in these DSB sites provided the ability to use the FLP/FRT technology to perform gene stacking by the SSI technology and develop a complex trait locus within a genomic window.
- 20 EXAMPLE 13

# Introduction of trait genes directly into double strand break target sites using a guide RNA/Cas endonuclease systems in plant genomes

- [0255] Described herein (Examples 1-12) are methods for introducing transgenic target sites for SSI (comprising recombination sites such as but not limited to FRT1, FRT87, FRT6) into a double-strand break target site (such as a Cas9 endonuclease target site) using a guide RNA/Cas9 system and allowing for the use of FLP/FRT technology to perform gene integration and gene stacking by the SSI technology and develop a complex trait loci within a genomic window. One skilled in the art understands that transgenic SSI target sites can also be introduced into DSB sites by
- ³⁰ other double strand break agents such as but not limited to Zinc fingers, meganucleases, TALENS etc. The Introduction of the FRT1 and FRT87 (or FRT6) sites in these DSB sites enables the use of the FLP/FRT technology to perform gene stacking by the SSI technology.

**[0256]** Another method of specific gene integration is to introduce one or more trait (or gene expression cassettes) directly into a DSB site of a plant genome, such as Cas9 endonuclease target site, as illustrated in Figure 3A-3C and described below.

**[0257]** Plant cells can be provided with a donor DNA containing at least one polynucleotide of interest (such as, but not limited to, a trait gene cassette) flanked by flanked by a first and second region of homology (HR1, HR2, respectively, Figure 3B) to a first and second DNA sequence (DNA1, DNA2, respectively, Figure 3A) located in a genomic window (Figure 3A). The donor DNA can contain one or more trait gene cassette(s).

- 40 [0258] These plant cells are further provided with a guide RNA and Cas endonuclease, either directly or via expression cassettes such as a plant codon optimized Cas9 endonuclease expression cassette (such as, but not limited to, a soybean codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression cassette or a maize codon optimized Cas9 endonuclease expression caseette or a maize codon optimized Cas9 endonuclease expression caseette or a maize codon optimized Cas9 endonuclease expression caseette or a maize codon optimized Cas9 endonuclease expression caseette or a maize codon optimized Cas9 endonuclease expression c
- ⁴⁵ **[0259]** The plant cells are then evaluated for the alteration of the DSB target site (such as the alteration of a Cas9 endonuclease target site) indicating that the guide RNA/Cas endonuclease system was functional and capable of introducing a double strand break and enabling trait integration at these pre-defined double strand break target sites by homologous recombination (Figure 3C). The resulting plant cells
- [0260] For direct trait gene integration into a maize cell, the donor DNA can contain nucleotide sequences like 45HR1-Selectable Marker- Trait Gene Expression Cassette-45HR2 or it can contain trait genes flanked by homologous regions surrounding other maize target sites described herein. For direct trait gene integration into a soybean cell, the donor DNA can contain DD38 HR1-Promoter::Selectable marker- Trait Gene Expression Cassette-DD38 HR2, or it can contain trait genes flanked by homologous regions surrounding other soybean target sites described herein.

55

### EXAMPLE 14

### Creation of Complex Trait Loci (CTL) in maize and soybean

- [0261] As discussed herein, four genomic windows were identified for the creation of Complex Trait Loci (CTL) in a maize genome. CTL1 on maize chromosome 1 (Table 1, Figure 4), CTL2 on maize chromosome 1 (Table 2, Figure 5), CTL3 on maize chromosome 3 (Table 3, Figure 6) and CTL4 on maize chromosome 10 (Table 4, Figure 7). Also, Three genomic windows were selected for the creation of complex trait loci in a soybean genome, CTL-D on soybean chromosome 4, Gm04 (Table 12, Figure 9), CTL-X on soybean chromosome 6, Gm06 (Table 13, Figure 10) and CTL-R on soybean chromosome 1, Gm01 (Table 14, Figure 11).
- [0262] Multiple transgenic SSI target sites were introduced into each of said genomic windows, in close proximity to a maize or soybean genomic locus of interest (plus or minus 5 cM), using the guide RNA/Cas9 endonuclease system described herein (Example 6, Example 7-13). Furthermore, trait genes can also be directly introduced into double strand break target sites (such as Cas9 endonuclease sites) located within said genomic windows, using a guide RNA/Cas
- ¹⁵ endonuclease system (as described in Example 13). Plants comprising one or multiple of these introduced transgenic SSI target sites, and/or introduced trait genes, can be crossed and progeny can be screened for the presence of the stacked transgenic SSI target sites and / or integrated trait genes. For example, a first plant comprising three transgenic SSI target sites A,B,C in a genomic window, can be crossed with a second plant comprising three transgenic SSI target sites D,E, F in the same genomic window, and progeny can be identified that comprises the sic transgenic SSI target
- sites A, B,C, D, E, F. This process can be repeated again with plants having other target sites in the same genomic window to further create the more target sites in that genomic window.
   [0263] Different trait genes can be specifically integrated into the transgenic SSI target sites or into the different DSB sites in wild type elite genotype, such as maize GR2HT or maize HC69, soybean 93B86 and can be stacked together by breeding at later generations (as described in US patent application 13/427138, filed on March 22, 2013 and US
- ²⁵ patent application 13/748704, filed January 24, 2014). The trait gene integration can be executed either by SSI technology with the FRT1/FRT87 (or FRT6) sites or by direct trait gene integration by double strand break technology.
   [0264] The resulting progeny plants can be screened for the presence of the stacked trait genes within the same genomic locus thereby creating a Complex Trait Locus.
- 30 SEQUENCE LISTING

[0265]

35

- <110> E.I. DUPONT DE NEMOURS AND COMPANY and PIONEER HI-BRED INTERNATIONAL, INC. Cigan, Mark Huirong, Gao Liu, Zhan-Bin Mutti, Jasdeep S. Podlich, Dean Scelonge, Christopher Liu, Zhan-bin
  - <120> GENERATION OF SITE-SPECIFIC-INTEGRATION SITES FOR COMPLEX TRAIT LOCI IN CORN AND SOYBEAN, AND METHODS OF USE
- 40 <130> BB2355 PCT

<150> 62/049465 <151> 2014-09-12

- 45 <160> 580
  - <170> PatentIn version 3.5

<210> 1 50 <211> 201 <212> DNA <213> Zea mays

<400> 1

5	tgtgttccaa agaaattgct cgtggatttg gatggacata aataaaaata cagagctgca ggagtcactc tgatcgaagg	agtgtacgca tgagactgat gcgcctggtt t	tccaagtact ccgaagcatg ggcatttaca	ctcacgagtt attggagcac ggaatatttt	tgaagagtct tctcatagcc aaacaatgca	60 120 180 201
10	<210> 2 <211> 201 <212> DNA <213> Zea mays					
10	<400> 2					
15	gttattacaa taactggtgc tttgcaacaa tttcgtgcta gctgttggag atgttaccaa gcatttgcga aaactgtctt	caagtttctc ggttgatgag tagggtcaac t	attttgtttg tattcacgta ctgacaccag	tcgctctaac cctcagttga ttgcactgat	ctttggtgct ttccatttgg ggagggtggg	60 120 180 201
20	<210> 3 <211> 22 <212> DNA <213> Zea mays					
25	<400> 3 gctgtggacg tggggtgctg gg 23	2				
	<210> 4 <211> 22 <212> DNA <213> Zea mays					
30	<400> 4 gaaccacact gaacaacaac gg	22				
35	<210> 5 <211> 24 <212> DNA <213> Zea mays					
40	<400> 5 gccgcctagg tagaaatgtg aagg	24				
45	<210> 6 <211> 201 <212> DNA <213> Zea mays					
	<400> 6					
50	caagtaatat aacataatat gaagatgagc cccctatatg acttcagaag taaagaaaac cattttacta atttgaccac	aagcatttgg actatcgaga ggacaagctc a	ataaacatcg ccacagcatc ctgggcacat	gaagtcgcat atttttacag tatcagaagc	tcttagaaca gaattatgct acatggaagt	60 120 180 201
55	<210> 7 <211> 24 <212> DNA <213> Zea mays					

<400> 7

gactaaatgt aattgctact tggg 24 <210> 8 5 <211> 25 <212> DNA <213> Zea mays <400> 8 10 gcaggacagg gaggtaaaag gatgg 25 <210> 9 <211> 23 <212> DNA 15 <213> Zea mays <400> 9 gagggaggcc tgtgacgcat tgg 23 20 <210> 10 <211> 23 <212> DNA <213> Zea mays 25 <400> 10 gaccgttgct gatggatcaa tgg 23 <210> 11 <211> 22 30 <212> DNA <213> Zea mays <400> 11 gttccaacga tgacaagact gg 22 35 <210> 12 <211> 201 <212> DNA <213> Zea mays 40 <400> 12 catggaagac gacccgcttc ggcagctcgt ccgcgcgcac ggcctccacc ggcgtccgcg 60 gcaccaggta ggcctcctgc atatatacgt actcaggaaa aatcatctca gattctgcat 120 45 180 atatacccca aaccaaacgg ggcettaatt ctacgcatge caatetttea ggtagtaeet 201 aaaatgcaac tataatctaa t <210> 13 <211> 23 <212> DNA 50 <213> Zea mays <400> 13 23 gcacaataat ggtcctcctt agg 55 <210> 14 <211> 22 <212> DNA

	<213> Zea mays					
5	<400> 14 gatgatgaca atgaccacat gg	22				
	<210> 15 <211> 23 <212> DNA <213> Zea mays					
10	<400> 15 gtgccagagg cagcatcgac cgg	23				
15	<210> 16 <211> 23 <212> DNA <213> Zea mays					
20	<400> 16 gctcttgggc tcaagagagt agg	23				
25	<210> 17 <211> 24 <212> DNA <213> Zea mays					
	<400> 17 gagacatcct cattctagag cggg	24				
30	<210> 18 <211> 25 <212> DNA <213> Zea mays					
35	<400> 18 gcctcagtca tagttccact ctcgg	25				
40	<210> 19 <211> 23 <212> DNA <213> Zea mays					
45	<400> 19 gagcttgtta tcagatgcag agg	23				
	<210> 20 <211> 201 <212> DNA <213> Zea mays					
50	<400> 20					
55	gtcgtcgccg tcgtgtcccg ttatcgtccc cgaagccgcg aggatgtcgt gcttcatctg tcaatcagga tcaggtcca	g cccggcgatc c gccgtcgtcg g cccattttaa c c	acgaagttga ccggcctcgc tttgccctca	gcaccacgtc ccagctcgat caagtcacat	ccggaggctc gaaccgtgac ggatatataa	60 120 180 201

<210> 21

	<211> 22 <212> DNA <213> Zea mays					
5	<400> 21	22				
	gicclogiac aggagggoge gg	22				
	<210> 22					
10	<211> 22 <212> DNA					
	<213> Zea mays					
	<4005 22					
	agoctatacc tagtgataaa gg	22				
15	3430101000 1031301000 33					
	<210> 23					
	<211> 27					
	<212> DNA					
20	<213> Zea mays					
	<400> 23					
	gaatatccct ttctacgaaa gaattgg	27				
	-0405 04					
25	<210>24					
20	<212> DNA					
	<213> Zea mays					
	<400> 24					
<u></u>						
30						
30	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
35	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
35	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40	aaacctgaaa actcttgcga tgattgcagg acatgcaaca gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40 45	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
35 40 45	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21 <212> DNA	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40 45	aaacctgaaa actcttgcga tgattgcagg acatgcaaca acagagaaca cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21 <212> DNA <213> Zea mays	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
35 40 45	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21 <212> DNA <213> Zea mays <400> 26	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40 45 50	aaacctgaaa actcttgcga caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21 <212> DNA <213> Zea mays <400> 26 gtacgtaacg tgcagtactg g 21	gagctttgag aagcggcggc ctccacaggc a 25	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40 45 50	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg 21 <210> 26 <211> 21 <212> DNA <213> Zea mays	gagctttgag aagcggcggc ctccacaggc a	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40 45 50	aaacctgaaa actcttgcga tgattgcagg acatgcaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21 <212> DNA <213> Zea mays <400> 26 gtacgtaacg tgcagtactg g 21 <210> 27 <210> 27 <211> 24	gagctttgag aagcggcggc ctccacaggc a 25	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
35 40 45 50	aaacctgaaa actcttgcga tgattgcagg acatgcaaca caagagaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21 <212> DNA <213> Zea mays <400> 26 gtacgtaacg tgcagtactg g 21 <210> 27 <211> 24 <212> DNA	gagctttgag aagcggcggc ctccacaggc a 25	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40 45 50 55	aaacctgaaa actcttgcga tgattgcagg acatgcaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21 <212> DNA <213> Zea mays <400> 26 gtacgtaacg tgcagtactg g 21 <210> 27 <211> 24 <212> DNA <213> Zea mays	gagctttgag aagcggcggc ctccacaggc a 25	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201
30 35 40 45 50 55	aaacctgaaa actcttgcga tgattgcagg acatgcaaca acgttcagga gaagactcgt cggcagacaa <210> 25 <211> 25 <212> DNA <213> Zea mays <400> 25 gtcaatggag aattctctgt taagg <210> 26 <211> 21 <212> DNA <213> Zea mays <400> 26 gtacgtaacg tgcagtactg g 21 <210> 27 <211> 24 <212> DNA <213> Zea mays <400> 26 gtacgtaacg tgcagtactg g 21 <210> 27 <211> 24 <212> DNA <213> Zea mays	gagctttgag aagcggcggc ctccacaggc a 25	taggtcaaga agcggcagcg tcgcctccgc	actcagcgag gtacgactga agcaggaggt	cttgtatgca tccgaaaggg cgcggacacc	60 120 180 201

<210> 28 <211> 21 <212> DNA <213> Zea mays 5 <400> 28 ggtgcaggca ggagaatttg g 21 <210> 29 10 <211> 201 <212> DNA <213> Zea mays <400> 29 15 atcggtacaa taacttacca cagccaccag aaacgcgcct ttcaggtttg cgcaggcttc 60 acagcacgcg tttgtcataa ggaacggaaa ccacctgtgc atgtgatagc accagaaatt 120 cagaacgcgc ccgtgttaag taaaaccagt tccagaataa tttaaaaaaa aacaggtaga 180 gttcgtgtgg gagcggtggg c 201 20 <210> 30 <211> 25 <212> DNA <213> Zea mays 25 <400> 30 gatcgataca catacacttg cacgg 25 <210> 31 30 <211> 27 <212> DNA <213> Zea mays <400> 31 35 gcataataag tgaggagata atcttgg 27 <210> 32 <211> 22 <212> DNA 40 <213> Zea mays <400> 32 gcaatttgta tcttgcgcac gg 22 45 <210> 33 <211> 23 <212> DNA <213> Zea mays <400> 33 50 23 gaggaaacac agacaagttg ggg <210> 34 <211> 26 55 <212> DNA <213> Zea mays

<400> 34

gtacttgctc actgtctaaa tactgg 26 <210> 35 <211> 201 5 <212> DNA <213> Zea mays <400> 35 10 atccaagtgc ccaagatgcc gcctgatgaa tgcttcaagt gctccgacaa ggaatcgctt 60 gcggtgggca ctgagctgct tgtgttcggg atggcgcgta tcgtcttccg atacagcatc 120 ctgaccaact catggagcag ggctgatccg atgaactete cgcggtgeet gttegggtea 180 acgagtgtcg gcgggaaggc c 201 15 <210> 36 <211> 24 <212> DNA <213> Zea mays 20 <400> 36 gcataatgag gatcgaggat gagg 24 <210> 37 <211> 21 25 <212> DNA <213> Zea mays <400> 37 gctcgtgttg gagatacagg g 21 30 <210> 38 <211> 22 <212> DNA <213> Zea mays 35 <400> 38 22 gtgagcctga gcccatgcat gg <210> 39 <211> 23 40 <212> DNA <213> Zea mays <400> 39 45 23 gttgatcaaa gcgatggcac agg <210> 40 <211> 201 <212> DNA 50 <213> Zea mays <400> 40 aggtgtcaaa gcgagacgat ctcgatgcta gtctcagaaa tggcagttgc tgacacagcg 60 55 tttgcgctac tcgccatcgt cgtcgtccac aggttggcca tcaccggcgt cgccattaga 120 tgctggaagg ggttcacagg agcagcgatg ctcatctcac cctctagcat cttcaccacc 180 201 gcacccatgg gcggcctcgc t

<210> 41 <211> 201 <212> DNA <213> Zea mays

<400> 41

tagtgtcttg cctatgcagc taagagtaca ggtctaaagc acaagcaata aatacaacag 60

10

25

5

tacataataa aagtgtctgg tgtaccttag ataaccatga caagaccatg gaaaaaaaga120ctgatgcaag ggtgtcacta acctcatatg tcatattatc aggctcaatg ttatcttgcc180aaacaaccta caaacataat a201

- 15 <210> 42 <211> 201 <212> DNA <213> Zea mays
- 20 <400> 42

ctagcttgat gtggattete tgttttttt aactegagtg caaceaaaat aataataaaa 60 atgetetgtt gttgeagett ggagetetgg taetaeaetg eggtgeteat eettgtaggg 120 tteetgaaga aegegegget teagattgae gteatgteea tetggtaaet aattttatg 180 aaetaageag eeeatgeate a 201

- <210> 43 <211> 23 <212> DNA
- 30 <213> Zea mays

<400> 43 gcagttggat atgtctagcc ggg 23

- 35 <210> 44 <211> 25 <212> DNA <213> Zea mays
- 40 <400> 44 gacacgcact gcaccccgtc gtcgg 25
- <210> 45 <211> 23 45 <212> DNA <213> Zea mays

50

55

<400> 45 gctagctgag aaaatgtgcc cgg 23 <210> 46 <211> 22

- <212> DNA <213> Zea mays
- <400> 46 gcacagctta catcagcttt gg 22
<210> 47 <211> 25 <212> DNA <213> Zea mays 5 <400> 47 25 gcatgtacat gcaatgcaat cacgg <210> 48 10 <211> 201 <212> DNA <213> Zea mays <400> 48 15 ggtactaagg taggatataa tcaaatcgaa cgcaaagatc acaaagaaac agtctaaggg 60 tttcaaagcg ttggaccaag gcatcagact ggtggagtac atgcatcaga ttacacaata 120 20 gagcaaaccc tagcaaaatt tcaattgggc tcagggaaga agcgagtttg ggtcacacaa 180 ttgtggaggc tccaaccatc c 201 <210> 49 25 <211> 22 <212> DNA <213> Zea mays <400> 49 30 gccggggacc tgtacaggaa gg 22 <210> 50 <211> 25 <212> DNA 35 <213> Zea mays <400> 50 gacctgtaca ggaaggcaac gatgg 25 40 <210> 51 <211> 25 <212> DNA <213> Zea mays 45 <400> 51 25 gaactcttgc acggccaatc catgg <210> 52 <211> 26 <212> DNA 50 <213> Zea mays <400> 52 26 gaactcgagg aagacggttc tagcgg 55 <210> 53 <211> 201 <212> DNA

<213> Zea mays

<400> 53

5	gctaaatgag tttaaaaaaa cgcgcgcggc ggtgctggta	ttagttttt aaacctcatg cgcagcaggc gctgcagcgt	tgggtggggg agctccacca ccgccggcgc c	agggggtttt cccgtccgcc ggcggcgccg	gcattattgc caggacggga gccattctct	tagaaatatt agcccgaaac gcagctgttg	60 120 180 201
10	<210> 54 <211> 22 <212> DNA <213> Zea mays						
15	<400> 54 gcagcggaac tgtga	agtgac gg	22				
20	<210> 55 <211> 23 <212> DNA <213> Zea mays						
25	<400> 55 gtacgtgtgc gctatc	caaag tgg 🛛 🏾 🏾	23				
	<210> 56 <211> 23 <212> DNA <213> Zea mays						
30	<400> 56 gccgtgcgac acac	gtactg cgg	23				
35	<210> 57 <211> 24 <212> DNA <213> Zea mays						
40	<400> 57 gacacacgta ctgcę	ggcgtc atgg	24				
45	<210> 58 <211> 25 <212> DNA <213> Zea mays						
	<400> 58 gtcgccacac gtcgt	ccgag ttcgg	25				
50	<210> 59 <211> 201 <212> DNA <213> Zea mavs						
55	<400> 59						

# EP 3 191 595 B1

5	caatggagaa gatacctcca attagcatta ggtctacgta	aaagggggcct ggaatcaggt catgtttgtc atgaccagaa	caggccctca ttcagaacca ggttctttct t	cagcaactga taatctaacc tggggaaatt	gctgaatgct ctgtcacaat atgatcattg	gccgtgtaca tcggttagat tgttgttagg	60 120 180 201
5	<210> 60 <211> 25 <212> DNA <213> Zea mays	5					
10	· · · · · · · · · · · · · · · · · · ·						
	<400> 60						
	gaccacggcc agct	gtagcg ctagg	25				
	<210> 61						
15	<211> 201						
	<212> DNA						
	<213> 7ea mays	1					
	<100> 61	,					
20	<4002 01						
20							
	ttctttttt tattatacgc tgaataatcc	ttcttatgtc gcatataaca acacactagc	cgtctgcctg tgttgtcagt atgtgcagag	caaatgtccc tcttcagcgt acaatgctaa	ttgtcttctt cctcaagtaa tctgttccat	ttggtgtgct tggcaggagc ctgctgctac	60 120 180
25	LLCCGacagg	gggcgacgag	d				201
25	-040-00						
	<210> 62						
	<211> 201						
	<212> DNA						
	<213> Zea mays	5					
30							
	<400> 62						
	ctgggtgaag	aaqtaaaqat	caqccqaqaa	tgaggtcaac	ccaqttqaat	ccaatggagc	60
	tgtggtctcg	gttaagaaga	cagtatatac	aacactaatc	accaaatctt	agtcgccgct	120
35	tgcggccgcc	gccatcacta	gccaagccat	cgtccctggc	gcgcggtcgc	gtccaggctt	180
	ccattccagg	ttactaggtg	t				201
	<210> 63						
	<211> 22						
40	<212> DNA						
	<213> Zea mays	6					
	<400> 63						
	gcacggtgta ggga	cgtgtg gg	22				
45							
	<210> 64						
	<211> 21						
	<212> DNA						
	<212 Divit						
50	~213~ Zea mays	•					
	<400> 64						
		tttaaa o oo					
	yaaacayica aldu	lliyayy 21					
	<210> 65						
55	<211> 22						
	~211~ 22 <2125 DNIA						
	~212~ UNA						
	∼∠13> ∠ea mays	•					

<400> 65 gttgggctac atgaaccaag gg 22 <210> 66 5 <211> 22 <212> DNA <213> Zea mays <400> 66 10 gccagcccgg acctcatcgt gg 22 <210> 67 <211> 201 <212> DNA 15 <213> Zea mays <400> 67 ccttagcaag gtgctgtaac tgactacaac agcgatcttc ctgaggaaat gtgcaagggg 60 20 ctgcccatag gtgtgaggga acgcatggct gatcacatga gcgcatgaca ggtcagctgc 120 aattgcggcg tcaccatact ccaccctaac agtagtgccc tgaataagtg gataaaataa 180 caaatgaaac ataatagaat t 201 <210> 68 25 <211> 21 <212> DNA <213> Zea mays <400> 68 30 gaaagggatg ctaccgacag g 21 <210> 69 <211> 25 <212> DNA 35 <213> Zea mays <400> 69 gtaataagta ataaccatat gcagg 25 40 <210> 70 <211> 20 <212> DNA <213> Zea mays 45 <400> 70 20 ggttatcgag ggactagtgg <210> 71 <211> 21 <212> DNA 50 <213> Zea mays <400> 71 21 gagcatcaag ttcacttagg g 55 <210> 72 <211> 21 <212> DNA

	<213> Zea mays	
5	<400> 72 gcagtagcgt tcaatccgag g 21	
10	<210> 73 <211> 201 <212> DNA <213> Zea mays	
10	<400> 73	
15	gcggggcaccgggggccggaaatcggtggcgccgccggccgctccgtcgtggggggagattctacgccgttgtcagacacactgtgggttgtcgccgattgagtaactgtggatcctcgttt1ggacggtccggattagaccctgtaggtaccccttcgcagcattaaggagctggccgttga1tcacccatcgtacggctaggg2	60 20 80 01
20	<210> 74 <211> 22 <212> DNA <213> Zea mays	
25	<400> 74 gttagcatta tgacaagaca gg 22 <210> 75	
20	<211> 20 <212> DNA <213> Zea mays	
30	<400> 75 gatctgccta ttgcgctggg 20	
35	<210> 76 <211> 26 <212> DNA <213> Zea mays	
40	<400> 76 gtcaacaaat tagtgaggac gtcggg 26	
	<210> 77 <211> 20 <212> DNA	
45	<213> Zea mays <400> 77	
50	gttcctgggc taccggttgg 20 <210> 78	
	<211> 21 <212> DNA <213> Zea mays	
55	<400> 78 gccgtcgtcg ctcgatcgtg g 21	
	<210> 79	

<211> 201 <212> DNA <213> Zea mays

5 <400>79

60 ctcgtttagg ttcagttgag atctcacctc aggtagacaa acgcgtcacc agcaatcagc ttctttgatg tgacaaacgt gctccatcca gtagtcagaa ggtgccgacg gggttggcct 120 agagaacaag gagttgcaga attaagcacc ataagttgca taaaggtaga gaattcagtg 180 10 gagatggaga ctgtactgta c 201 <210> 80 <211> 20 <212> DNA 15 <213> Zea mays <400> 80 gcattatttc ggatcgtcgg 20 20 <210> 81 <211> 23 <212> DNA <213> Zea mays 25 <400> 81 gccagtagtc taagcaaaga tgg 23 <210> 82 <211> 20 30 <212> DNA <213> Zea mays <400> 82 gatattgacg actcgatcgg 20 35 <210> 83 <211> 22 <212> DNA <213> Zea mays 40 <400> 83 gttgctctta gactcgtatc gg 22 <210> 84 45 <211> 201 <212> DNA <213> Zea mays <400> 84 50 60 gacactcccg ctttaaattt aagtttttcg cgaaaatctt gaataagact agccatttaa acttggtaaa aaaatcatgt cagctatatt ggagtcgatt ctaccgatat cgaccatgat 120 attggatgaa ccggtccata ccgtctgact ttagttacat aattttttt tattggtcta 180 201 cacgtacttc acgtcaacta g 55 <210> 85 <211> 201 <212> DNA

<213> Zea mays

<400> 85

5

5	gagtgttaga gtatatggat taggtccatg aggtccgtgt atgaatactg tatagcaacc ctctctaggg ctggcccaat aatgaattcc actctctcca acaagcttat catagaaatc caacacagca gcatgcttct catcttggtc ggtgatcacc cgatcaccaa cctgcaactt tgcaataaaa ttccctttct t	60 120 180 201
10	~ 210> 96	
10	<210- 60	
	<211-201 <2125 DNA	
	<213> Zea mays	
15	<400> 86	
	ctgcaccgcc aaaatccgtg gcaccagcac tggcctagaa gccgacacca aaccccagat	60
	caagcttcag aagaagaatt ggctgcgaaa ggggtgagcg gcgaatgcta taactgcacg	120
	aagaagtaca ctgctgacca taattgtgca gcgaaagggg tcttctttct ggagttagat	180
20	gataaagagg aagaggagga g	201
	<210> 87	
	<211> 20	
	<212> DNA	
25	<213> Zea mays	
	<400> 87	
	ggctagaccg tgtacctagg 20	
30	<210> 88	
	<211> 22	
	<212> DNA	
	<213> Zea mays	
35	<400> 88	
	ggctcaaatc acaccgtaat gg 22	
	<210> 89	
	<211> 20	
40	<212> DNA	
	<213> Zea mays	

<400> 89 ggtacatctc gaaatgcagg 20 45 <210> 90 <211> 23 <212> DNA <213> Zea mays 50

> <400> 90 23 gactcagtgg ggaaatgttc tgg

<210> 91 55 <211> 201

<212> DNA <213> Zea mays <400> 91

5	catacaaaca aaagctccac aagtctctga aacttatatc tccacaacca cagccaatta aacacttcaa caaatcccca aaatgtaact tgctactccc tatcgtatgc cccactcagt tcagaaaact aatcaatgtt ttaattgcgg aaccaagaag tttcctcatc cccacgacca	60 120 180
10	ataataattc ttctctgatg c	201
10	<210> 92 <211> 20 <212> DNA	
15	<213> Zea mays <400> 92	
	gcaccatcga tggttaccgg 20	
20	<210> 93 <211> 22 <212> DNA <213> Zea mays	
	<400> 93	
25	gaaactgtat aagcatgggt gg 22	
	<210> 94 <211> 201	
30	<212> DNA <213> Zea mays	
	<400> 94	
35	gaatttgaaa tatagtaaaa gtaataatat aattcatccc caatgaaata aatcaggagg aagacctctt ctcgtccatt actagcagta ccataaaaag aaaacagtgg caacggccac gatgcagaga gagtactgcc atgcaatgca aaccattcga agccggtagc ctaaaacagt cggaacccaa cccaaagcag g	60 120 180 201
40	<210> 95	
	<211> 22 <212> DNA <213> Zea mays	
45	<400> 95	
50	<210> 96 <211> 22 <212> DNA <213> Zea mays	
	<400> 96	
55	gttgaatgtg gctctcatga gg 22	
	<210> 97	
	5/112/1	

<211> 25 <212> DNA

	<213> Zea mays					
5	<400> 97 gcttctctcg ccaagttgcc atagg	25				
	<210> 98 <211> 21 <212> DNA <213> Zea mays					
10	<400> 98 gtctaccgac ttgctcctcg g 21					
15	<210> 99 <211> 201 <212> DNA <213> Zea mays					
20	<400> 99					
25	ctgcaaaatt ctaaattaaa cagtgtcaca tcacccacag atttcaatca gatttagcca ttacacaggg gataagctat	aaaatggaca g catggctgct tggaacactg a tggaacactg	agagaatttg catgcttctt acttactggg	aataaaggtc actgaacaag atagggagaa	tcataattaa ttccatccat atataaatat	60 120 180 201
25	<210> 100 <211> 21 <212> DNA <213> Zea mays					
30	<400> 100 gtccattcat gtctgaagtg g 21					
35	<210> 101 <211> 20 <212> DNA <213> Zea mays					
40	<400> 101 gcttgctgga gtgcttatgg 20					
45	<210> 102 <211> 23 <212> DNA					
45	<213> Zea mays <400> 102 gactagaaac aggtgtcagc agg	23				
50	<210> 103 <211> 22 <212> DNA <213> Zea mays					
55	<400> 103 gattccttca tgcgcttact gg 22	2				
	<210> 104					

- <211> 20 <212> DNA <213> Zea mays 5 <400> 104 20 gagcagtgtc gcacatcagg <210> 105 <211> 201 10 <212> DNA <213> Zea mays <400> 105 15 tgaaaccaat ctgccatggt gctagtttat atctagccat catatgcgtt aagcaagcat 60 120 acatactgaa atgatccctg catctttgtc ctatcctata gcatgtgact gctgcctgac tacttgtgtc tacagtctac acatgtaaaa agagataatg tggagactgt gtttgctaga 180 201 taactttaaa gatttcaact a 20 <210> 106 <211> 7844 <212> DNA <213> Artificial 25 <220> <223> artificial <400> 106 30 35 40 45 50
- 55

	atacaacata	acccootcot	acccctctct	agagataatg	agcattgcat	otctaaotta	60
	taaaaatta	ccacatattt	ttttgtcac	acttottoa	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacqaat	aatataatct	atagtagtag	aataatatca	180
	atatttaa	gaatgatata	aatgaagagt	tagagatgat	atageaceac	attaactatt	240
5	ttgagaaga	gaatataaaa	++++at at ++	ttagacatggt	tatattata	++++++++	300
	cogacaacay	gaccectacag	atacttacta	asttttstts	atagatagat	ttoggattto	360
	caaalayeee	tttttatata	atacticate	tattilatta	glacalecal	ctayyyttta	420
	gggllaalgg	llllalaga		Lagladald		atttageet	420
	ctaaattaag	aaaactaaaa	CTCTATTTA	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctcccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acqqqatcqa	tttcatgatt	tttttttttt	cgttgcatag	1260
	aatttaattt	accetttec	tttatttcaa	tatatoccot	gcacttottt	atcagatcat	1320
	cttttcatoc	tttttttat	cttaattata	atgatgtggt	ctaattaaac	ggtcgttcta	1380
	gatcogagta	gaattetott	tcaaactacc	tootogattt	attaatttto	gatetotato	1440
	tototoccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcoatctag	1500
25	gataggtata	catgttgatg	coortttac	tgatgcatat	acagagatac	tttttattca	1560
20	cttaattata	atgatgtoguog	ataattaaac	gatcattcat	tcattctaga	tragagtaga	1620
	atactette	aaactaccto	gtggttgggt	taattttaaa	actatatata	tatatata	1680
	atattgette	ttaccactt	aggetacceata	caactetgga	totacostac	atatacatat	1740
	tastatagat	tttacgagett	aayatyyaty	gaaatatega	acceptates	tastatata	1000
	toogettoog	togatotato	ttatatata	acygeataty	tageatetat	tttalgele	1960
30	caacellyag	lacclatcla			tttttt		1000
		algalggeat		tatatgtgga	ctccccage	tetttea	1920
		attigettgg	tactgtttet	trugtegatg	ctcaccctgt		1980
	tacttetgea	ggtcgactct	agaggateea	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
05	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagetgtte	atccageteg	tgcagacgta	caatcaactq	ttcgaggaga	2820
45	accccataaa	cactageage	atagacacca	aggecatect	ctcggccagg	ctctcgaaat	2880
	caagaagget	ggagaacctt	atcgcgcagt	taccaaacaa	aaagaagaac	aacctcttca	2940
	gcaaccttat	tacactcaac	ctcggcctga	coccoaactt	caaatcaaac	ttcgacctcg	3000
	cggaggagg	caagetccag	ctctcaaago	acacctacca	cgacgacete	gacaacotoo	3060
	tagacagat	aggagaggag	tacgoggagg	tettecter	caccaacaac	ctctcccacc	3120
50	ctatectect	cagogacato	cttcagatca	acaccoaaat	taccaagge	constateog	31.80
'	craggetget	taaacactec	racrageace	atcaggagadt	cacoctacta	aaggeegeeeg	3240
	tooggaagaa	actococcac	aadtacaaac	agatettett	caaccaatca	aaaaaaaaaa	2200
	aggggggta	tatagagaga	aaytacaayy	agacett	atagaaatta	addaddyydl	2200
		calcyacyge	ygugudagee	ayyaayayit	antanan		0000
	Leetggagaa	yatggacggC	accyaggagt	igerggreaa	yeteaacagg	yayyacctcc	3420

tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
aggaggtggt	cgataagggc	gctagcgctc	agagetteat	cgagcgcatg	accaacttcg	3720
ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
ccgtgtacaa	cgagetcace	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840
tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480

ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga

aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat

gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg

ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc

ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat

agattttgat gagetggaat gaateetgge ttatteeggt acaacegaae aggeeetgaa

ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt

ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt

aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag

5 10	ttttgagcga cgaatcttg ctctaacaca gttgtaaaag tttttttata acggagaata tcgtcacaga agcccaaaca caccttgact gctgtggacg gttatcaact	ggggggcatca acataatgat cgatgatgat ctaaaatgct taccttttt tttgcaaaaa gagggccata gcagtccgta aatcacaaga tggggtgctg tgaaaaagtg	aagatctggc cccgcttaaa aagtcgtaaa attcgaattt ccttctatgt agtaaaagag agaaacatgg ggtggagcgta ttttagagct gcaccgagtc	tgtgtttcca taagcaacct atagtggtgt ctactagcag acagtaggac aaagtcatag cccacggccc agcgctgggt ccttataaac agaaatagca ggtgcttttt	gctgttttg cgcttgtata ccaaagaatt taagtcgtgt acagtgtcag cggcgtatgt aatacgaagc aatacgcaaa cgagccgcaa agttaaaata tttt	ttagccccat gttccttgtg tccaggccca ttagaaatta cgccgcgttg gccaaaaact accgcgacga cgttttgtcc gcaccgaatt aggctagtcc	7260 7320 7440 7500 7560 7620 7680 7680 7740 7800 7844
15	<210> 107 <211> 7844 <212> DNA <213> Artificial						
20	<220> <223> artificial <400> 107						
25							
30							
35							
40							
45							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
_	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctattta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
••	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
30	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520

EP 3 191 595 B1

	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cogacctccg	gctcatctac	cttaccctca	2700
	cocatatoat	caagttccgc	ggccacttcc	tcatcgaggg	coacctoaac	ccogacaact	2760
5	ccgacgtgga	caagetotte	atccagetcg	tocagacota	caatcaacto	ttcgaggaga	2820
5	accccataaa	cactageoge	gtggacgcca	aggecatect	ct.cggccagg	ctctcgaaat	2880
	caagaagget	gagaacctt	at cococact	taccagacga	aaagaagaag	agentettea	2940
	acaacattat	tacactcaac	ategegeage	caccasactt	casatcasac	ttccacctcc	3000
	gcaaccettat	appartage	atatassaa	agagtage	caaaccaaac	cocyacticg	3060
	tagaagaaga	caagetteag	terrange	tattactacya	cyacyacete	gacaacecce	2120
10	rygeeeagat	aggagaccag		celleelege	togecaayaac	cleteegaeg	2120
10	ctatectget	cagegacate	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
	teegeeagea	geteeegag	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
15	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
20	ccgtgtacaa	cgageteace	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaaqaaaat	agagtgcttc	gactccgtgg	3960
	agateteggg	cotogaggat	coottcaaco	cctcactcoo	cacotatcac	gacctcctca	4020
	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	togtoctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagagg	ctgaagacct	4140
25	acgcgcacct	attoracoac	aaggtcatga	aacagetcaa	aaaacaccac	tacactoott	4200
	acgegeacet	atacaaaa	ataggeeaega	acataaaaa	caageageage	gggaagagge	4260
	taataaaatt	geteegetaag	cicactally	gcaccaggga	attastaasa	ggcaagacca	4320
	ceelgyaett	ceceaagtee	gaegggtteg	ccaacegeaa	citicalycay	cicalleacy	4320
	acgaeteget	cacylleaag	gaagacatee	ayaayycaca	ggugaguggg	cayyyuyacu	4380
	ceccecacya	acacategee	aacetggeeg	getegeegge	Calladaaag	ggcalcelge	4440
30	agacggtcaa	ggtcgtcgac	gagetegtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tegteataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagetegg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagetgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
35	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
40	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcqaacat	catgaacttc	ttcaagaccg	agatcaccct	cqcqaacqqc	gagatccgca	5400
	agcgcccgct	categaaacc	aacqqcqaqa	coogcoagat	catctaggat	aaggggccggg	5460
15	atttcocoac	gotccocaag	otoctctcca	toccocaaot	caatatcoto	aaaaagacgg	5520
45	aggtccagac	agacagatte	agcaaggagt	ccatcctccc	gaagegeaac	teegacaage	5580
	tcatcgcgag	gaagaaggat		aaaaatatgg	caacttcaac	agecegaeeg	5640
	tcocatacag	catecteate	ataacaaaaa	tagagaagag	caagtcaaag	aarctcaart	5700
	contraarda	actactogeo	atcaccatta	tagagaaggg	ctccttccaa	aagaacccga	5760
	togaattaat	agaggggaaaa	agatataaga	aggingegyte	agacetest+	attaaactoo	5820
50	agaagtagta	agtattage	gyucacaayy	agagaaagaa	ggaccigati	taggaagga	5020
~~	agttggggg	garagagagag		geogeaagag	gatgeteget	atataata	5000
	ayuuycayda	tanana		cyaycaaata	agagagagaga		5340
	CLAGCCACTA	Lyaaaagete	aayygcagcc	cyyaggacaa	cyaycagaag	Cagetetteg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttetegaage	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
55	acaaaccaat	acgcgagcag	gccgaaaata	TCATCCACCT	CTTCACCCTC	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300

	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
5	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
10	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
15	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
10	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
20	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gaaccacact	gaacaacaag	ttttagagct	agaaatagca	agttaaaata	aggctagtcc	7800
25	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	tttt		7844

<210> 108 <211> 7846 <212> DNA <213> Artificial

> <220> <223> artificial

35 <400> 108

40

30

45

50

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
10	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620

EP 3 191 595 B1

	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacato	atoocatato	cagcatctat	tcatatoctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
F	atatacttoo	atgatggcat	atgcagcagc	tatatotoga	ttttttagc	cctgccttca	1920
5	tacoctattt	atttacttag	tactotttct	tttatcata	ctcaccctgt	tatttaatat	1980
	tacttctcca	agtcgactct	agaggatcca	toocaccoaa	gaagaagcgc	aaggtgatga	2040
	acaacaacta	ggeegaeeee	agaggaeeea	gggcaeegaa	gatgaagege	accatcatca	2100
	acaayaayta	tageategge	tagaagaaga	tagaataat	ggcgggccgg	geogeoaca	2160
	cyyacyaata	caaggueeeg	ccyaayaayt	tattagete	cyycaataca	gacegeeaca	2220
10	gcatcaagaa	aaactigate	ggegeeetee	cgillegalag	cggcgagace	geggaggega	2220
10	ccaggeteaa	gaggaccgcc	aggagacggt	acactaggeg	caagaacagg	atetgetace	2200
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	CTCCTTCTTC	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
15	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
20	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
	ctatcctqct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccqctqtccq	3180
	ccagcatgat	taaacoctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
25	tcccccacca	acteccegag	aagtacaagg	agatettett	coaccaatca	aaaaacooct	3300
	acocoooata		agtaccaacc		ctacaagtto	atcaaaccaa	3360
			accgaggagt	tactagtcaa	actcaacago	gaggagetee	3420
	tcaggaagga	gaggaccttc	gacaacggct	ccatccccca	tcagatccag	ctogocoaac	3480
	tacataccat	cctacacac	caggagget	tctacccqtt	cctgaaggat	aacconnana	3540
	agatogagaa	gatettgacg	ttocacatoo	catactacot	agaccageta	actogogogo	3600
30	agaccyagaa	gacctcgacg	accordant	cacaccacge	gggcccgccg	taasaattta	3660
	acceccyget	agataagaa	acceggaage	agaggagagac	agagggata	aggaacttog	3720
	ayyayyuyyu	cyacaayyyc	geragegere	agagetteat	cyaycycary	accaacticg	2720
	acatataacci	geeeaacyaa	aaayteetee	ccaageaece	gergererae	gaglactica	2040
		cgagereace	aayyttaaat	acgleacega	gggcalgegg	aageeggegt	2040
~-	teetgagegg	cgagcagaag	aaggegatag	tggaceteet	cttcaagacc	aacaggaagg	3900
35	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgette	gactccgtgg	3960
	agateteggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
40	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
40	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
45	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcgggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaaco	cgaaactgat	cacccagcgc	aagttcgaca	4920
50	acctgacgaa	qqcqqaacqc	ggtggcttga	gcgaactcga	taaggcgggg	ttcataaaaa	4980
	ggcagct.ggt	cgagacgegg	cagatcacga	agcatotogo	ccagatecto	gacageegea	5040
	tgaatactaa	gtacgatgaa	aacgacaage	tgatccogga	agtgaaggtg	atcacoctoa	5100
	agtecaaget	catateagaa	ttccccaage	acttccagt+	ctacaacoto	cacaaatca	5160
	acaactacca	ccacccccac	accordiaco	tgaatgcggt	ant caanaa	accetate	5220
	agaagtaggg	raage+gree	tranaattaa	tatacaaaa	ctacaacotc	taccacctcc	5220
55	agaagtacee	caccasatca	raggageeeg	tagaaaaaaa	caccoccasasa	tacttottot	5200
	actocascot	cyccaaytee astassatta	ttassasaa	agataagat	agagaaagagaga	agat agage	5340
	actoyaacat	calyadette	licaayaceg	ayallaceet	cycyaacyyc	yayaccoyod	5400

	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
5	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
10	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
15	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
10	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
20	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
25	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
30	ttttgagcga	ggggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatcettg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	tacctttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
25	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
35	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gccgcctagg	tagaaatgtg	agttttagag	ctagaaatag	caagttaaaa	taaggctagt	7800
	ccgttatcaa	cttgaaaaag	tggcaccgag	teggtgettt	τττττ		/846
40							
	<210> 109						
	<211> 7846						
	<212> DNA						

<213> Artificial

<220>

<223> artificial

<400> 109

50

45

5	gtgcagcgtg taaaaaatta atacatatat gtgttttaga ttgacaacag caaatagctt gggttaatgg ctaaattaag	acccggtcgt ccacatattt ttaaacttta gaatcatata gactctacag cacctatata tttttataga aaaactaaaa	gcccctctct ttttgtcac ctctacgaat aatgaacagt ttttatcttt atacttcatc ctaattttt ctctattta	agagataatg acttgtttga aatataatct tagacatggt ttagtgtgca cattttatta tagtacatct gttttttat	agcattgcat agtgcagttt atagtactac ctaaaggaca tgtgttctcc gtacatccat attttattct ttaataattt	gtctaagtta atctatcttt aataatatca attgagtatt tttttttttg ttagggttta atttagcct agatataaaa	60 120 180 240 300 360 420 480
10	tagaataaaa aggaaacatt ctaacggaca cggcatctct	taaagtgact tttcttgttt ccaaccagcg gtcgctgcct	aaaaattaaa cgagtagata aaccagcagc ctggacccct	caaataccct atgccagcct gtcgcgtcgg ctcgagagtt	ttaagaaatt gttaaacgcc gccaagcgaa ccgctccacc	aaaaaaacta gtcgacgagt gcagacggca gttggacttg	540 600 660 720
15							
20							
25							
30							
35							
40							
45							
50							
55							

	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	acaacctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
	ttcgctttcc	cttcctcgcc	coccotaata	aatagacacc	ccctccacac	cctctttccc	900
	caacetcoto	ttattcagag	cgcacacaca	cacaaccaga	tetecceaa	atccaccot	960
-	concacctcc	acttcaagat	acaccactca	tecteccec	ccccctctc	taccttctct	1020
5	agat concot	tcccatccat	acataattaa	acccata	ttctacttct	attestatt	1020
	agattygtyt	antatttata	ttaggttag	ggcccggtag	ttacticc	gittatgitt	1140
	gigilagale		theatecost	gergerageg		gatgegaeet	1200
	gracgreaga	cacgttetga	ttgetaaett	gecagtgttt	ctcttgggg	aateetggga	1200
	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	tttttgttt	cgttgcatag	1260
10	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
10	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
15	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacato	atoocatato	cagcatctat	tcatatoctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttoo	atgatgggat	atgraggagg	tatatotoca	ttttttage	cctgccttca	1920
	taggetatt	atttaattaa	tagtagtage	tttataasta	atapagatat	tatttat	1920
	tacyctattt	actigettyg		targeagang	cicaccetyt		2040
20		gglegaetet	ayayyattea	cygcaccyaa	gaagaagege	aaggugaugg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaacte	ggrgggcrgg	geegteatea	2100
	cggacgaata	taaggteeeg	tcgaagaagt	tcaaggteet	cggcaataca	gacegeeaca	2160
	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
05	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
25	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
20	qqaaqaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttqccctcq	2700
30	cocatatoat	caagttccgc	ggccacttcc	tcatcgaggg	coacctoaac	ccogacaact	2760
	ccgacgtgga	caagetotte	atccagetcg	tocagacota	caatcaacto	ttcgaggaga	2820
	accccataaa	cactageogeoe	atagacacca	aggecatect	ctcggccagg	ctctcgaaat	2880
	caagaagggt	gagagaggt	at cococact	taccaaacaa	aaagaagaag	agentettea	2940
	caagaagget	tagataga	ategegeage	agaaaaaatt	aaayaayaac	ttagaatag	2000
25	geaacettat	reserve	ctcygeetga	cyccyaactt	caaaccaaac	respondence	3000
35	cggaggacgc	caageteeag	ctctcaaagg	acacetaega	egaegaeete	gacaacetee	3060
	tggcccagat	aggagaccag	tacgcggacc	tetteetege	cgccaagaac	CTCTCCgacg	3120
	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg	3240
	tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct	3300
40	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
40	tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatettgacg	ttccgcatcc	catactacqt	qqqcccqctq	gctcgcggca	3600
	actcccoqtt	cocctogato	acccogaagt	cogaggagagac	catcacaccc	togaacttto	3660
45	aggaggtggt	coataagggc	actageacte	agagetteat	cgagcgcatg	accaacttcg	3720
45	ataaaaacct	acccaatgaa	aaagtcctcc	ccaaccactc	actactatac	gagtacttca	3780
	ccatatecee	craartaara	aaratcaaat	acatracca	gaggatacaa	aageegeetet	3840
	tactasaaaa	agageeeace	aaggeeaataa	tageastast	attassasa	aagaagaaga	2000
	tagaatag	cyaycayaag	aayyuyatag		agatast	aacayyaayg	2200
	Lgacegtgaa	ycaattaaaa	yayyactact	Leaagaaaat	agagtgette	yactecgtgg	3960
50	agateteggg	cgtggaggat	cggttCaadg	ceteactegg	cacgtatcac	yacctcctca	40∠0
50	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320

## EP 3 191 595 B1

acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact

ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc

agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata

55

4380

4440

	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
5	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
10	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
15	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
10	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
20	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
25	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
30	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
35	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagetggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
40	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
45	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
50	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gactaaatgt	aattgctact	tgttttagag	ctagaaatag	caagttaaaa	taaggctagt	7800
	ccgttatcaa	cttgaaaaag	tggcaccgag	tcggtgcttt	ttttt		7846

55 <210> 110

<211> 7845

<212> DNA

<213> Artificial

	<220> <223> artificial
5	<400> 110
10	
15	
20	
25	
30	
35	
40	
45	
50	

	ataasaata	a a a a a a a t	accept at at	agagataatg	aggattggat	atataaatta	60
	grgcagegrg	acceggeege	geeeeeeee	ayayataaty	agcattgtat	glulagila	100
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
_	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaqqaca	attgagtatt	240
5	ttgacaacag	gactetacag	ttttatcttt	ttagtgtgca	tatattetee	ttttttta	300
	caaatagett	cacctatata	atacttcatc	catttatta	atacatacat	ttagggttta	360
	caaatayeee	tittetatata	atacticatt	testestet	glacalleat		420
	gggttaatgg	tttttataga	CTAATTTTT	tagtacatet	atttattct	atttageet	420
	ctaaattaag	aaaactaaaa	ctctatttta	gtttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aqqaaacatt	tttcttqttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacogaca	ccaaccagcg	aaccagcagc	atcacatcaa	gecaagegaa	gcagacggca	660
	concetetet	atcactacct	ctoraccoct	ctccacactt	ccactccacc	attagactta	720
	cygcattett	gregergeer	cuggaccee	cicyayayit	cegetecate	geeggaeeeg	720
	CTCCGCTGTC	ggcatccaga	aattgegtgg	cggagcggca	gacgtgagee	ggcacggcag	/80
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	coocacctcc	getteaaggt	acoccoctco	tcctccccc	ccccctctc	taccttctct	1020
	agategged	tccaatccat	acataattaa	aacccaataa	ttctacttct	attestattt	1080
	atattaata	actatttata	ttaataat	ggeeeggeeg	ttaataaaaa	geteacgeet	1140
	glyllagalc	cgrgrrrgrg	LLAYALCCYL	gergerageg	LLCGLacacg	galgegaeet	1000
20	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	CTCTTTgggg	aatcctggga	1200
	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttqt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcogagta	gaattetott	tcaaactacc	tootogattt	attaattto	gatetotato	1440
	tatatacat	acatattcat	anttaccaat	taaaataat	agatagaaat	atcoatctag	1500
25	cycyccac	acatatteat	agecacyaac	tgaagatgat	ggacggaaac	tttt	1500
20	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatge	ttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatq	atggcatatg	cagcatctat	tcatatgctc	1800
20	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
30	atatagttag	atgatgggat	atagagagaga	tatatataaa	++++++	actgaatta	1920
	terretett	atgatggtat	acycaycayc	thteterete	atacastat	tetttettet	1000
	tacgetattt	atttgettgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	aacaccctcc	tottcoatag	coocoacacc	acagaagacga	2220
	ccaggetcaa	gaggaccocc	aggagagggt	acactagoog	caagaacagg	atctoctacc	2280
	taaggoooda	attaaaaaaa	aggagaoggo	acatoraggeg	ataattatta	asaagaataa	2340
	cycayyayat	ceteageaac	yayatyytya	agguggauga			2340
	aggaatcatt	ccugguggag	gaggacaaga	agcargageg	geacecaate	LLCGGCaaCa	2400
	tcgtcgacga	ggtaagtttc	tgettetace	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	agtagagag	acagacaagg	conaccticco	actentetac	cttacctca	2700
	ggaagaaat	ggoggacage	acception	tataaaaa	geocatora	coggeceeg	2760
	cycatatyat	caageteege	ggccacttee	terrerere	cyaccuyaac		2700
45	ccgacgtgga	caagetgtte	atccageteg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cogaggacgc	caageteeag	ctctcaaagg	acacctacoa	cgacgacctc	gacaacctcc	3060
	tooccagat	aggagaggag	tacgcggacc	tetteetege	caccaagaac	ctctcccacq	3120
50	atataataat	aggagaccag	attaggeta	agaggagagt	tagaaagaaa	accetataca	2100
	clatectyct	Caycyacalc	CLLCggglCa	acaccyaaat	Laccaayyca	cegergreeg	3100
	ccagcatgat	taaacgctac	gacgagcacc	accaggacct	cacgetgete	aaggcactcg	3240
	tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct	3300
	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctgqtcaa	gctcaacagg	gaggacctcc	3420
55	tcaggaagca	gaggacette	gacaacooct	ccatcccoca	tcagatccac	ctgggcgaac	3480
	tacataccat	cetacaacac	caggaggagt	totaccost	cctgaaggat	aacconnaga	3540
	agatagaga	cotycyycyc	ttaggagguet	astactocc	aaaaaaata	aataaaaaa	3600
	ayalcyayaa	yatettyaeg	LLCCYCATCC	calaciacyt	yyyeeeyetg	yeregeggea	2000

actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg
aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg
ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca
ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt
tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg
tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg
agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca
agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca
tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct
acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt
ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca
tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc
accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg
gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg
accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga
tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca
acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa
ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca
tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga
agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca
acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca
agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc
gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct
actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca
agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg
atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg
aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc
tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg
tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt
ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga
tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc
cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg
agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg
ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagetetteg
tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc
gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg

acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg

gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca

cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc

tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat

tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact

ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat

gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg

ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag

tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat

agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag

gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt

ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt

aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag

ttttgagcga ggggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat

cgaatcottg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg

ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca

## EP 3 191 595 B1

5	gttgtaaaag tttttttata acggagaata tcgtcacaga agcccaaaca caccttgact gagggaggcc cgttatcaac	ctaaaatgct taccttttt tttgcaaaaa gagggccata gcagtccgta aatcacaaga tgtgacgcat ttgaaaaagt	attcgaattt ccttctatgt agtaaaagag agaaacatgg ggtggagcaa gtggagcgta gttttagagc ggcaccgagt	ctactagcag acagtaggac aaagtcatag cccacggccc agcgctgggt ccttataaac tagaaatagc cggtgctttt	taagtcgtgt acagtgtcag cggcgtatgt aatacgaagc aatacgcaaa cgagccgcaa aagttaaaat ttttt	ttagaaatta cgccgcgttg gccaaaaact accgcgacga cgttttgtcc gcaccgaatt aaggctagtc	7440 7500 7560 7620 7680 7740 7800 7845
10	<210> 111 <211> 7847 <212> DNA <213> Artificial						
15	<220> <223> artificial						
20	<400> 111						
25							
30							
35							
40							
45							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
_	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctcccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
20	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
30	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
25	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
30	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggetcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700

cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagetecag eteteaaagg acacetaega egaegaeete gaeaacetee tggcccagat aggagaccag tacgcggacc tottcctcgc cgccaagaac ctctccgacg ctatectget cagegacate ettegggtea acacegaaat taceaaggea cegetgteeg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggacette gacaacgget ceateeegea teagateeae etgggegaae tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agateteggg cgtggaggat eggtteaaeg eeteaetegg eaegtateae gaeeteetea agatcattaa agacaaggac tteetegaca acgaggagaa egaggacate etegaggaca tcqtcctcac cctqaccctq ttcqaqqacc qcqaaatqat cqaqqaqaqq ctqaaqacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaagget gtcccgcaag ctcattaatg gcatcaggga caagcagage ggcaagacca tcctaa ctcattcacg acgact cagggtgact ccctcc gcatcctgc agacgg cccgaaaata tcqtca actcgcgcg agcgga tgaaggagc accccg ctgcagaacg gccgcg acgacgtcg gtgctcaccc accaca ggtcgg ytgaagaaga tgaaaa agttcgaca tcataaaaa acctga gacagccgca aacaac

5

10

15

20

25

30

35

tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc
accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg
gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg
accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga
tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca
acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa
ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca
tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga
agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca
acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca
agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc
gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct
actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca

	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
40	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
45	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagetetteg	6000
50	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
55	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
55	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420

tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact

### EP 3 191 595 B1

2760 2820

2880

2940

3000

3060

3120

3180

3240 3300

3360

3420

3480

3540

3600

3660

3720 3780

3840

3900

3960 4020

4080

4140

4200 4260

4320

4380 4440

4500

4560 4620

4680

4740

4800

4860

4920

4980

5040

5100

5160

	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
5	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagetggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
10	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	qqcaqqqtqa	ataggaaagt	7140
	aaaattgtat	tataaaaaga	gatttcttct	atttattaac	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggggatca	aagatctggc	tatatttcca	actatttta	ttagccccat	7260
	cgaatcettg	acataatgat	cccqcttaaa	taagcaacct	cocttotata	attecttata	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaaqaatt	tccaggccca	7380
15	attataaaaa	ctaaaatoct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	tacctttttt	ccttctatot	acagtaggac	acagtotcag	caccacatta	7500
	acogagaata	tttocaaaaa	agtaaaagag	aaagtcatag	coocotatot	occaaaaact	7560
	tcotcacaga	gagggccata	agaaacatgg	cccacqqccc	aatacqaaqc	accocoacoa	7620
	ageccaaaca	gcagtccgta	ggtggaggaa	agcgctgggt	aatacocaaa	catttatcc	7680
20	caccttgact	aatcacaaga	atagaggata	ccttataaac	cgageegeaa	gcaccgaatt	7740
	acaggacagg	gaggtaaaag	gagtttaga	actagaaata	gcaagttaaa	ataaggetag	7800
	tccattatca	acttoaaaaa	ataacaa	atcaatactt	++++++	acaaggoodg	7847
	cocycluttu	acceguuuuu	geggedeegd	geeggegeee			.547

<210> 112
25
<211> 7845
<212> DNA
<213> Artificial

<220> 30 <223> artificial

<400> 112

35

40

45

50

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
-	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
••	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800

taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg 1860 1920 atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt 1980 2040 tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca 2100 cqqacqaata taaqqtcccq tcqaaqaaqt tcaaqqtcct cqqcaataca qaccqccaca 2160 gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga 2220 2280 ccaggetcaa gaggaccgec aggagacggt acactaggeg caagaacagg atetgetace tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg 2340 2400 aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2460 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa 2520 ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc 2640 ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg 2700 cgcatatgat caagtteege ggecaettee teategaggg egacetgaae eeggaeaaet 2760 ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga 2820 accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat 2880 caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg 2940 gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg 3000 cggaggacgc caagetecag eteteaaagg acacetaega egaegaeete gacaacetee 3060 tggcccagat aggagaccag tacgcggacc tottcctcgc cgccaagaac ctctccgacg 3120 ctatectget cagegacate ettegggtea acaeegaaat taeeaaggea eegetgteeg 3180 ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg 3240 3300 tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct 3360 acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc 3420 tcaggaagca gaggacette gacaacgget ceatecegea teagateeae etgggegaae 3480 3540 tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga 3600 agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca 3660 actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 3780 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca 3840 ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt 3900 tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg 3960 agateteggg egtggaggat eggtteaaeg eeteaetegg eaegtateae gaeeteetea 4020 agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca 4080 tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct 4140 acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt 4200 4260 ggggaagget gteecgeaag eteattaatg geateaggga caageagage ggeaagaeea 4320 teetggaett eetcaagtee gaegggtteg eeaacegeaa etteatgeag eteatteaeg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact 4380 4440 ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge 4500 agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg 4560 agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc 4620 4680

accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg

gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg

accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc

ggtcggataa aaatcgggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga

tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca

acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa

ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga

agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca

agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct

actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg

atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg

aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc

4740

4800

4860

4920 4980

5040

5100

5160

5220 5280

5340 5400

5460

5520 5580

5

10

15

20

25

30

35

40

45

50

	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
5	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
10	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
15	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
10	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
20	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
25	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	ggggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
30	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
00	ttttttata	tacctttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
35	gaccgttgct	gatggatcaa	gttttagagc	tagaaatagc	aagttaaaat	aaggctagtc	7800
	cgttatcaac	ttgaaaaagt	ggcaccgagt	cggtgctttt	tttt		7845
	<210> 113						

<211> 7844
<212> DNA
<213> Artificial

<220> <223> artificial

45

<400> 113

50

	gtgcagcgtg taaaaatta	acccggtcgt ccacatattt	gcccctctct tttttgtcac	agagataatg acttgtttga	agcattgcat agtgcagttt	gtctaagtta atctatcttt	60 120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
5	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
	casatagett	gactetacag		catttagtgtgca	tgtgttetee		360
	agattaatag		atacticate	tagtagatet	atttattattat	attttagggttta	420
	ctaaattaag	aaaactaaaa	ctctattta	otttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atoccaocct	ottaaacocc	gtcgacgagt	600
	ctaacqqaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
20							
25							
30							
35							
40							

	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctcccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctcccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	catatttata	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
5	gtacgtcaga	cacottctoa	ttoctaactt	gccagtgttt	ctctttagag	aatcctggga	1200
5	tooctctaoc	cottecocao	acoggatcga	tttcatgatt	ttttttattt	cottocatao	1260
	agtttagttt	accetttec	tttatttcaa	tatatoccot	gcacttgttt	atcagatcat	1320
	cttttcatoc	+++++++a+	cttaattata	atgatgtgt	ctaattaaac	gatcattcta	1380
	gatcogagta	gaattetett	traaactacc	taataattt	attaattta	ggttgtteta	1440
	tatatacat	acatattcat	agttaggaat	taaaataat	accuactor	atocatotac	1500
10	cycycyccac catacotata	acatattatta	agentetta	tgatgatgat	ggacggaaac	tttttattag	1560
	galayylala	atastataat	cyyytttac	cyacycacac	tagttaga	taggagtaga	1620
		algalgiggi	grggrrggge	gglegtleat	contratata	tatatata	1620
	atactytte	aaactacety	gigiaitiat	caattigga	tategrateg	cycyccatac	1740
	accilcatag	tttogtgttt	aagalggalg	gaaalaloga	locaggalag	glaladalgi	1000
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	teatatgete	1800
15	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ττατααττατ	tttgatettg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttage	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
20	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
25	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
30	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
00	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagetecag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcqc	cgccaagaac	ctctccgacg	3120
	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccactatcca	3180
35	ccagcatgat	taaacqctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
	tccqccaqca	gctccccgag	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
	acocoooata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tectogagaa	gatogacogc	accoacoact	toctootcaa	getcaacagg	gaggacctcc	3420
		gaggacette	gacaacgget	ccatccccca			3480
	tgcatgccat		caggaggagt	tctaccott	cctgaaggat	aaccoogaga	3540
40	agategagaa	gatettgacg	ttccccatcc	catactacot	agacccacta	actogggaga	3600
	actoccontt	cacctagata	accoggaagt	cagaagaagac	catcacaccc	togaacttto	3660
	aggagget	castaagaag	actagracta	agaggttgat	caagcacata	accaacttog	3720
	ataaaaacct	accesters	aaatcctcc	ccaaccacto	actactatac	gagtacttca	3780
	acatataacet	caactaaca	aagetcaaat	acatagoacce	gaggatagag	aagggggggggg	3870
	tactasaaaa	cgagereace	aaggudaataa	tagagatagt	attalage	aageeggegt	2010
45	taaaataaa	cyaycayady	aayyuyatag	tagagegeet	agagtagtta	aacayyaayg	3900
	agatetage	ycaaltaada	gaggactact	actasctasc	ayayıyctic	gactector	3900
	agaleteggg	cycyyagyat	ttact	agage	acylatede	gaccicctca	4020
	ayalcattaa	ayacaayyac	ttagagaga	acyayyayaa	cyayyacate	atapagada	4000
	LEGTECTEAC	cetyaceetg		yegaaatgat	cyayyagagg		4140
	acycycacct	yrrcyacgac	aayytCatga	aacayctcaa	yayycgccgC	LACACEQUEE	4200

ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca

tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact

ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge

agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg

agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc

accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg

	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
5	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	catatcagac	ttccgcaagg	acttccagtt	ctacaaqqtc	cgcgagatca	5160
	acaactacca	ccacqcccac	gacgcctacc	tgaatgoggt	aatcaagacc	accetaatea	5220
10	agaagtaccc	gaagetggag	tcogagttcg	totacoocoa	ctacaaggtc	tacgacgtgc	5280
10	gcaaaatgat	coccaaotcc	gagcaggaga	tcoocaagoc	cacoocaaaa	tacttcttct	5340
	actogaacat	catgaacttc	ttcaagaccg	agatcaccct	cacaacaac	gagatecgea	5400
	agcgcccgct	categaaace	aacggcgaga	cgggcgagat	catctaggat	aaggggccggg	5460
	atttcgcgac	gatecacaag	atacteteea	taccacaaat	caatatcoto	aaaaagacgg	5520
	aggtccagac	agacagatte	agcaaggagt	ccatcctccc	gaagegeaac	tccgacaage	5580
15	tcatcgcgag	gagegggeee	tagaacccaa	aaaaatatoo	caacttcaac	agecegaeaage	5640
	tcacegegag	catactata	ataacaaaaa	tagagaagaga	caactcaaac	agectgaccy	5700
	contratara	actactoga	atgaggatta	tagaaaaata	ctacttacag	aageeeaage	5760
	tagaattaat	agaggggaag	accacyatta	aggtgageggee	ggaggtgatt	attaaactoo	5820
	ccgacticct	agaggeeaag	gyacacaagy	aggecaagaa	ggacctgact	toogaaggag	5880
20	agttggagaaa	gecceccyag	atagaaataa	geegeaagag	gatgetegee	atatagatag	5940
20	ayuuyuayaa	tgaaaagtg	aaggggaaggg	cyaycaaata	agaggagaga	aggetettag	6000
	tagecacta	cyaaaayeee	aayyycaycc	tastagaga	cyaycayaay	ttatagaaga	6060
	cggagcagca	caagcattac	cuggacgaga	ccatcgagea	gattagegag	ciccicgaage	6120
	agaaaggaaat	aggegaggag	accelygaea	tastaasaat	gycatataac	ageaeegeg	6120
	acaaaccaat	acycyaycay	geegaaaata	calceacet	cilcaccete	togogogogo	6240
25	gegetteegge	ageecceaag	cacticgaca	ceaegaciga	ceggaagegg	tatacgagea	6240
	cyaayyayyt	gettgatgeg	acyclyatec	accayaycat	cacaggggette	catgaaacac	6360
	tagaagaaga	gagecagecg	ggeggagaea	agagaccacy	gyaccyccac	tattataat	6420
	tgggaggeeg	caaycyyyca	tagglagglad	cgilaacela	gaettgieea	cettetggat	6420
	lygecaaeee	aataaaatt	lyaaalaaaa atatattata	ggalgeacae	acaycyacac	gelaaleael	6400
30	acaacycygy	calcaaayit	grgrgrrarg	rgiaattact	agliatelga	ataaaayaya	6540
	aagagatCat	ccatatttct	tatectaaat	gaatgtcacg	tgtettata	attetteat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatCaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tegatagett	tgagagtaca	atgatgaacc	tagattaatc	aatgeeaaag	6/80
~-	tctgaaaaat	gcaccctcag	tetatgatee	agaaaatcaa	gattgettga	ggccctgttc	6840
35	ggttgttccg	gattagagee	ccggattaat	tectageegg	attacttctc	ταατττατατ	6900
	agattttgat	gagetggaat	gaateetgge	ttattccggt	acaaccgaac	aggeeetgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgetgteag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
40	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	ggggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
45	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
40	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gttccaacga	tgacaagacg	ttttagagct	agaaatagca	agttaaaata	aggctagtcc	7800
50	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	tttt		7844

<210> 114 <211> 7845 <212> DNA <213> Artificial

55

<220> <223> artificial

	<400> 114						
5							
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							
	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
----	-------------	--------------	-------------	--------------	--------------	----------------	------
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	ttttttttg	300
0	caaatagett	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	ottttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaaacta	540
	aggaaacatt	tttcttattt	cgagtagata	atoccaocct	ottaaacocc	otcoacoaot	600
10	ctaacogaca	ccaaccagcg	aaccagcagc	atcacatcaa	gccaagcgaa	gcagacggca	660
	coocatctct	atcactacct	ctogacccct	ctcgagagtt	ccactccacc	gttggacttg	720
	ctccactatc	ggcatccaga	aattgcgtgg	cagageggeg	gacgtgagcc	ggcacggcag	780
	acaacctcct	cctcctctca	coocaccooc	agctacgggg	gattcctttc	ccaccoctcc	840
	ttcgctttcc	cttcctcgcc	coccotaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcoto	ttattcagag	cocacacaca	cacaaccaga	tctccccaa	atccacccot	960
15	coocacctcc	gcttcaaggt	acaccactca	tcctccccc	ccccctctc	taccttctct	1020
	agateggegt	tccootccat	gcatggttag	ggcccggtag	ttctacttct	ottcatottt	1080
	gtgttagatc	catattata	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga		ttoctaactt	accagtatt	ctctttaaaa	aatcctggga	1200
	tggctctage	cattecacaa	acgggatcga	tttcatgatt	ttttttattt	cattacataa	1260
20	agtttggttt	accetttec	tttatttcaa	tatatgccgt	gcacttgttt	atcagatcat	1320
20	cttttcatoc	+++++++a+	cttaattata	atgatgtggt	ctaattaaac	getcgggtetteta	1380
	gatcggagta	gaattetett	traaactacc	taataattt	attaattta	ggttgtteta	1440
	tatataccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcoatctag	1500
	gataggtata	catattaata	coortttac	tgatgatgat	acagagatac	tttttattca	1560
	cttaattata	atgatgatgatg	ataattaaac	agtcattcat	tcattctaga	tcoragtaga	1620
25	atactatta	acyacycyyc	atatattat	taattttaa	actatatata	tatatata	1680
	atactgette	ttaccactt	agatagata	gaaatatoga	totagatag	atatacatat	1740
	tatatata	tttacgagete	catatacato	atogoatato	carcatotat	tatatatat	1800
	taacetteae	tacctatcta	ttatatataa	caagtatatt	ttataattat	tttattgete	1860
	atatacttog	atgatgggat	atacaacaaa	tatatata	ttttttacc	cctgccttca	1920
	tacactattt	attacttac	tactatttat	tttatatgagga	ctcaccctat	tatttaatat	1980
30	tacyclatte	actogectog	agaggatoca	tagcaccaaa	gaagaagggg	aaggtgatgatga	2040
	acaagaagta	ggttgatter	agaggattea	ggaccaacto	gaagaagege	aaggtgatgg	2100
	conscosts	taagatagaa	tcasacasact	tcaactcct	ccccaataca	geogradada	2160
	ggacgaata	aaacttoato	aggaggagg	tattaataa	cggcgagagac	gaccyccaca	2220
	ccaggetcaa	gaggaccocc	aggageeeeee	acactagged	caagaagagaga	atctactacc	2280
35	tacagagat	cttcaccaac	aggagacgge	acattaggeg	ctacttatta	caccocctoo	2340
55	aggaatgatt	cctagtaga	gagacggega	aggeggaega	gracccaate	ttccccaaca	2400
	tagtageage	actaacttta	taattataaa	tttatatatat	atataataat	tatgattaat	2400
	tagtagtagt	ataatatta	2222222222	ttoaaataa	acacaacaac	tatataggaa	2520
	ttgattttat	ataatatteta	adacactete		taagaatytag	aatatataaa	2580
	caaaacatoo	taatatacaa	agegegeaca	accacaacta	ccccacaatc	taccacctcc	2640
40	caaaacacgg	agtagagaga	acagacaac	acgagaagca	cccgacaacc	attagatag	2040
	ggaagaaact	gguggacage	acagacaagg	tastagaga	geteatetae	aggregate	2760
	cgcatatgat	caagetette	atagaatag	tagagagta	cyaccuyaac	ttggagagaga	2820
	eegaegtyga	caayetytte	atecayetey	aggagatagt	caaccaaccy	atatagaaat	2020
	accecataaa	cgecagegge	atagagaaat		aaagaagaag	cccccgaaac	2880
	caayaayyet	ggagaacett	ategegeage	rgeeaggega	aaayaayaac	ggeetetteg	2940
45	geaacettat	rgegeteage	eteggeetga	egeegaaett	caaaccaaac	regaceteg	3000
	taggaggacgc	caayeteeag	terrange	tattactacya	cyacyacete	gacaacetee	2120
	tggcccagat	aggagaccag	tacgeggaee	tetteetege	cgccaagaac	ctctccgacg	2120
	ctatectget	cagegacate	cttegggtea	acacegaaat	taccaaggea	cegetgteeg	3180
	taggatgat		yacyagcadd	accaggacet	cacyctgete	aayycactcg	3240
50	teegeeagea	geteecegag	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
50	acgegggata	tategaegge	ygtgccagdd	aggaagagtt	ctacaagttC	accaaaccaa	3360
	Leetggagaa	gatggacggc	accgaggagt	tgetggteaa	geteaacagg	gaggaCCTCC	34∠0
	ccaggaagca	gaggacette	gacaacggct	ccatcccgca	Cagatecac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tetaccegtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatettgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
55	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	Catcacaccc	tggaactttg	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780

ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt
tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg
tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg
agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca
agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca
tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct
acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt
ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca
tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc
accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg
gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg
accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga
tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca
acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa
ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca
tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga
agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca
acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca
agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc
gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct
actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca
agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg
atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg

aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc

tcatcgcgag gaagaaggat tggggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt

ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga

tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc

cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg

ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg

tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc

gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg

acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg

gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac

gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc

tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat

tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga

aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat

gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg

ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag

totgaaaaat gcaccotcag totatgatec agaaaatcaa gattgottga ggccotgtto

ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat

agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa

ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag

gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt
ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt
aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag
ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat
cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg
ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca
gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta
ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg
acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact
	-				-

5	tcgtcacaga agcccaaaca caccttgact gcacaataat cgttatcaac	gagggccata gcagtccgta aatcacaaga ggtcctcctt ttgaaaaagt	agaaacatgg ggtggagcaa gtggagcgta gttttagagc ggcaccgagt	cccacggccc agcgctgggt ccttataaac tagaaatagc cggtgctttt	aatacgaagc aatacgcaaa cgagccgcaa aagttaaaat ttttt	accgcgacga cgttttgtcc gcaccgaatt aaggctagtc	7620 7680 7740 7800 7845
10	<210> 115 <211> 7844 <212> DNA <213> Artificial						
	<220> <223> artificial						
15	<400> 115						
20							
25							
30							
35							
40							
45							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tqtqttctcc	ttttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	qtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaaq	aaaactaaaa	ctctattta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
10	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
15	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	tttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
25	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
30	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
45	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880

caagaagget ggagaacett ategegeagt tgeeaggega aaagaagaae ggeetetteg 2940 3000 gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg 3060 cggaggacgc caagetecag eteteaaagg acacetaega egaegaeete gaeaacetee tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg 3120 ctatectget cagegacate ettegggtea acaeegaaat taecaaggea cegetgteeg 3180 3240 ccaqcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct 3300 3360 acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctqqaqaa qatqqacqqc accqaqqaqt tqctqqtcaa qctcaacaqq qaqqacctcc 3420 3480 tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac 3540 tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca 3600 actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg 3660 aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca 3780 3840 ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg 3900 tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg 3960 agateteggg cgtggaggat cggtteaacg ceteactegg caegtateae gaeeteetea 4020 4080 agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct 4140 4200 acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaagget gtcccgcaag ctcattaatg gcatcaggga caagcagage ggcaagacca 4260 tectggaett ceteaagtee gaegggtteg ceaacegeaa etteatgeag eteatteaeg 4320 4380 acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact 4440 ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata 4500 tcqtcataga gatgqccagq gagaaccaga ccacccaaaa agqqcagaag aactcqcqcq 4560 4620 agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc 4680 accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg 4740 gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc 4800 4860 ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga 4920 tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca 4980 acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca 5040 tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga 5100 agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca 5160 acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca 5220 agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc 5280 5340 gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca 5400 agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg 5460 5520 atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg 5580 aggtecagae gggegggtte ageaaggagt ceatecteee gaagegeaae teegaeaage

tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg

togcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt

ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga

tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc

cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg

agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg

ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg

tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc

gggtgateet egeegaegeg aacetggaea aggtgetgte ggeatataae aageaeegeg acaaaeeaat aegegageag geegaaaata teateeaeet etteaeeete aceaaeeteg

gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac

gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc

tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat

tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga

aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat

gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

5640

5700

5760 5820

5880

5940 6000

6060

6120

6180

6240

6300 6360

6420

6480

6540

6600

6660

#### EP 3 191 595 B1

5

10

15

20

25

30

35

40

45

50

5	aatatcaatt ctgcaggaat tctgaaaaat ggttgttccg agattttgat ggataccagt gtagtgagat ggccatgggc	gggttagcaa tcgatagctt gcaccctcag gattagagcc gagctggaat aatcgctgag aaccggcatc gcatgtcctg	aacaaatcta tgagagtaca tctatgatcc ccggattaat gaatcctggc ctaaattggc atggtgccag gccaactttg	gtctaggtgt atgatgaacc agaaaatcaa tcctagccgg ttattccggt atgctgtcag tttgatggca tatgatatat	gttttgcgaa tagattaatc gattgcttga attacttctc acaaccgaac agtgtcagta ccattagggt ggcagggtga	tgcggccggg aatgccaaag ggccctgttc taatttatat aggccctgaa ttgcagcaag tagagatggt ataggaaagt	6720 6780 6840 6900 6960 7020 7080 7140
10	aaaattgtat ttttgagcga cgaatccttg ctctaacaca gttgtaaaag	tgtaaaaagg gggggcatca acataatgat cgatgatgat ctaaaatgct	gatttcttct aagatctggc cccgcttaaa aagtcgtaaa attcgaattt	gtttgttagc tgtgtttcca taagcaacct atagtggtgt ctactagcag	gcatgtacaa gctgtttttg cgcttgtata ccaaagaatt taagtcgtgt	ggaatgcaag ttagccccat gttccttgtg tccaggccca ttagaaatta	7200 7260 7320 7380 7440 7500
15	acggagaata tcgtcacaga agcccaaaca caccttgact gatgatgaca gttatcaact	tttgcaaaaa gagggccata gcagtccgta aatcacaaga atgaccacag tgaaaaagtg	agtaaaagag agaaacatgg ggtggagcaa gtggagcgta ttttagagct gcaccgagtc	acagtaggae aaagtcatag cccacggccc agcgctgggt ccttataaac agaaatagca ggtgcttttt	cggcgtatgt aatacgaagc aatacgcaaa cgagccgcaa agttaaaata tttt	gccaaaaact accgcgacga cgttttgtcc gcaccgaatt aggctagtcc	7560 7620 7680 7740 7800 7844
20	-						
	<210> 116						
	<211> 7845 <2125 DNA						
	<213> Artificial						
25							
	<220>						
	<223> artificial						
	<100> 116						
30	<4002 110						
35							
40							
45							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
5	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
20	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
30	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980

tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggetcaa gaggaccgec aggagacggt acactaggeg caagaacagg atctgetace tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat taqtaqtaat ataatatttc aaatattttt ttcaaaataa aaqaatqtaq tatataqcaa ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga ctcgaaat rectetteg cgacctcg caacctcc ctccgacg gctgtccg ggcactcg aaacggct caaaccaa ggacctcc gggcgaac ccgggaga tcgcggca gaactttg caacttcg

accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat
caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg
gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg
cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc
tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg
ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg
ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg
tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct
acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa
tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc
tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac
tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga
agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca
actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg
aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg
ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca
ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt
tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg
tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg
agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca
agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca
tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct
acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt
ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca
tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc

### EP 3 191 595 B1

LEELYYAELE	CCCCaagecc	yacyyyttey	ccaaccycaa	CLLCalycay	CLEALLEACY	
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	
accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	
gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	
accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	
tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	
acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	
ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	
tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	
agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	
acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	
agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	
gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	
actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	
agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	
atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	
aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	
tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	
tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	
ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	

	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
5	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
10	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
15	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
20	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
25	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
~~	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
30	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gtgccagagg	cagcatcgac	gttttagagc	tagaaatagc	aagttaaaat	aaggctagtc	7800
	cgttatcaac	ttgaaaaagt	ggcaccgagt	cggtgctttt	tttt		7845

- ³⁵ <210> 117 <211> 7845 <212> DNA <213> Artificial
- 40 <220> <223> artificial

<400> 117

45

50

5	gtgcagcgtg taaaaaatta atacatatat gtgttttaga ttgacaacag caaatagctt gggttaatgg	acccggtcgt ccacatattt ttaaacttta gaatcatata gactctacag cacctatata tttttataga	gcccctctct tttttgtcac ctctacgaat aatgaacagt ttttatcttt atacttcatc ctaattttt	agagataatg acttgtttga aatataatct tagacatggt ttagtgtgca cattttatta tagtacatct	agcattgcat agtgcagttt atagtactac ctaaaggaca tgtgttctcc gtacatccat attttattct	gtctaagtta atctatcttt aataatatca attgagtatt tttttttttg ttagggttta atttagcct	60 120 240 300 360 420
10	ctaaattaag tagaataaaa aggaaacatt ctaacggaca cggcatctct ctccccttct	aaaactaaaa taaagtgact tttcttgttt ccaaccagcg gtcgctgcct	ctctattta aaaaattaaa cgagtagata aaccagcagc ctggacccct aattacctag	gttttttat caaataccct atgccagcct gtcgcgtcgg ctcgagagtt	ttaataattt ttaagaaatt gttaaacgcc gccaagcgaa ccgctccacc	agatataaaa aaaaaaacta gtcgacgagt gcagacggca gttggacttg gcacacggcag	480 540 600 660 720 780
15	gcggcctcct ttcgctttcc caacctcgtg cggcacctcc agatcggcgt	cctcctctca cttcctcgcc ttgttcggag gcttcaaggt tccggtccat	cggcaccggc cgccgtaata cgcacacaca acgccgctcg gcatggttag	agctacgggg aatagacacc cacaaccaga tcctcccccc ggcccggtag	gattcctttc ccctccacac tctcccccaa cccccctctc ttctacttct	ccaccgctcc cctctttccc atccacccgt taccttctct gttcatgttt	840 900 960 1020 1080
20							
25							
30							
35							
40							
45							
50							
55							

	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	aatttaattt	accetttec	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
5	cttttcatoc	tttttttat	cttaattata	atgatgtggt	ctaattaaac	ggtcgttcta	1380
5	gatcogagta	gaattetott	tcaaactacc	tootogattt	attaatttto	gatctgtatg	1440
	tototoccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcoatctag	1500
	gataggtata	catottoato	coortttac	tgatgcatat	acagagatac	ttttattca	1560
	cttaattata	atgatgtogdog	ataattaaac	ggtcgttcat	tcattctaga	tragagtaga	1620
	atactottto	aaactaccto	atatattat	taattttaa	actatatata	tatatata	1680
10	atattata	ttaggagttt	agatacta	gaaatatgga	totacatag	atatacatat	1740
	tastatagat	tttacgageee	aayatyyaty	atagaatata	aggatatat	tastataata	1900
	taagttgggt	tactyaty	ttatacalg	acygeataty	ttattattat	tttatgete	1960
	Laacellyag	lacclatcla	llalaalaaa		LLALAALLAL		1000
	atatacttgg	atgatggcat	atgeageage	tatatgtgga	ttttttage	cctgccttca	1920
	tacgetattt	attigettigg	tactgtttet	trigtegatg	ctcaccctgt	tgtttggtgt	1980
15	tacttctgca	ggtcgactct	agaggateea	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
20	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
25	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagetgtte	atccagctcg	tgcagacgta	caatcaactq	ttcgaggaga	2820
	accccataaa	cactageage	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaagget	ggagaacctt	atcgcgcagt	taccaaacaa	aaagaagaac	aacctcttca	2940
	gcaaccttat	tococtcaoc	ctcggcctga	coccoaactt	caaatcaaac	ttcgacctcg	3000
	cogaggacgc	caageteeag	ctctcaaagg	acacctacoa	cgacgacctc	gacaacctcc	3060
30	tooccagat	aggagaggag		tettectege	cgccaagaac	ctctccgacg	3120
	ctatectet		cttcgggtca	acaccgaaat		ccactat.cca	3180
	ccagcatgat	taaacoctac	gacgaggaca	atcaggacct	cacgetgete	aaggcactcg	3240
	teegecagea	geteccegag	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
	acocococata	tatcgacggg	aataccaacc	aggaaggagtt	ctacaadttc	atcaaaccaa	3360
35	tootooaaaa	gatggacggc	accoaccage	tactactas	actcaacaaa	gaggagetcc	3420
55	taaggaaggaa	gacggacggc	accyagyagt	agatagagaa	taggatagag	gaggacceec	3420
	traggaagea	gaggaccece	gacaacgyct	tatagagett	actacacac	aaggggggaac	3540
	cycacyccac	cetgeggege	ttaggaggact	cetaceeget	cecgaaggat	aaccyyyaya	3540
	agalogagaa	galeligaeg	cleegealee	catactacgt	gggeeegetg	gelegeggea	3600
	actoccygtt	cgcctggatg	acceggaage	cggaggagac	catcacaccc	tggaactttg	2220
40	aggaggtggt	cgataagggc	getagegete	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	geccaatgaa	aaagteetee	ccaagcactc	getgetetae	gagtacttca	3780
	ccgtgtacaa	cgageteace	aaggtcaaat	acgtcaccga	gggcatgcgg	aageeggegt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
	agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
45	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
50	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaaq	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcogatoaa	acggatcgag	gagggcatta	aagagetegg	gtcccagatc	ctgaaggagg	4620
	accccotooa	aaatacccao	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtogac	caggagetgg	acattaatco	gctatcogac	tacgacgtcg	4740
55	accacatcot	gccgcagtcg	ttcctcaagg	acgatagcat	cqacaacaaq	gtgctcaccc	4800
	ggtcggataa	aaatcoogooc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860

	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
5	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
10	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
15	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcqccctcc	cqaqcaaata	cqtcaatttc	ctqtacctcq	5940
	ctagccacta	tgaaaagctc	aaqqqcaqcc	cqqaqqacaa	cqaqcaqaaq	cagetetteg	6000
	tggagcagca	caaqcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaage	6060
20	gggtgatcct	cqccqacqcq	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcq	6180
	gcgctccggc	agcetteaag	tacttcgaca	ccacgattga	ccqqaaqcqq	tacacgagca	6240
	cqaaqqaqqt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
25	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
20	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
30	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagetggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
35	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	qqqqqcatca	aagatctggc	tqtqtttcca	gctgtttttg	ttagccccat	7260
	cqaatcettq	acataatgat	cccqcttaaa	taagcaacct	cqcttqtata	attecttata	7320
	ctctaacaca	cgatgatgat	aaqtcqtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
40	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	tacctttttt	ccttctatqt	acagtaggac	acagtotcag	caccacatta	7500
	acqqaqaata	tttocaaaaa	agtaaaagag	aaagtcatag	caacatatat	occaaaaact	7560
	tcqtcacaga	gagggccata	agaaacatoo	cccacqqccc	aatacqaaqc	accgcgacga	7620
	ageccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacocaaa	catttatca	7680
45	caccttoact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	actettaaac	tcaagagagt	gttttagagc	tagaaatagc	aagttaaaat	aaggetagte	7800
	cottatcaac	ttgaaaaagt	ggcaccgagt	cagtactttt	ttttt		7845
	J			55-5			

<210> 118 50 <211> 7846

<212> DNA

<213> Artificial

<220>

55 <223> artificial

<400> 118

	gtgcagcgtg taaaaatta atacatatat	acccggtcgt ccacatattt	gcccctctct ttttgtcac	agagataatg acttgtttga aatataatct	agcattgcat agtgcagttt atagtactac	gtctaagtta atctatcttt aataatatca	60 120 180
5	acacacacaca	councerta	cectacyaat	autacutoc	atageaceac	autattatta	100
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							

	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
5	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
10	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
15	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
10	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
20	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
25	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
25	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
30	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
<b></b>	togtogaoga	ggtaagtttc	tgettetace	tttgatatat	atataataat	tatcattaat	2460
35	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgetttet	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	geteatetae	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
40	ccgacgtgga	caagetgtte	atceageteg	tgcagacgta	caatcaactg	ttcgaggaga	2020
	accecataaa	egetagegge	gtggacgeea	aggecateet	cccggccagg	ctctcgaaat	2000
	caagaagget	ggagaacett	ategegeagt	rgeeaggega	aaayaayaac	ggeetetteg	2940
	geaacettat	rgegeteage	eteggeetga	egeegaaett	caaatcaaac	regardeteg	3060
	tagaggacge	aggagagag	taggggaag	tattaataga	agaaaaaaaa	gacaacetee	3120
	atataataat	aggagagata	attaggata	agaggaaat	tagaaagaaa	agatataga	3120
45	ccaccetget	tagegacate	gaggaggagg	ataaccyaaat	caccaaggea	aagggaagtog	3240
	taggaagaa	actogogag	acyaycacc	accaggacet	cacyclyclc	aaggeacteg	3300
	acacagata	tatcgacggg	adtaccaagy	agazagagatt	ctacaacttc	atcaaacgyct	3360
	toctogagaa	gatggacggc	acconact	tactactas	actcaacag	accaacctaa	3420
	tcaggaaggaa	gacggacgge	gacaacgoot	ccatccccca	tcagatccag	ctagacaaa	3480
50	tacataccat	catacaacaa	caggaggaget	totaccost+	cctgaaggat	aaccooraca	3540
	agategagaa	gatettgacg	ttccccatcc	catactacot	agacccacta	actegegggaga	3600
	actcccoatt	cacctagata	accoggaagt	cagaggagag	catcacaccc	togaacttto	3660
	aggaggto	coataanoor	actagoacte	agagetteat	cgagcgcatg	accaacttor	3720
	ataaaaacct	acceatora	aaagtectee	ccaaggagte	actactetac	gagtacttca	3780
	ccatatacaa	cgagetcacc	aaggtcaaat	acotcaccoa	gggggatggg	aagccggcgt	3840
55	tcctgagcog	cgagcagaag	aaggcgatag	togacctcct	cttcaagacc	aacaggaagg	3900
	tgaccqtqaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccqtqq	3960

agateteggg egtggaggat eggtteaaeg eeteaetegg eaegtateae gaeeteetea agateattaa agacaaggae tteetegaea aegaggagaa egaggaeate etegaggaea tegteeteae eetgaeeetg ttegaggaee gegaaatgat egaggagagg etgaagaeet

	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
5	ggggaagggt	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
5	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccocaa	cttcatocao	ctcattcacq	4320
	acgactcoct	cacottcaao	gaagacatcc	agaaggcaca	agtgaggggg	cagggtgact	4380
	ccctccacga	acacategee	aacctoocco	actcaccaac	cattaaaaaq	ggcatcctgc	4440
	agacggtcaa				ccggcacaag	cccgaaaata	4500
	tcotcataga	gatageegee	gagaaccaga	ccacccaaaa	agggcacaaag	aactcgcgcg	4560
10	agcggatgaa	acquateraaq	gagaacatta	aagaget.cog	atcccagatc	ctgaaggagg	4620
	ageggatgaa	acggaccgag	gagggcacta	aagagetegg	getetagate	ctgaaggage	4680
	accoccegegga	atacatacce	caggagget gg	acattaatco	actatograd	tacgacgtcg	4000
	agaaataat	gcacgcgggac	ttaggageegg	acattaaccy	gecaceggae	ataataaaaa	4900
	accacatoge	geegeageeg	angegagg	acyataycat	cyacaacaay	gtgeteacee	4800
	tannata	ataccyyyyc	aayaycyaca	acgugeeeag	cyayyayyuu	gcgaagaaga	4000
15		cryycyccay	creercaacy	cyaaactyat	tacccagege	aagttegaca	4920
	accugacgaa	ggeggaaege	gguggeuga	gegaaetega	Laaggeggge	LLCALAAAAA	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtege	ccagateetg	gacageegea	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgateeggga	ggtgaaggtg	atcacgetga	5100
	agtecaaget	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
	acaactacca	ccacgcccac	gacgcctacc	tgaatgeggt	ggtcgggacc	gccctgatca	5220
20	agaagtaccc	gaagetggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
25	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
25	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
30	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
35	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
40	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tacaaccaga	6720
	ctgcaggaat	tcgatagett	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgettga	aaccctattc	6840
	aattattcca	gattagagee	ccogattaat	tcctagccgg	attacttctc	taatttatat	6900
45	agattttgat	gagetggaat	gaatectooc	ttattccoot	acaaccgaac	aggeetgaa	6960
45	ggataccagt	aatcoctoao	ctaaattooc	atgetgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccoocatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	gaccatagac	acatatecta	accaacttta	tatgatatat	agcaggatga	ataggaaagt	7140
	aaaattotat	tataaaaaaa	gatttcttct	attattaac	ggougggogu	ggaaage	7200
	ttttgaggga	agagggadate	aagatetooc	tatatttaa	actatttta	ttagecceat	7260
50	coastcotto	acataataat	cccccttaaa	taaggaagget	cacttatete	atteettata	7320
	atataaaaaa	coatostost	aantontaaa	atantantat	ccaaacaa++	tacagagaga	7320
	attatasasa	ctapatrat	attomatt	atagtygtyt	taantantat	ttagaaatta	7300
	++++++		actigate	agagtaggag	agatatasa	agaggggtta	7330
	agggaagaata		antesson	acaytayyac	acaytyteag		7500
	taataaaaa	agaaaata	aycaadaydg	adayccaldg	astagessee	agggggggggg	7500
55	aggggggggg	gayyyuuala	ayaaacatyg		aatacgaage	accycyacya	7620
	aycccaaada	ycaytecgta	yyuyyagcaa	aycyctgggt	aatacgcaaa		1000
	CACCEEGACE	aalcacaaga	ylyyayCgta	GULLALAAAC	cyayccycaa	ycaccydatt	//40

gagacatcct	cattctagag	cgttttagag	ctagaaatag	caagttaaaa	taaggctagt	7800
ccgttatcaa	cttgaaaaag	tggcaccgag	tcggtgcttt	ttttt		7846

- 5 <210> 119 <211> 7847 <212> DNA <213> Artificial
- 10 <220> <223> artificial

<400> 119

15

- 20
- 20
- 25
- 25
- 30

- 35
- 40
- 45

- 50

- 55

	atacaacata	accogategat	acceptetet	agagataatg	aggattggat	atctaaatta	60
	taaaaatta	ccacatattt	ttttatcac	acttotttoa	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacqaat	aatataatct	atactactac	aataatatca	180
	atatttaaa	gaatgatata	aataaaaaat	tagagatagt	ctageaceac	attaaatatt	240
5	ttaacaacaa	gaatetacaa	ttttatcttt	ttagacatgge	tatattata	++++++++	300
•	cigacaacay	gaccetatata	atacttoato	dattttatta	atagatagat	ttaggettta	360
	caaatayeee	tttttatata	atacttcatt	tacticatia	gtacatecat	atttaggguuua	420
	gygilaalgg	cicicalaya		aglacatet		acctageet	420
	togootoooo	taaactaaaa	ciciallila	guullulat	ttaacaactt	ayalalaaaa	400
	Lagaalaaaa		addallada	caaalaccel	cttagaaall	adadadCLa	540
10	aygaaacall		cgaglagala	algecageet	gllaadgee	glegaegagt	600
	ctaacggaca	ccaaccageg	aaccagcagc	gtegegtegg	gecaagegaa	gcagacggca	550
	cggcatctct	gtegetgeet	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgegtgg	cggagcggca	gacgtgagee	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gatteette	ccaccgctcc	840
15	TTEGETTTEE	CTTCCTCGCC	cgccgtaata	aatagacacc	CCCTCCaCaC	CCTCTTTCCC	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctcccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
30	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
10	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
40	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaago	cggacctccq	gctcatctac	cttgccctca	2700
	cgcatatgat	caagttcccc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctottc	atccagctcg	tgcagacgta	caatcaacto	ttcgaggaga	2820
45	accccataaa	cactaacaac	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaagget	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttca	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cqccqaactt	caaatcaaac	ttcgacctcg	3000
	cqqaqqacqc	caagetecag	ctctcaaagg	acacctacoa	cgacgacctc	qacaacctcc	3060
	JJ JJ== 30	J J			J J		

tggcccagat aggagaccag tacgcggacc tettectege egecaagaac eteteegacg etateetget cagegacate ettegggtea acacegaaat taceaaggea eegetgteeg ecageatgat taaaegetae gaegageace ateaggaeet eacgetgete aaggeaeteg

	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg	3240
	tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct	3300
5	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
	actcccqqtt	cgcctggatg	acccggaagt	cqqaqqaqac	catcacaccc	tggaactttg	3660
10	aggaggtggt	cgataagggc	gctagcgctc	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaaqcactc	gctgctctac	gagtacttca	3780
	ccgtgtacaa	cgagetcacc	aaggtcaaat	acqtcaccqa	gagcatgcgg	aagccggcgt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	togacctcct	cttcaagacc	aacaqqaaqq	3900
	tgaccotgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgette	gactccgtgg	3960
	agatetegog	cotogaggat	cogttcaacg	cctcactcoo	cacotatcac	gacctcctca	4020
15	agatcattaa	agacaaggac	ttcctcgaca	acqaqqaqaa		ct.cgaggaga	4080
	tcotcctcac	cctgaccctg	ttcgaggacc	acqaaatgat	cgaggacace	ctgaagacct	4140
	acqcqcacct	attraccac	aaggtcatga	aacaactcaa	aaaacaccac	tacactoott	4200
	acgegeaeee	atcccacaaa	ctcattaato	gcatcagga	caagegeege	accaeceggee	4260
	toctocactt	cctcaactcc	acconting	ccaaccoccaa	cttcatgcage	ctcattcacc	4320
20	accast cost	cacettcaag	gaegggtteg	agaagggagaga	agtaaggag	cagggtgagt	4380
20	acgaeteget	acgutuaag	gaagacatcc	agaaggcaca	ggtgagtggg	caggycgaec	4300
	agaggetgaa	acacategee	aacetggeeg	gettegetgge	cattaaaaay	ggcattettye	4500
	tagtattagt	ggleglegae	gagelegiga	aggigalggg	agggaagaag	ceeyaaaata	4500
	cogccataga	gauggeeagg	gagaaccaga	ccacccaaaa	agggcagaag	aactegegeg	4500
	ageggatgaa	acggategag	gagggcalla	aagagetegg	greecagare	clyaayyayc	4620
25	acceegtgga	aaatacccag	ctccagaatg	aaaageteta	cetetaetae	ctgcagaacg	4080
20	geegegaeat	gtacgtggac	caggagetgg	acattaatcg	gctatcggac	tacgacgtcg	4/40
	accacategt	gccgcagtcg	ttcctcaagg	acgatageat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	CTCCTCaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
30	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagetggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
35	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
40	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
40	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
45	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agcetteaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctq	ggcggagaca	agagaccacq	ggaccgccac	gatggcgagc	6360
50	tgggaggccq	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatqta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attetteat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
55	ctgcaggaat	tcgatagett	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattocttoa	ggccctattc	6840
			2	-			

5 10 15	ggttgttccg agattttgat ggataccagt gtagtgagat ggccatgggc aaaattgtat ttttgagcga cgaatccttg ctctaacaca gttgtaaaag tttttttata acggagaata tcgtcacaga agcccaaaca caccttgact gcctcagtca	gattagagcc gagctggaat aaccggcatc gcatgtcctg tgtaaaaagg gggggcatca acataatgat cgatgatgat taccttttt tttgcaaaaa gagggccata gcagtccgta aatcacaaga tagttccact	ccggattaat gaatcctggc ctaaattggc atggtgccag gccaactttg gattcttct aagatctggc cccgcttaaa aagtcgtaaa attcgaattt ccttctatgt agtaaaagag agaaacatgg ggtggagcaa gtggagcgta ctgttttaga	tcctagccgg ttattccggt atgctgtcag tttgatggca tatgatatat gtttgttagc tgtgtttcca taagcaacct atagtggtgt ctactagcag acagtaggac aaagtcatag cccacggccc agcgctgggt ccttataaac gctagaaata	attacttctc acaaccgaac agtgtcagta ccattagggt ggcagggtga gcatgtacaa gctgtttttg cgcttgtata ccaaagaatt taagtcgtgt acagtgtcag cggcgtatgt aatacgaaac caaagaact aatacgcaaa cgagccgcaa gcaagttaaa	taatttatat aggccctgaa ttgcagcaag tagagatggt ataggaaagt ggaatgcaag ttagccccat gttccttgtg tccaggccca ttagaaatta cgccgcgttg gccaaaaact accgcgacga cgttttgtcc gcaccgaatt ataaggctag	6900 6960 7020 7140 7200 7260 7320 7380 7440 7500 7560 7620 7680 7740 7800 7847
20	<210> 120 <211> 7845 <212> DNA <213> Artificial	acttgaaaaa	gtggcaccga	greggrgert	TTTTTT		/84/
25	<220> <223> artificial <400> 120						
30							
35							
40							
45							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctattta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
15	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctcccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
20	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
30	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160

gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggetcaa gaggaccgec aggagacggt acactaggeg caagaacagg atetgetace tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tcqtcqacqa qqtaaqtttc tqcttctacc tttqatatat atataataat tatcattaat taqtaqtaat ataatatttc aaatattttt ttcaaaataa aaqaatqtaq tatataqcaa ttgettttet gtagtttata agtgtgtata ttttaattta taacttttet aatatatgae

	<i>J</i>				
caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc
ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg
cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact
ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga
accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat
caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg
gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg
cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc
tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg
ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg
ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg
tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct
acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa
tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc
tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac
tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga
agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca
actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg
aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg
ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca
ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt
tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg
tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg
agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca
agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca
tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct
acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt
ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca
tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc
accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg
gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg
accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga
tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca

acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa

ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca

tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca

acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca

agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc

gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct

actegaacat catgaactte tteaagaceg agateaceet egegaacgge gagateegea agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg

atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc

tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg

tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga

tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc

cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg

agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg

	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
5	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
5	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
10	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
15	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
20	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
20	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
25	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
30	gagcttgtta	tcagatgcag	gttttagagc	tagaaatagc	aagttaaaat	aaggctagtc	7800
	cgttatcaac	ttgaaaaagt	ggcaccgagt	cggtgctttt	tttt		7845

<210>	121
<211>	7844
<212>	DNA

#### 35 <212> DNA <213> Artificial

<220>

<223> artificial

40

<400> 121

45

50

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
15	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	tttttgttt	cgttgcatag	1260

	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tototocat	acatattcat	agttacgaat	tgaagatgat	qqatqqaaat	atcgatctag	1500
5	gataggtata	catottoato	coogttttac	tgatgcatat	acagagatgc	tttttattca	1560
5	cttaattata	atgatgtggt	ataattaaac	ggtcgttcat	tcottctaga	tcogagtaga	1620
	atactotttc	aaactaccto	ototatttat	taattttooa	actotatoto	tototcatac	1680
	atetteatag	ttacgagttt		gaaatatoga	tetaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacato	atoocatato	cagcatctat	tcatatoctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatatt	ttataattat	tttgatgttg	1860
10	atatacttog	atgatgggat	atacaacaaa	tatatata	tttttta	actgactta	1920
	taggetatt	atyatyytat	tacgcagcagc	tttatgtgga	atasaatat	tatttaatat	1920
	tacyclatti	actigotty	accyllet	tagaagaagaa	anagagaga	agetester	2040
	Lacticigea	gglegaelel	agaggateea	rggcaccgaa	gaagaagege	aaggigalgg	2040
	acaagaagta	tageategge	tereserve	gcaccaacce	ggugggeugg	geoglealea	2100
	cggacgaata	taaggteeeg	tegaagaagt	teaaggteet	cggcaataca	gacegeeaca	2160
15	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggeteaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
20	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
25	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cqqaqqacqc	caagetecag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	togcccagat	aggagaccag	tacgcggacc	tcttcctcqc	coccaagaac	ctctccgacg	3120
	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccactatcca	3180
~~	ccagcatgat	taaacoctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
30	tccgccagca	geteccegag	aagtacaagg	agatettett	coaccaatca	aaaaacggct	3300
	acocoooata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tectogagaa	gatggacgge	accoaccaget	tactactcaa	actcaacago	gaggacctcc	3420
		gaggacette	gacaacggct	ccatccccca	tcagatccag	ctogocoaac	3480
	tacataccat	cctacacac	caggagagagagagagagagagagagagagagagagaga	tctacccgtt	cctgaaggat	aaccooraga	3540
35	agategadaa	gatettgacg	ttccccatcc	catactacot	agaccagta	actogogogo	3600
55	agaccyagaa	gacetegatg	aggggaagt	cacaccacge	gggcccgccg	tagaaattta	3660
	acceedget	agataagaa	acceggaage	agaggagagac	agagggata	aggaacttog	3720
	aggagguggu	cyacaayyyc	geragegere	agagetteat	cyaycycary	accaacticg	2700
	alaadaCCL	geeealgaa	aaagteetee	ccaagcacte	gelgelelae	gaglacilca	2040
	ccgtgtacaa	cgageteace	aaggtCaaat	acgreacega	gggcatgegg	aageeggegt	3840
40	teetgagegg	cgagcagaag	aaggegatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgette	gactccgtgg	3960
	agateteggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
45	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
50	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
<i>EE</i>	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
00	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040

	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
5	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
5	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
10	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
15	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
20	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
20	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
25	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
30	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
25	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
55	ttttgagcga	ggggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	tacctttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
40	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gagctatacc	tagtgataag	ttttagagct	agaaatagca	agttaaaata	aggctagtcc	7800
45	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	tttt		7844

50

<210> 122 <211> 7849 <212> DNA <213> Artificial

> <220> <223> artificial

55 <400> 122

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360

	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
5	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
0	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccactatc	ggcatccaga	aattocotoo	cadaacaaca	gacgtgagcc	ggcacggcag	780
	acaacctcct	cctcctctca	caacaccaac	agetacgggg	gattcctttc	ccaccoctcc	840
	ttcgctttcc	cttectegee	coccotaata	aatagacacc	ccctccacac	cctctttccc	900
	caacetegtg	ttattcagaa	cgcacacaca	cacaaccaga	tetecceaa	atccaccot	960
10	concacctcc	acttcaagat	acaccactca	tecteccec	ccccctctc	taccttctct	1020
	agatagagat	taggetaggt	acgeegeteg	agaaaataa	ttataattat	attatatt	1020
	agattggtgt	agtattata	ttagatagat	ggtccggtag	ttaataaaaa	getcacycct	1140
	gtgttagatt	agasttatas	ttagatcogt	geogetageg	atatttaaaa	atycyacce	1200
	gracyrcaya	cacyllelga		geeagigili		aatteetyyya	1200
	resttant	cgllccgcag	acgggatcga	teteterer		cyllycalag	1200
15	ggtttggttt	gecetttee	tttatttcaa	tatatgeegt	geacttgttt	gregggreat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
20	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
25	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaaqaaqta	cagcatcggc	ctcgacatcg	gcaccaactc	aataaactaa	gccgtcatca	2100
	cqqacqaata	taaggtcccg	tcgaagaagt	tcaaqqtcct	cggcaataca	gaccgccaca	2160
	gcatcaagaa	aaacttgatc	aacaccctcc	tottcoatag	coocoacacc	acaaaaacaa	2220
	ccaggetcaa	gaggaccocc	aggagacggt	acactaggeg	caagaacagg	atctoctacc	2280
	tocaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccocctoo	2340
30	aggaatcatt	cctggtggag	gagaagagaga	agcatgagcg	gcacccaatc	ttoggcaaca	2400
	tcatcaacaa	gataagtttc	tacttetace	tttgatatat	atataataat	tatcattaat	2460
	tagtagtagt	ataatatta	aaatattttt	ttcaaaataa	aggaatotag	tatataggaa	2520
	ttagtagtaat	ataatattata	adatatatata	++++==+++=	taagaatgtag	astatatageaa	2520
	casascator	taatataaaa	agegegetaca	accascasata	accorected	tacatacyac	2640
25	caaaacatyy	rgatgtgtag	grggeeraee	acyayaayta	ceeyacaace	attagentee	2040
35	ggaagaaact	gguggacage	acayacaagy	testeres	geleaterae	errgeeereg	2700
	cgcatatgat	caagtteege	ggecaettee	teategaggg	cgacetgaac	ccggacaact	2760
	ccgacgtgga	caagetgtte	atccageteg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggecateet	ctcggccagg	CTCTCGaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
40	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg	3240
	tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct	3300
45	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatettgacg	ttccgcatcc	catactacqt	gggcccgctg	gctcgcggca	3600
	actcccqqtt	cacctagata	accoggaagt	cqqaqqaqac	catcacaccc	tggaactttg	3660
50	aggaggtggt	cgataagggg	gctagcgctc	agagetteat	cgagcgcatg	accaacttco	3720
	ataaaaacct	gcccaatgaa	aaaotcotco	ccaagcacto	gctgctctac	gagtacttca	3780
	ccatatacaa	cgagetcace	aaggtcaaat	acotcaccoa	gaggatacag	aageegeet	3840
	tectgagege	cgagcagaaa	aaggegatag	tagacetect	cttcaagacg	aacaqqaaqq	3900
	taaccataaa	acasttassa	aagaactect		agagtactta	actocata	3960
	agatetege	cataraaaat	conttoppor	cotcactcoc	cacotatora	gacctcotca	4020
55	agatostes	agagaaggat	ttaataaaaa	accaccedage	caaggaagata	atagagaga	4020
	taataataaa	agtagggdt	ttagaggaga	acyayyayaa	agaggagag	atassasa	4000
	LEYLCCECAC	Guigaddotg	LLCyayyacc	yoyaaacyat	cyayyayayg	Clyaayacct	4140

acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt 4200 ggggaagget gtcccgcaag ctcattaatg gcatcaggga caagcagage ggcaagacca 4260 4320 tectggaett ceteaagtee gaegggtteg ceaacegeaa etteatgeag eteatteaeg 4380 acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge 4440 agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata 4500 tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg 4560 agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc 4620 accccqtqqa aaatacccaq ctccaqaatq aaaaqctcta cctctactac ctqcaqaacq 4680 gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg 4740 accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc 4800 ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga 4860 4920 tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca 4980 acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca 5040 tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga 5100 agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca 5160 acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca 5220 agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc 5280 gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct 5340 actegaacat catgaactte tteaagaceg agateacet egegaacgge gagateegea 5400 agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg 5460 atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg 5520 aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc 5580 tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg 5640 5700 tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga 5760 5820 tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg 5880 agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg 5940 ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg 6000 tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc 6060 6120 gggtgateet egeegaegeg aacetggaea aggtgetgte ggeatataae aageaeegeg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg 6180 gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca 6240 cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac 6300 6360 gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc 6420 tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat 6480 tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga 6540 aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat 6600

gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag

totgaaaaat gcaccotcag totatgatco agaaaatcaa gattgottga ggccotgtto ggttgttocg gattagagco coggattaat tootagcogg attacttoto taatttatat

agattttgat gagetggaat gaateetgge ttatteeggt acaaeegaae aggeeetgaa ggataeeagt aategetgag etaaattgge atgetgteag agtgteagta ttgeageaag

gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt

ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt

aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag

ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat

cgaatcettg acataatgat eccepettaaa taageaacet egettgtata gtteettgtg etetaacaca egatgatgat aagtegtaaa atagtggtgt ecaaagaatt teeaggeeea

gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg

acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact

tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga

agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt

gaatatccct ttctacgaaa gaatgtttta gagctagaaa tagcaagtta aaataaggct

agtccgttat caacttgaaa aagtggcacc gagtcggtgc tttttttt

6660 6720

6780 6840

6900 6960

7020

7080

7140

7200

7260 7320

7380 7440

7500 7560

7620

7680

7740

7800 78**49** 

5

10

15

20

25

30

35

40

45

50

5	<210> 123 <211> 7847 <212> DNA <213> Artificial <220> <223> artificial
10	<400> 123
15	
20	
25	
30	
35	
40	
45	
50	
55	

	atacaacata	accogt.cgt	accentetet	agagataatg	aggattggat	gtetaagtta	60
		ccacatattt	ttttatcac	acttotttoa	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacqaat	aatataatct	atagtactac	aataatatca	180
	atatttaaa	gaatcatata	aatgaacagt	tagacatogt	ctaaaqqaca	attgagtatt	240
5	ttaacaacaa	gaatetacaa	++++atot++	ttagacatgge	tatattata	++++++++	300
	casatacct	gacctatata	atacttoato	cattttatta	atagatagat	ttaggettta	360
	caaalayeee	tttttatata	atacttcatc	tacticatia	gtacatecat	atttaggguuua	420
	gggttaatgg	aaaadtaaaa	atatattta	caytacatet		acctageee	420
	tagaataaaa	taaactaaaa		guullulat	ttaacaactt	ayatataaaa	540
10	agaaaaaatt	tttattattt	aaaaataaata	atagaagaat	attaaaaaa	adaaaaacta	540
10	ayyaaacatt		cyaytayata	atgeeageet	gccaaacgee	geegaegage	600
	ccaacygaca	ccaaccageg	aaccagcagc	glegeglegg	gecaagegaa	gcagacggca	720
	atagatata	gregergeer	active	agagagagag	cegeteeace	geeggaeeegg	720
	ccccgccgcc	ggcacccaga	aactgegegg	cggagcggca	gacgugagee	ggcacggcag	780
	geggeeteet	ettectetea	eggeaeegge	ageraegggg	gatteette	ceacegetee	040
15		ttattagee	cgccgtaata	aatagacacc	tatagagaga		900
	caacetegtg	ciglicggag	cycacacaca	tactaccaga		alcoaccegt	1020
	eggeaceree	getteaaggt	acgeogeteg		tetetetete		1020
	agateggegt	teeggteeat	gcatggttag	ggeeeggtag	ttetacttet	gttcatgttt	1080
	gtgttagate	cgtgtttgtg	ttagatccgt	getgetageg	ttcgtacacg	gatgcgacct	1140
20	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	CTCTTTgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	tttttgttt	cgttgcatag	1260
	ggtttggttt	gecetttee	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
30	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
45	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
50	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg	3240
						-	

tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct
acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa
tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc
tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac
tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga
agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca
actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg
aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg
ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca
ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt
tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg
tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg
agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca
agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca
tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct
acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt
ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca
tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc
accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg
gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg
accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga
tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca
acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa
ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca
tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga
agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca

acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca

agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc

gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca

agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg

atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg

aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc

tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg

tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga

tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc

cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg

agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg

tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc

gggtgateet egeegaegeg aacetggaea aggtgetgte ggeatataae aageaeegeg acaaaeeaat aegegageag geegaaaata teateeaeet etteaeeete aceaaeeteg

gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca

cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac

gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc

tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat

tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga

aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg

ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag

totgaaaaat gcaccotcag totatgatoc agaaaatcaa gattgottga ggcootgtto ggttgttoog gattagagoo coggattaat tootagoogg attacttoto taatttatat

agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa

ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag

	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
F	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
5	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
10	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gtcaatggag	aattctctgt	tagttttaga	gctagaaata	gcaagttaaa	ataaggctag	7800
	tccgttatca	acttgaaaaa	gtggcaccga	gtcggtgctt	tttttt		7847
15							
	<210> 124						
	<211> 7842						
	<212> DNA						
	<212> DINA						
20							
20	<000×						
	<22U>						
	<223> artificial						
	<400> 124						
25							
30							
35							
10							
40							
45							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
10	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
20	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
50	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
35	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340

	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcotcoacoa	ggtaagtttc	tocttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttacttttct	ataatttata	agtgtgtgtata	++++aa+++a	taacttttct	aatatataac	2580
	aaaaaataa	tastataasa	agegegeaca	accacaceta	aaaaaata	tacacactac	2640
5	caaaacatyy	cgacgcgcag	grggeetaee	acyayaayta	cccyacaacc	attaccatic	2040
	ggaagaaact	ggtggacage	acagacaagg	eggaeeteeg	geteatetae	ettgeeeteg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
10	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagetecag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tooccagat	aggagaccag	tacgcggacc	tettecter	coccaagaac	ctctccgacg	3120
	ctatectet	cagegacate	cttcgggtca	acaccgaaat	taccaaggca	ccactat.cca	3180
	ccaccatget	taaacoctac	gacgaggeeg	atcaggacct	caccetocto	aaggcactcg	3240
	taggaaagaa	catacgeeae	gacgageace	accaggacce	acceletee	aaggeaceeg	2200
15	cecyceayea	geteeegag	aaytacaayy	agalettett	cyaccaatta	aaaaacyyct	3300
	acgcgggata	tategaegge	ggtgeeagee	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	teetggagaa	gatggacggc	accgaggagt	tgetggteaa	getcaacagg	gaggacetee	3420
	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
20	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
	ccgtgtacaa	cgagetcace	aaggtcaaat	acqtcaccqa	agacatacag	aagccggcgt	3840
	tectgagegg	cgagcagaag	aaggcgatag	togacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgette	gactccgtgg	3960
25	agatetegogu	catagaggat	conttcaaco	cctcactcgg	cacgtatcac	gacctcctca	4020
	agatosttaa	agagagagag	ttoctocaca	accaaccaacaa	caaggacatc	ctccaccaca	4080
	tagtataa	agacaaggac	ttagaggaga	acgaggagaa	cyayyacacc	atapagaat	4000
	Legiceleae	celyaceely	LLCyaggacc	gegaaatgat	cyayyayayy	togoatact	4140
	acgegeacet	gttcgacgac	aaggtCatga	aacageteaa	gaggegeege	tacactggtt	4200
	ggggaagget	greeegeaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
30	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
35	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcqt	gccgcagtcg	ttcctcaaqq	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcooooc	aagagcgaca	acotoccao	coaggaggtc	otgaagaaga	4860
	tgaaaaacta	ctoococcao	ctcctcaacq	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	aacaaacac	agtagetta	acaaacticaa		ttcataaaaa	4980
40	accegacgaa	ggeggaaege	ggcggcccga	aggatetoga	aaagataata	gagaggggga	5040
	tgaatagtaa	cyagacycyc	cagaccacga	tgatgeege	ccagaccety	ataageegea	5100
	cyaacaccaa	gracyaryaa	aacyacaayc	cyateegyya	gycgaagycg	accacyciga	5100
	agreeaager	egrgreggae	tteegeaagg	acttecagtt	ctacaaggtc	egegagatea	5160
	acaactacca	ccacgcccac	gacgectace	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
45	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcggattc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaage	5580
	tcatcocoao	gaagaaggat	toggacccga	aaaaatatoo	coocttogac	agecegaeeg	5640
50	tcgcatacag	catcctcatc	gtggcgaagg	togagaagga	caagtcaaag	aagetcaagt	5700
	ccataaaaaa	actactoga	atcaccatta	tagaggagta	ctccttcgag	aagaaccoga	5760
	tcgacttcct	agaggggagg	ggatataagg	aggtcaagaa	ggacctgatt	attaaactoc	5820
	coaactacto	actettera	ctocaseeco	accacaaaaa	gatactore	tecocacoco	5880
	agttggagga	gaaaaaaaaa	atagaaataa	geograagag	gatgettyde	at at a cat ca	5000
	atagaaata	tassacrate	aagggggggg	aggaggagaga	agagagagaga	agatette	2000
55	tageageage	agaaaayuuu	atagagagaga	tastasses	cyaycayaay aataaaaaa	ttataaaaaa	6000
		caaycattaC	cuyyacyaya		gallaycyag	cicicyadyC	6060
	yyyuyateet	egeegaegeg	aaccuggada	ayyuyutgtt	yycalatadC	aaycaccycg	0120

	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
5	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
10	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
15	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
20 25	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gtacgtaacg	tgcagtacgt	tttagagcta	gaaatagcaa	gttaaaataa	ggctagtccg	7800
	ttatcaactt	gaaaaagtgg	caccgagtcg	gtgcttttt	tt		7842

30 <210> 125

<211> 7846 <212> DNA

<213> Artificial

- 35 <220>
  - <223> artificial

<400> 125

40

45

70

50

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
5 10 15 20	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctcccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
EP 3 191 595 B1

	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttaattata	atgatgtggt	ataattaaac	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactotttc	aaactaccto	gtgtatttat	taattttoga	actotatoto	tototcatac	1680
5	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	otatacatot	1740
5	tgatgtgggt	tttactgatg	catatacato	atoocatato	cagcatctat	tcatatoctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttoo	atgatggcat	atgraggagg	tatatataga	ttttttage	cctgccttca	1920
	tacoctattt	atttacttac	tactotttct	tttatcata	ctcaccctqt	tatttaatat	1980
	tacttotoca	actogectyg	agaggatoga	tagaacaaa	gaagaagggg	aagatgatga	2040
10	acaacaacta	ggccgacccc	agaggattea	ggggggggggg	gaagaagege	accatcatca	2100
	acaayaayta	tageategge	tagaagaaga	tabaataat	gguggguugg	geegeeatea	2100
	cyyacyaata	caaggueeeg	ccyaayaayt	tattagetec	cyycaataca	gaceyceaca	2220
	gcalcaagaa	adactigate	ggegeeetee	lyllogalag	cggcgagacc	geggaggega	2220
	terrenet	gaggaccycc	aggagacggt	acactaggeg	caagaacagg	alcigelace	2200
	tgcaggagat	cttcagcaac	gagatggega	aggrggacga	eteettette	caccgcctgg	2340
15	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
20	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
25	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
	tccqccaqca	gctccccgag	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
	acqcqqqata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
20	tcctggagaa	gatggacggc	accgaggagt	tactaatcaa	gctcaacagg	gaggacctcc	3420
30	tcaggaagca	gaggaccttc	gacaacggct	ccatccccca	tcagatccac	ctogocgaac	3480
	tocatoccat	cctacaacac	caggaggact	tctacccott	cctgaaggat	aaccoogaga	3540
	agatcgagaa	gatettgacg	ttccgcatcc	catactacot	agacccacta	getegeggea	3600
	actcccogtt	cacctagata	acccggaagt	cogaggagag	catcacaccc	togaacttto	3660
	aggaggt.ggt.	cgataagggg	actagegete	agagetteat	cgagcgcatg	accaacttcg	3720
35	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	getgetetac	gagtacttca	3780
	ccatatacaa	crarctcacc	aaggtcaaat	acatcacca	gaagatacaa	aagccggcgt	3840
	tcctgagcgg	cgageeeaee	aaggccatag	togacctcct	cttcaagacc	aacaqqaaqq	3900
	taaccataaa	ccaattaaaa	aaggegueug	tcaacaaaat	agagtactto	aactocataa	3960
	agatotogog	gcaactaaaa	gaggactact	catagataat	agagtgeete	gacceccycyg	4020
	agatesttaa	agagaaggag	ttactacaa	accacceccy	caegraceta	gacceccea	4020
40	tagtattaa	agacaaggac	tteetegaca	acgaggagaa	cyayyacatt	atagagaaat	4000
	aggggggggg	attagagaga	accegaggace	gegaaatgat	cyayyayayy	tagagacet	4140
	acgegeacet	glicgacgac	aaggicalga	aacayctcaa	gaggegeege		4200
	ggggaagget	greeegeaag	cleatlaatg	gcalcaggga	caageagage	ggcaagacca	4200
	teetggaett	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatee	agaaggcaca	ggtgagcggg	cagggtgact	4380
45	ccctccacga	acacategee	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagetegtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagetgg	acattaatcg	gctatcggac	tacgacgtcg	4740
50	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
55	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220

gcaaaatgat cgccaagtc gagcaggaga tcggcaagt cacggcaaaa tacttettt 534 actcgaacat catgaactte tteaagaceg agateaceet cgcgaacgge gagteegea 540 atteggeae ggteegeaac aacgacgag eggeegaat cgtetgggat aaggeeegg 552 aggteeagae gggegggtte ageaaggagt eggeegaat cgtetgggat aagageegg 552 aggteeagae gggegggtte ageaaggagt ecateetee gaagegeaae teegaeage 558 teategeegg gaagaaggat tgggaeega aaaatatgg eggeetgee aceteegaeage 564 tegeataeag egteetege gtggeegaag tggagaegg caagteeaag aageeegae 570 eegtgaagga getgeteggg ateaegatta tggageegaa ggaeetgat attaaetge 582 cgaagtaete getetega eteggaaagg tggagaagg gageetgat attaaetge 582 egaagtaete getetegag etggeaagg ggeegaag ggaeetgat attaaetge 582 cgaagtaete getetegag etggeaagg eggeeaag ggaeetgat attaaetge 582 egaagtaete getetegag etggeaagg eggeeaaga ggaeetgat attaaetge 582 eggagtaete getetegag etggeaagg eggeeaaga ggaeetgat attaaetge 582 eggagtaete getetegag etggeaga eggeeaaga ggaeetgat attaaetge 582 eggagtaete getetegag etggeaaa ggeegeaag ggaeetgat attaaetge 582 eggagaegea caageatae etggeeaaa eggeeagaag eggeeteteg 588 agttgeagaa gggeaaega eteggeaaa eggeeagaag eggeeteteg 594 etageeaeta tgaaagee aaggeagea eggeeaaa eggeeagag eageteteg eggegaegea caageatae etggeagaa aggeeagaa ggaeeggag tetegaage 606 tgggageagea caageatae etggeagaa aggeeaega ggeeagae aggeeagga tetegaage 606 tgggageage ageetteaag tacttegaea aggtegee ggaaaaa eageaeggg taceagage 612 acaaaceaat aegeggagag aggeegaea aggeeagae eggeeagae eggeeagae 624 egaaggagt geegateg geggagaa aggaeeaeg ggaeedegae teagaaeae 630 geateggeeg eaageegga aggetggeaa aggaeeaeg ggaeedegae 636 tggeageeg caageegga aggetggeaa aggaeeaeg ggaeedegae 636 aatateat gggtageaa aggtagtae egtaataea aggaeeggag 654 aagagaata ceatatte tateetaa agaaeceae agatgeaeae eggeeggg 672 etgeagaat tegatagea tgegtaea agageeae taggtaeae tagtaeae 648 ggtagteeg gattageae tagagtaea atagtaaee tagtaeae tagtaeae 648 ggetgeteg gattageae aaeaatea gatgeaeae tagtaeaea ggeegegg 672 etgeagaat tegataget tgaagtaea atagtaaee tagtataea afgeegagg faateagt gatagaga teegaae eagateaeg 676 ggeeaegte gatagegae
<ul> <li>actcgaacat catgaactto ttoaagacog agatcacoct cgcgaacgge gagatcegaa 540</li> <li>agcgoccgat catcgaaacc aacggagag cgggagat cgtegggat agggeggg 546</li> <li>attcgcgac ggtecgaag gtectacea tgecgeaagt caatategg aaaagacgg 552</li> <li>aggtecagae gggeggtte ageaagaggt coatectee gaagegeaae teegacaage 558</li> <li>teategeag gaegeteegg tegggagg tegggagg caagtecagae ageeegge 564</li> <li>tegeatacag egtectegte gtggeaggg teggaaggg caagtecagae ageeegge 570</li> <li>cegtgaagga getgetegg ateacgata tgggaaggg caagtecaag ageeegge 576</li> <li>tegaatteet agageeagg getataagg aggtecagaa ggaeeegg caagtecaaga agaeeegg 588</li> <li>agtgeagaa ggegeacgg eggaaacg geegaaag gaeeegga gageeegg 588</li> <li>agtgeagaa ggeeaeegg etegeeee eggagaga gageeegg gagateee eggagegg 588</li> <li>agtgeagaa ggeeaeegg etegeeee eggagaa eggeegaag eggeeggg 588</li> <li>agtgeagaa ggeeaeegg etegeeeee eggagaga eggeeggaag eggeeggg 600</li> <li>teggaegaee aageeee eeeggg geegaaaat eeeegaa eggeegga eggeeggg eeegaaaat eeeegaa eggeegga eeeeggaeegg eggaaeee eggagegg teeeegaegg 600</li> <li>teggaegeee aeeegge geegaaaat teateegaee aggeeggaag eggeegaaa eggeegaag eggeegaaaa eggeegega egegaage eeegae eeeegae eeeegae eeeeeeegae eeeeeeegae eeeeeeee</li></ul>
⁵ agggccgct catcgaaacc aacggcgaga cgggcgagt cgtctgggt aagggcggg 546 atttcgcgac ggtcgcgaag gtgctctca tgccgaagt catatcgtg aaaagagcg 552 aggtccagac gggcggttc ggcagaggt ccatcctcc gaacgcaac tccgacaagc 558 tcatcgcgag gaagaaggt tgggaccga aaaaatatgg cggcttcgac agcccgacg 564 tcgcatacag cgtcctcgtc gtggcgaagg tggaagaggg cagtctaaa agcccgaac 570 ccgtgaagga gtgctgcgg atcacgatta tgggacggt ctcctctcga aagcccaagt 570 tcgactcct agaggccaag ggatataagg aggtcaaga ggacctgat attaactgc 582 cgaagtactc gctctcga ctggaacgag ggacaagag gatgctcgc tccgcaggcg 588 agttgcagaa gggcaacga ctggcacc cgagaagaa gatgctcgc tccgcaggcg 588 agttgcagaa gggcaacga ctggcacc cgagagaa agtgctcgc tccgcaggcg 588 agttgcagaa gggcaacga ctggcacc cgagagaa agtgctcgc tccgcaggcg 588 agttgcagaa gggcaacga ctggcacc cgagagaa agtagccgg ttctcgaagc 606 tggagcagca caagcatta ctggacgaa tcatcgagca agacacga ttctcgaagc 606 gggtgatcct cgccgacgg acctggaca aggtgctgc ctctccc accaacctc 618 gcgctccgge agccttcaag tacttggac acaggagt cacaggcg ttacacgagca 624 cgaaggagt gccgaaata tcatcgaca cacaggct tatgaacca 630 gcatcgacct gagccagcg ggcggaaca agagccaca ggaccgca ctctggat 636 tgggaggcg caagcgggca aggtagtac cgtaacca gactttctc accact 648 ataatgtgg catcaaagt tgtgtgtat tgaaataa ggatgcacg tgctataca tfataaagag 654 aagagatcat ccatatttct tatcctaat gatggcag tgtctata atatatat 664 ataatgtgg catcaatgt gtgtgtata gaaataaa ggatgcacg tgtcttata attcttgat 642 tggccaactt aattaatgta gaaataaa gaatgcacg tgtcttata attcttgat 660 gaaccagat ccatatttct tatcctaat gaatgtacc tagtacaca tataaaagga 654 aagagatcat ccatatttct tatcctaat gaatgtacc tagtacaca ff aatatcaatt ggttagcaa aacaatca tatacatata attatata ff aatatcaatt ggttagcaa acaaatca gtctaggt gtctttata attcttgat 642 dgtgttccg gattagacc cggattaa tcctggcg attactata attatatat attatatat aatatcaat gggtagat gaatcctge ttatgagac agatgtcacg tagccaga 678 tctgaaaaat gcaccctag tctagatca atgagaacc agattacca aaggcccgaa 678 ggtagtcag gattgggtac ccggatta tctcggca atgagtacc agattact attatatat 666 ggataccaf gaccdcag gcaactge ttgggaa agatccga aggccgaa agaccgaa agatgccaa aggcccgaa 770 gtagtgagg
<ul> <li>⁵ atttegogae ggteegaag gtgetetee tegeogaagt eaatategtg aaaagaegg 552</li> <li>aggteegae ggeoggtte ageaaggagt eeateetee tegeogaagtee teegaageegaag</li> <li>⁵ tegeogaag gaagaggat tggggeega aaaaatatgg eggetegaa aageetaag aggeegaag</li> <li>⁵ tegeotee aggeegagg tggggaagg tggggaagg eggeegaag aggeegaag aggeegagg aggeegagg gaegteegag gaegteegag ggeegaagg ggeegaagg ggeegaagg ggeegaagg etgeegagg gaegteegagg etgeegagg etgeegagg eggeegaagg gaegteega eaageegag etgeegagg etgeegaggg etgeegaegg etgeegagg etgeegaegg etgeegagg etgeegaegg etgeegagge etgeegagge eggeegaaata teateeaete aceaaeteg eff</li> <li>gggeggeeg eageegaag geegaaaata teateeaete aceaagege eff</li> <li>gegeeteegag geecgaagg eeggaaaata teateeaete aceaageegg etaeeggeg eggeegaga aggeegaga aggeegaga agggeegge eggeegage eggeegagg eeggaage eggeegaga agggeegge eggaeggee eggeegagg eeggeegag eeggeegg</li></ul>
aggtccagac gggcgggttc agcaaggagt ccatcctcc gaagcgcaac tccgacagc 558 tcatcgcgag gaagaaggat tgggaccga aaaatatgg cggttcaga agcccagat 564 tcgcatacag cgtcctcgg gtggcgagg tggagaggg caagtcaaag aagctcaagt 570 ccgtgaagga gctgctcggg atcacgatta tggagaggg caagtcaaag aagctcaagt 570 tcgacttcct agaggccaag ggatataagg aggtcaaga ggacctgat attaaactgc 582 cgaagtactc gctcttcgag ctggacag ggcgcaagaa ggacctgac tccgcaggcg 588 agttgcagaa gggcaacgag ctgcacctc cgagagaata cgtcaattc ctgtacctcg 594 ctagccacta tgaaaagctc aagggcagc cggaagaa cgagcagaag cagctctcg 600 tggagcagca caagcattac ctggacgaga tcatcgaca gatcacgag ttctcgaagc 606 gggtgatct cgccgacgcg aacctggaca aggtgctgc ggcataaa aggcacagag tctcgaagc 612 acaaaccaat acgcgagcag gccgaaata tcatccacct ctcacccac accaacctcg 618 gcgctccggc agcctagg acctggaca ccacgattg ccggaaggg tacacgagca 624 cgaaggaggt gctcgatgg aggtgagca cacaggagca cacagggct tatgaaacac 630 gcatcgact gagccagcg ggcggagaa aggtgagtac agagtgctg ggatcat cattggat 642 dggaggcgc caagcggcg aacgtgatca cgtaaccta agactgcac gatggcgg 636 tgggaggccg caacgagg ggcggaaa aggtcacca gatgtgca gctatcact 648 ataatgtggg catcaagtt gtgtgttatg tgtaattac agttatcga tattttga 664 aagagatat ccatattt tatcaaaa ggatgcacg tgttttga ataaaagag 654 aagagatat ccatattt taccaaat agttgaca agatgcaag ggtccggg 672 ctgcaagat gcatcgag tgagata atagtgaca gatgtcgg ggccggg 672 ctgcaagat ccatattt tagaataaa gatgtcacg gattatata aatttaat 666 aatatcaatt gggtagca aacaaatca gtctaggtg gttttgg ggccggg 672 ctgcaagat ccatagtt tgagata atagtgaca agatgcaag agtcctga 678 tctgaaaat gcaccctag tctatgatc agaaatcaa gattgcttg ggcccgg 672 dgatgagat accgcgag gatagagc ccggatta tcctaggg ataccgaag 696 ggataccagt aatcgctgag cacattg ctatgatc agaaatcaa gatgctga aggccaga gggccatgag gacgcaga dgatcgcg ttatgatat gagaatgg 700 ggccatggg gcatfcctg gccaattg tatgtgca ccatatgg taggacag 702 gdagtgagat aaccgcgaat gaacctgg ttatgtga cactaggat ttgagaag 702 gdagtgaga aaccgcaa aggtagtg taggtgca ttatccgg ttatgatat ggaaggg 708 ggccatggg ggggcaca atggtgcg ttatgtga tggcagaa ggccgaag 720 ttttgagcgg gggggaca agatctgc tggttttg gcatgaaa g
<ul> <li>tcatcgcgag gaagaagat tgggacccga aaaaatatgg cggcttcgac agcccgaccg 564</li> <li>tcgcatacag cgtcctcgt gtggcgaagg tgggaaggg caagtcaaag aagcccaagt 576</li> <li>tcgacttcct agaggccaag ggtataagg aggtcaagaa gagcccgat attaaactgc 582</li> <li>cgaagtact gctcttcgag ctggaaacg gccgcaaga ggacctgat attaaactgc 594</li> <li>ctagccata tgaaagcc aagggcagc ccgaagag gatgctcgc tccgcaggcg 588</li> <li>agttgcagaa gggcaacgg ctcgcctcc cgagcaata cgtcaattc ctgtacctg 594</li> <li>ctagccata tgaaagct aagggcagc ccgagaga cgaccagaa cgagcagag cagctatcg 606</li> <li>tggagcagc caagcattac ctggacgag tcatcgagca ggtcgtgt ggatataa aggacccgg 612</li> <li>acaaccaat acgcgagcg acctggaca aggtcgtcg cctcacagagcg 612</li> <li>acaaccaat acgcgagga gccgaaata tcatccacc cttacccac accacct 618</li> <li>gcgctccgg agcctgagg agctgatca cacagagca cgtacacag ggaccaca gagcgcaga 630</li> <li>gggtggcg cacagcggg acgtggtac cgtaacca aggtcgccac gatggcaga 630</li> <li>tgggaggcg cacacagt ggcggagaa agagccaca ggaccaca gatggcgag 6424</li> <li>cgaaggagg gctcgatgg aggtggtac cgtaacca acagggct tatgaacac 630</li> <li>ggagcagc caagcagga ggggagaa agagccaca gaagccaca gatggcgag 6424</li> <li>cgaaggagg catcaagt ggtggtac cgtaacca atagtgaca tctctgga 642</li> <li>tggcaactt aattaatgt tgaaataaa ggatgcaca atagtgaca tctctgg 642</li> <li>aagagatcat ccatattct tatcctaaat gatgacac tgattaca 6430</li> <li>aagagatcat ccatattct tgagaataa gatgcaca tagtgaca tctcgga 642</li> <li>aagagatcat ccatattct tatcataa agatccag gatgcaca atagtgaca (fill aagagagt gatcatcat tgagaataa aggtagcaca tagtgaca (fill aagagagt gatcatcat fill accaa aggt ggtgacaa agagaccaa gatgcaca (fill aagagagt gatcaaggag aggtagaa aggtagaa aggtcaca atagtgaca (fill aagagagt gatcaaggag aggtagaa aggtagaa agagcacaa gatgcaca (fill aagagagta ccaa ccaaggag aggtagaa aggtagaa aggtagaa agagcacaa gatgc</li></ul>
<ul> <li>tcgcatacag cgtcctcgtc gtggcgaagg tggagaggg caagtcaaag aagctcaagt 570</li> <li>ccgtgaagga gctgctcggg atcacgatta tggagcaggc ctcctctaga aagaacccga 576</li> <li>tcgacttcct agaggcaag ggatataagg aggtcaagaa ggacctgatt attaaactgc 582</li> <li>cgaagtactc gctctcgag ctggcacag gcgcaaaga ggdcgtccc tccgcaggcg 588</li> <li>agttgcagaa gggcaacgag ctcgccctc cgagcaaata cgtcaattc ctgtacctcg 594</li> <li>ctagccacta tgaaaagctc aagggcagc cggaggaca cgagcagaa cgagcaggag cagcttag 606</li> <li>gggtgatcct cgccgacgg acctggaca aggtcgtcg ggatataac aagcaccgg 612</li> <li>acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccct accaacctcg 618</li> <li>gcgctccggc agccttcaag tactcgaca caaggata cacggatga ccagggcg tacacgagca 636</li> <li>tgggaggcg caagcgg gccgagaaa aggtagca cggagcag gacggcac 636</li> <li>tgggaggcg caagcggg aggtaggta cgttaacta ggatgcaca dagtgcag 636</li> <li>tgggaggcg caagcgg cattata tgaaataaa ggatgcaca atagtgaca gctatcat 648</li> <li>ataatgtgg cattcatta accaaatca taccaaatca tatacataa aatataat atatatt 666</li> <li>aatatgtgg cattcatag tacttagaca agatgcag tgttataat agtacagag 652</li> <li>ctgcagaat ccatatttct taccaaatca tatacataa aatataat atataatt 666</li> <li>aatatgtgg cattcatag tactagaca agatgcag tgttatcat agtacaagg 652</li> <li>ctgcaggat cggttagca aacaatca tatacata aatataat atataatt 666</li> <li>aatatgtgg datcgtagcg tcagatga tatagtaca gctaggg tgtcgggg 722</li> <li>ctgcaggat tcgataggt ccggatag tatagtaca agatgcag ggccgggg 722</li> <li>ctgcaggat tcgataggt caaaatca tatagta aacaaatca fatagaaca agatgcag f722</li> <li>ctgcaggat tcgatagg tagatac tcatagt tagaggca agaaataca gatgctcg aggccggg 722</li> <li>ctgcaggat tgatagt tgaggtac cggatataa tcctagcgg atactaca agatgcagg 722</li> <li>ctgcaggat tgatagt tgaggta gatcctgg aaaatcaa gatgctctg aggccggg 722</li> <li>ctgcaggat gagctggat gatcctgg cagataa atgatgaca atgatgaca agatgcaga agaaccaga gatacaag aggccggg 722</li> <li>ctgcaggat tgataggat ccggataa atgatgaca ccggataaaa agaaccag aggtgtgta aatgaca</li></ul>
ccgtgaaggagcgtgctcgggatcacgattatggagcggtcctctttcgggasgaacccga57610tcgacttcctagaggccagggggtcaaggagggcctgattattaaattgc582cgaagtactcgctcttcgggctggcaacgaggcccaggaggaccgcctcggacggg588agttgcaagagggcaacgagctgccactccggacgaagctgcactcg594ctagccactatgaaaagctcaagggcagcccggaggacaacgacgagaagcacgccagggtctcgaacg600tggagcagcacacgcagcgaacgcgggggacacgcagggcctacgacgggtctacgaggfctcgaacg612acaaaccaatacgcggacgggccgaaatatcatcgagcaggcatacgaggfctaccgagc612gcgctccggcagcctgacggccgaaatatcatcacctcttaccacctgca612gcgatgggtgcctcagggccgaaggaggcacacggggtaccacgacg612gcgatgggggcctcaggacgcaggagggccgcaccdaggaccagggfcacacgacg612gcgatgggggcctcagggccgaggagacacaggacggccfcacggfcacacgacg624ggaggggggcctcagggggccgacggggccgacggggfacacacggggfcacacgaggfcacacgacg20tgggaggcgcaagcggggggcgggggagacaggatgcacacgggggcagacfgafgacagatgcacac20tgggaggcgcaagcdgggggggggagacaggatgcacacgatgfcacaffa642aagagatcatccatattcttaacaacacgatgfcacagatgfcacaffa642aagagatcatccatattct
<ul> <li>tcgactteet agaggeeaag ggatataagg aggteaagaa ggaeetgatt attaaetge 582</li> <li>cgaagtaete getettegag etggaaaeg geegeaagag gatgetegee teegeaggeg 588</li> <li>agttgeagaa gggeaeegg etggeeetee eggaegaeaa eggeeagaag eagetettee feegeagae etgaegaegae eggeagaea eggeegaagae eggeegaagae eggeegaagae eggeegaagae eggeegaagae eggeegeegeegeegeegeegeegeegeegeegeegee</li></ul>
cgaagtactcgctcttcgagctgggaaaacggccgcaagaggatgtctcgcctccgcaggg588agttgcagaagggcaacgagctcgccctccggaggaaacggcaatttcctgtactcg594ctagccactatggagcagcacaaggcagcacggaggaaacggaggaagcggctctgg59415gggtgatcctcgccggacggaaccactggacaaggtggtcgcggacgagacatccgaagcatccgaag606gggtgatcctcgccggacggaaccaccggacgaccaccccccttccgaagatcatccgaagttctcgaaga612acaaaccaatacgcggacggcctgaagacccgaatgagccgaaggaggtcatcgaaga624gcgctccggcagcctgatcgaccaggaccacacagggcttcatcgaaga636gcatcgacctgagccagcaaggaggggaaaaggagcaccagaggcgaccagatggcagga636tgggagccgcaacgggggaaggaggacgaaggagcaccagatgtgcaccagatggcagga636tgggagacgcatcaaggggcgttaaccatgatggcaccagatggcaccagatggcagga636tgggcaactaatatatgtatggatgttatgtgtaattactgattaccat642ataatggggcatcaatttctatcataaggatgtcaccggttatccat642aaaggatcatccatatttctatcataagaatgtcacg654ataatgtgggcatcatattgtatcataatgatgtcaccg672ggaccaggcattcattaaccaattcagatgtcaccg672gaaccaggcattcattaaccaattcagattcatcagatcataatgaggtatcattcattaaccaatcaatta
agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg 594 ctagccacta tgaaagctc aaggcagcc cgagcagaa ccgccagaag cagctettcg 600 tggagcagca caagcattac ctggacgag tcatcgagca gatcagcgag ttetegaagc 606 gggtgateet cgeegacgeg accetggaca aggtgete ggeatataac aageaceegg 612 acaaaceaat acgegageag geegaaata teatecaeet etteaceet aceaagegg tacaegagea 624 cgaaggagt geegateg geegaaata teatecaeet etteaceet aceaagegg tacaegagea 624 cgaaggagt geegateg ggeggagaa agagaceaeg ggaeegee tatgaaaca 630 geategaeet gageege aggetgaee aggtaggtae ggaeggee datageggg tacaegagea 624 tgggaggeeg caageggea aggtaggtae cgtaacea ggaeegee tatgaaaca 630 geategaeet aattaatgta tgaaataaa ggatgeeae atagtgeea tetteggat 642 tggceaett aattaatgta tgaaataaa ggatgeeae atagtgeea tetteggat 642 tggeeaett aattaatgta tgaaataaa ggatgeeae atagtgeeat getaateet 648 ataatgtggg cateaaagtt gtgtgttatg tgtaattaet agttatetga ataaaagaga 654 aagagateat ceatattee tateetaaa ggatgeeae atagtgeea tgeeeggg 672 ctgeaggaat tegataget tgagagtae atgatgeeg tgtettata attettgat 660 gaaceagatg catteeata aceaaateea tataeatata aatataate atataatt 660 aatateaatt gggttagea aacaaatee gtetaggeg attagtee aggeeegg 672 ctgeaggaat tegataget tgagagtae atgatgaee tagataate aatgeeaag 678 tetgaaaaat geaeecteag tetatgatee agaaaatea gattgettg ggeeetgte 684 ggttgteeg gattaggee ceggataat teetageeg attaetee taattaat 690 agatttgat gagetggaat gaateetge ttatteege agaeadea aggeeetga 696 ggataceagt aategetga etaaattge atgetega agtgeeaga aggeeetga 696 ggataeeagt aaceggeae atggteeeg ttatteegg agtgeeaga 702 gtagtgagat aaceggeae atggteeeg ttatteegg agtgeeaga 702 gtagtgagat aaceggeae atggteeeg ttatteegg agtgeeaga 702 gtagtgagat aaceggeae atggteeeg ttatteegg agedgeega ataggaagt 704 ggeeatggee geatgteetg geeaeetttg tatgataat ggeagggtga ataggaagt 708 ggeeatggee geatgeeeg geeaeettg tatgataat ggeagggtga ataggaagt 704 aaaattgat tgtaaaaagg gatteette gttgttage cettagaa ggaagega 720 ttttgagea ggggeeatea aagaeeggee taggeeag eegtaeaa ggaagega 720 ttttgagea ggggeeatea aagategge tgtgttteea geeggagaa ataggaagt 726 eegaateettg ggg
$\begin{array}{c} ctagccacta tgaaaagete aagggcagee eggaggacaa eggagaga cagetetteg 600\\ tggagcagea caageattae etggacagaa teategagea gateageega tteetegagea 606\\ gggtgateet egeegaegeg aacetggaea aggtgetgte ggeatatae aageaeegeg 612\\ acaaaceaat aegegageag geegaaaata teatecaeet etteecee aceaaeeteg 618\\ gegeteegge ageetteaag taettegaea eaceagageat eaceggaegeg taeaegagea 624\\ egaaggaggt geegatgeg aegetgatee aceagageat eaceaggege taaeaegagea 624\\ egaaggageeg eaageeggea aggtaggtee egaaeaeta eaceagageat eacagggee 6366\\ tgggaggeeg eaageggea aggtaggtee egataeee agatggeea egatggeegge 6366\\ tgggaggeeg eaageggea aggtaggtee egataeee atagtgeea getateeae 6480\\ ataatgtgg eateaaagte tggtgttat tgaaataaa ggatgeeae atagtgeea getaateaet 6481\\ aagagateat eeatattee tateetaaa gaatgteee atagtaeat getaateeae 6482\\ aaaateeaatt gggtageaa aaeaaateea gaatgteee tagtateea ateettegat 6600\\ gaaceagatg eatteeata tegagatae agaagtee tagtaeea ateettega ataaaagaga 654\\ aagagateat eeatattee tateetaaa gaatgteee tagtaeatee ateettegat 6600\\ gaaceagatg eatteeaa aeeaaateea tataeeata aateetaet ateettegat 6600\\ aatateeaat gggttageaa aaeaaateea gtetagget gtetteea ateettegat 6600\\ ggategegaat tegatageea eeegaateea atgatgaeee tagattaeea aaggeeeggg 6722\\ etgeaggaat tegatagete tgagagtaea atgatgeaee tagattaate aatgeeaaag 6780\\ tegaaaaat geeeeteag tetatgatee agaaaateea gattgettga ggeeetgge 6722\\ ggatageaga aaceggeat eeegaata teetegga agtgeedga ataeeegaag 6780\\ ggtagtgaaa ageeeteag eeegaatee atgateee agaateeaga aggeeetegaa 6960\\ ggataeeaga aacegeete atggtgeeag ettetegga ageegaeea aggeegae aggeegaeag 7020\\ gtagtgagat aaceggeate atggtgeeag atgeegae atgeegaea eaeaeegae 7020\\ gtagtgagat aacegeete atggtgeeag ettetet gttgatgeea eeedaeag aggeegaeag 7020\\ gtagtgagat aacegeete atggtgeeag ettetet gttgatgeea eeedaeag atgeegaeag 7020\\ gtagtgagat aacegeete atggtgeeag atgeegaeag eeetegaa 7020\\ gtagtgagat aacegeete aaggeegaeag ettetet gttgatgeea eeedaeaggeegaeag 7020\\ gtagtgagat aeeegeeteg geeaeettete gttgatgaea eeedaaaggeeagagaegeag 7020\\ tttgageag gggeeetea aagaeegaegeeeedaaageeeeeagaageeeega$
<ul> <li>tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc 606</li> <li>gggtgatct cgccgacgcg aacctggaca aggtgctgt ggcatataac aagcaccgcg 612</li> <li>acaaaccaat acgcgagcag gccgaaata tcatccacct cttcaccct accaacctcg 618</li> <li>gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca 624</li> <li>cgaaggaggt gctcgatgcg acgctgatc accaggagcat cacagggct tatgaacac 630</li> <li>gcatcgacct gagccag ggcggagaa aggaggaca ggacgaccac gatggcgagc 636</li> <li>tgggaggcg caagcggg aggtggtac cgtaaccta gacttgtcca tcttctggat 642</li> <li>tggccaactt aattaatgta tgaaataaa ggatgcacac atagtgacat gctaatcact 648</li> <li>ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga 654</li> <li>aagagtaat ccatattct tatcctaaat gaatgtccag tgtctttata attctttgat 660</li> <li>gaaccagatg cattcata accaaatcca tatacatata aatattaatc atatatat</li></ul>
<ul> <li>gggtgateet egeegaegeg aacetggaea aggtgetgte ggeatataae aageaeegeg 612</li> <li>acaaaceaat aegegageag geegaaaata teateeaeet etteaeeet aceaaeeteg 618</li> <li>gegeteegge ageetteaag taettegaea eaegageat eegaagegg taeaegagea 624</li> <li>egaaggagg geegaageg aegetgatee aceagageat eaegagget tatagaaaea 630</li> <li>geategaeet gageeagetg ggeggagea agagaeeeg ggaeegeeae gatggegage 636</li> <li>tgggeaeett aattaatgta tgaaataaaa ggatgeaee atagtgaeat getaateet 648</li> <li>ataatgtggg cateaaagtt gtgtgttatg tgtaattaet agttatetga ataaaagaga 654</li> <li>aagagateat eeatatteet tateetaaat gaatgteeeg tgtettata attetttgat 660</li> <li>gagetgate eetteatta aceaaatee atagtgaee taggtegag tgegegggg 672</li> <li>ettegaaaat gegetgeet tggagagee ageetgeee aaeaateea gattgteega tgegeeggg 672</li> <li>etegaagat tegaagee tegagagee eegaataa teetageeg attaetet aattataatt 666</li> <li>gattgteeg gattaggee eeggataa teetagaee agaaateea gattgettg ggeeeggg 672</li> <li>etegaaaat gegeegaa geeegaate geegaataa teetageeg attaetee aattataat 666</li> <li>ggtgttteeg gattaggee eeggataa teetageeg attaetee agaaaatea gattgettga ggeeetgte 684</li> <li>ggttgtteeg gattaggee eeggataa teetageeg attaetee aattataat 666</li> <li>agaeeggaa teegaagee tgaagee aagaaatea gattgettga ggeeetgte 684</li> <li>ggttgtteeg gattaggee eeggataa teetageeg attaetee aattaaat 666</li> <li>ggtagteeggaaa gaaeeeteg tetatgatee agaaaateaa gattgettga ggeeetgte 684</li> <li>ggtagteeg aaeeetege tetatgatee agaaateea gattgettga ggeeetgte 684</li> <li>ggtagteeggaaa gaaeeeteg atteetege atteeteetegg atteeteete aattataat 690</li> <li>agatttga gagetggaa gaateetge ttateegga aeeegaa aggeeetgaa 696</li> <li>ggataeeag aaeeggeat aggtgeeeg attegteeg ageeggeag ageeetgaa 696</li> <li>ggataeeag aaeegeee atggeeegg attegeeggeegge ageeetgaa 696</li> <li>ggataeegg aaeegeege atggeeeg attegeeggeeggeeggeeegaa 696</li> <li>ggataeegg aaeegeeeg atgeeeggeegeeeggeeggeeggeeggeeegge</li></ul>
<ul> <li>acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg</li> <li>gcgctccggc agccttcaag tactcgaca ccacgattga ccggaagcgg tacacgagca</li> <li>gcgatcggc gcactgatcg acgctgatcc accaggacat cacagggct tatgaaacac</li> <li>gcgctcggc gacgcgg ggcggagaca aggaggccacg ggaccgccac gatggcggg</li> <li>tgggaggcg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat</li> <li>tgggcaactt aattaatgta tgaaataaa ggatgcaca tatgtgacat gctaatcact</li> <li>tggcatcagt gcttaatt tatcctaaat gatgtcacg tgtcttata attcttgat</li> <li>aatatgtgg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga</li> <li>gaccagatg catttcatta accaaatca tatacatata aatattaatc atataatt</li> <li>gagtggaat tcgatagct tgaggtaca atgatggac tagtgcgaa tgcggccggg</li> <li>ctggaaaaat gcaccctcag tctatgatc agaaatcaa gattgcttga ggcccgaaa</li> <li>ggttgttcg gattagagc ccggattaat tcctagcgg attactct taattaatt</li> <li>ggttgttcg gattagagc ccggattaat tcctagccg attactct taattaat</li> <li>ggttgttcg gattaggac cataattgc ttgagagtac aggaaatca ggagaccag aggcccgaa</li> <li>ggttgttcg gattagagc ccggattaat tcctagccg attactct taattaat</li> <li>ggttgttcg gattagagc ccggattaat tcctagccg attactct taattaat</li> <li>ggttgttcg gattaggg ctaaattgg ttgtgtcg atgcggaa aggcccgaa</li> <li>ggtagtgaat aaccgcgac tatgtgca atgcgcgaa aggccgaaa</li> <li>ggataccagt aaccgcgaa ggatccgaa ttgcgcaa aggaaatca</li> <li>ggccatggg gcatgccg gcatgtcct ggccaattg ttgagaataa ggatgtgca cattaggg atacgggaa aggccgaaa</li> <li>ggcatgggaat aaccgcgaa gatccgaa ttgcgcaa aggaaaatcaa gatgtcaaa aggcccgaa ggccctgaa</li> <li>ggtagtgaat aaccgcgaa gatccgaa ttgcgcaa aggccaaaagg afgcaaa aggccgaaa ggaaaccaa aggcccgaa aggccaaagggaaag 702</li> <li>ggcatggga gcatgccd ggcaacttg gccaacttg gccaacttg gcatgtacaa ggaaggaagg 720</li> <li>tttgagcga ggggcaaca aagatcgg tgggtacaa aggaaggaagg 720</li> <li>tttgagca gggggaaca aggaacg gcagtacaa ggaaccaa aggaaggaagg 720</li> <li>tttgagca gggggcaaca aagatctgg tggtttcca gctgtacaa ggaaggaagg 720</li></ul>
gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca 624 cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaacac 630 gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgcac gatggcggc 636 tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat 642 tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact 648 ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga 654 aagagatcat ccatattct tatcctaaat gaatgcacg tgtcttata attcttgat 660 gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atataatt 666 aatatcaatt gggttagcaa aacaaatcca gtctaggtgt gttttgcgaa tgcggccggg 672 ctgcaggaat tcgatagctt tgagagtac atgatgacac tagattaatc aatgccaaag 678 tctgaaaaat gcaccctcag tctatgatc agaaaatcaa gattgcttga ggccctgttc 684 ggttgttccg gattagagcc ccggattaat tcctagccgg attacttct taattatat 690 agattttgat gagctggaat gaatcctggc ttattccgt acaaccgaac aggccctgaa 696 ggataccagt aatcgctga ctaaattgc atgctgtcag atgctgcag 702 ggccatgggc gcatgtcctg gccaacttg ttagatgac atgctgccag atgccggg 702 ggccatgggc gcatgtcctg gccaacttg ttagatga aggtgcaga ataggaagt 702 ggccatggg gcatgtcctg gccaacttg ttagatgac ccattaggt tagagaag 702 ggccatggg gcatgtcctg gccaacttg ttagatga aggaggtga ataggaagt 702 ggccatggg gcatgtcctg gccaacttg tatgatag gcatgtcaa ggatgcaag 702 ggccatggg gcatgtcctg gccaacttg tatgatagc gcatgtaca ggaagg 720 ttttgagcga gggggcatca aagatctggc tgtgttcca gctgttttg ttagcccaa 726 ttttgagcga gggggcatca aagatctggc tgtgttcca gctgttttg ttagcccaa 726 ttttgagcga gggggcatca aagatctgg tgtgttcca gctgttttg ttagcccaa 726 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgttttg ttagcccaa 726 ttttgagcga gggggcatca aagatctgg tgtgttcca gctgttttg ttagcccaa 726 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgttttg ttagcccaa 726 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgttttg ttagcccaa 726 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgttttg ttagcccaa 726
cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac 630 gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc 636 tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat 642 tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact 648 ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga 654 aagagatcat ccatattct tatcctaaat gaatgtcacg tgtctttata attctttgat 660 gaaccagatg cattcatta accaaatca tatacatata aatattaatc atataaatt 666 aatatcaatt gggtagcaa aacaaatcta gtctaggtg gttttgcgaa tgcggccggg 672 ctgcaggaat tcgatagct tgagagtac aggaaaatcaa gatggtcag ggccctgtc 684 ggttgttccg gattagagc ccggattaat tcctagccgg attacttct taattatat 690 agattttgat gagctggaat gaatcctgg ttattccgg aggccctgaa 696 ggataccagt aatcgctgg ctaattgc agaaaatcaa gatggtcag aggccctgaa 696 ggataccagt aatcgctgg ctaattgg agatctgcg atgctgtag ggccctgaa 702 ggtagtgagat aaccggcat atggtgccag tttgatggca tgcaggat ttggagaga 702 ggataccagt aatcgctgg ctaaattgg atgctgtcag agtgtcaga ttgcagcag 702 ggataccagt aatcgctgg gccaacttg tatgatga ccattaggt tagagatgg 702 ggccatgggc gcatgtcctg gccaacttg tatgatata ggcagggtg ataggaagg 702 ggccatggcg gcatgtcctg gccaacttg tatgatata ggcagggtg ataggaagg 702 tttgagcga gggggcatca aaggtcgc tgtgttcca gctgtacaa ggaatgcaag 714 aaaattgtat tgtaaaaagg gattcttct gttgttagc gcatgtacaa ggaatgcaag 720 tttgagcga gggggcata aaggtcgg tgtgttcca gctgttttg ttagcccat 726 cgaatccttg acataatgat cccgcttaaa taagcaact cocttgata dtccttor 732
gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc 636 tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat 642 tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact 648 ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga 654 aagagatcat ccatattct tatcctaaat gaatgtcacg tgtctttata attctttgat 660 gaaccagatg cattcatta accaaatcca tatacatata aatattaatc atatataatt 666 aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg 672 ctgcaggaat tcgatagctt tgagagtaca atgatgacac tagattaatc aatgccaaag 678 tctgaaaaat gcaccctcag tctatgatc agaaaatcaa gattgcttga ggccctgttc 684 ggttgttccg gattagagcc ccggattaat tcctagccgg attacttct taatttaat 690 ggataccagt aaccggcgg ttattgcga tgcggccgga 672 ggtagtgagat aggctggaat gaatcctggc ttattccgg attacttct taatttaat 690 ggtagtgagat aaccggcat atggtgccag ttagcagca aggccctgaa 696 ggataccagt aatcgctgg ctaattgc agaaaatcaa gatgctagta ttgcagcaag 702 gtagtgagat aaccggcat atggtgccag ttagtggca ccattaggt tagagatgg 702 gtagtgagat aaccggcat atggtgccag ttggtgtcag aggtgcagta 702 ggccatggc gcatgtcctg gccaacttg tatgatgac ccattaggt tagagatgg 708 ggccatggcg gcatgtcctg gccaacttg tatgatata ggcagggtga ataggaaag 714 aaaattgtat tgtaaaaagg gattcttct gttgttagc gcatgtacaa ggaatgcaag 720 tttgagcga gggggcatca aagatctggc tgtgtttcca gctgttttg ttagcccat 726 cgaatcctg acataatgat cccgcttaaa tagccacct cgcttgtata gtcctdag 720
²⁰ tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg tctgaaaaat gcaccctcag tctatgatca atgatgacac tagattaatc aatgccaaag ggttgttccg gattagagcc ccggattaat tcctaggcg attacttct taatttaat gggttgttcg gattagagc ccggattaat tcctagccgg attacttct taatttaat ggataccagt aaccggcat aggatgccag tgtcggt acaaccgaac aggccctgaa ggataccagt aatcgctgg ctaattggc atgctgtcag agtgtcagta ttgcagcaag ggataccagt aatcgctgag ctaaattgg atgctgtcag agtgtcagta ttgcagcaag ggataccagt aatcgctgag ctaaattgc atgctgtcag agtgtcagta ttgcagcaag ggccatgggc gcatgtcctg gccaactttg tatgatata ggcagggtga ataggaagt ggccatgggc gcatgtcctg gccaactttg tatgatata ggcagggtga ataggaagt ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgttttg ttagcccat gaatcctgg agggggcatca aagatctggc tgtgtttcca gctgttttg ttagcccat 720 ttttgagcga gggggcatca aagatctggc tgtgttcca gctgttttg ttagcccat 720 ttttgagcga gggggcatca aagatctggc tgtgttcca gctgttttg tagcccat 720 ttttgagcga ggggggggatggat gccggggggggggg
tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact 648 ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga 654 aagagatcat ccatatttet tateetaaat gaatgteaeg tgtetttata attetttgat 660 gaaccagatg catteatta accaaateca tatacatata aatattaate atatataatt 666 aatateaatt gggttagcaa aacaaateta gtetaggtgt gttttgegaa tgeggeeggg 672 cetgeaggaat tegatagett tgagagtaca atgatgaaee tagattaate aatgeeaaag 678 teegaaaaat geaeeeteag tetatgatee agaaaateaa gattgettga ggeeetgte 684 ggttgtteeg gattagagee eeggattaat teetageegg attaeettee taattatat 690 agattttgat gagetggaat gaateetgge ttatteeggt acaacegaae aggeeetgaa 696 ggataecagt aategeegg etaaatege atgeetgee aggeeetgaa 696 ggataecagt aategeegg etaaatege atgeetgee aggeegg aggeeetgaa 702 gegeetggege geatgteetg geeaaetteg tatgatgae ceattagggt aggeggegaa 702 ggeeatggge geatgteetg geeaaetteg tatgatatat ggeagggtga ataggaaggt 708 ggeeatggge geatgteetg geeaaetteg tatgatatat ggeagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gatteette gttgttage geatgtaeaa ggaatgeaag 720 ttttgagega gggggeatea aagateetge tgtgtttee geetgtee 726 cegaateettg acataatgat eeegettaaa taageaaeee coettgtata gtteeeta 726 cegaateettg acataatgat eeegettaaa taageaaeee coettgtata gtteettee 732
ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga 654 aagagatcat ccatatttet tateetaaat gaatgteaeg tgtetttata attetttgat 660 gaaccagatg catteatta accaaateea tatacatata aatattaate atatataatt 666 aatateaatt gggttageaa aacaaateta gtetaggtgt gttttgegaa tgeggeeggg 672 ctgeaggaat tegatagett tgagagtaea atgatgaaee tagattaate aatgeeaaag 678 tetgaaaaat geaceeteag tetatgatee agaaaateaa gattgettga ggeeetgte 684 ggttgtteeg gattagagee eeggattaat teetageegg attaettete taatttatat 690 agattttgat gagetggaat gaateetgge ttatteegg accaeegaae aggeeetgaa 696 ggataeeagt aategetgag etaaattgge atgetgteag agtgteagta ttgeageaag 702 ggatagtgagat aaceggeate atggtgeeag tttgatggea ceattagggt tagagatggt 708 ggeeatggge geatgteetg geeaaetttg tatgatatat ggeagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gatteette gtttgttage geatgtaeaa ggaatgeaag 720 ttttgagega gggggeetea aagateetgge tgtgttteea getgtttttg ttageeceat 726 egaateettg acataatgat eeegttaaa taageaaeet egetgttetg ttageeeaa 720
aagagatcat ccatatttet tateetaaat gaatgteaeg tgtetttata attetttgat gaaccagatg cattteatta accaaateea tatacatata aatattaate atatataatt aatateaatt gggttageaa aacaaateta gtetaggtgt gttttgegaa tgeggeeggg ctgeaggaat tegatagett tgagagtaea atgatgaaee tagattaate aatgeeaaag tetgaaaaat geaeeeteag tetatgatee agaaaateaa gattgettga ggeeetgtte ggttgtteeg gattagagee eeggattaat teetageegg attacttete taatttatat ggataeegg aateeggaat gaateetgge ttatteegg accaeegaae aggeeetgaa ggataeeagt aategetgag etaaattgee atgetgteag agtgteegta ttgeageaag ggatagtgagat aaceggeate atggtgeeag tttgatggea ceattagggt tagagatggt ggeeatggee geetgteetg geeaaetttg tatgatatat ggeagggtga ataggaaagt tttgagega gggggeetea aagateetgge tgtgttteea geetgttetg ttageeeaa tettgaaeaag gggggeetea aagateetgge tgtgtttee geetgteeaa ggaatgeeag aaaattgtat tgtaaaaagg gatteettet gtttgttage geetgteeaa ggaatgeeag ttttgageega gggggeetea aagateetgge tgtgttteea geetgttettg ttageeeea ttttgageega gggggeetea aagateetgge tgtgttteea geetgttettg ttageeeeat gaateeettg acataatgat eeegettaaa taageaaeet egettgttata gteetee ttttgageega gggggeetea aagateetgge tgtgttteea geetgttettg ttageeeeat aaaattgtat tgtaaaaagg datteettee gttgttteea geetgttettg ttageeeeat gaateeettg acataatgat eeegettaaa taageaaeet egettgtata gteettetg
gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt 666 aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg 672 ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag 678 tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc 684 ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat 690 agattttgat gagctggaat gaatcctggc ttattccggt accaaccgaac aggccctgaa 696 ggataccagt aatcgctgag ctaaattgc atgctgtcag agtgtcagta ttgcagcaag 702 gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt 708 ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gattcttct gtttgttagc gcatgtacaa ggaatgcaag 720 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgttttg ttagccccat 726 cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttotg 732
aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg 672 ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag 678 tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc 684 ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat 690 agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa 696 ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag 702 gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt 708 ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gattcttct gtttgttagc gcatgtacaa ggaatgcaag 720 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgttttg ttagccccat 726 cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttotg 732
ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag 678 tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc 684 ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat 690 agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa 696 ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag 702 gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt 708 ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gattcttct gtttgttagc gcatgtacaa ggaatgcaag 720 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgttttg ttagccccat 726 cgaatccttg acaactgat cccgttaaa taagcaacct cgcttgtata gttccttotg 732
tetgaaaat geaceeteag tetatgatee agaaaateaa gattgettga ggeeetgte 684 ggttgtteeg gattagagee eeggattaat teetageegg attacttete taatttatat 690 agattttgat gagetggaat gaateetgge ttatteeggt acaaeegaae aggeeetgaa 696 ggataeeagt aategetgag etaaattgge atgetgteag agtgteagta ttgeageaag 702 gtagtgagat aaceggeate atggtgeeag tttgatggea eeattagggt tagagatggt 708 ggeeatggge geatgteetg geeaaetttg tatgatatat ggeagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gatteettet gttgttage geatgtaeaa ggaatgeaag 720 ttttgagega gggggeatea aagatetgge tgtgttteea getgttttg ttageeceat 726 egaateettg acataatgat eeegttaaa taageaaeet egetgttttg ttageeceat 726
ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat 690 agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa 696 ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag 702 gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt 708 ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag 720 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat 726 cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttotg 732
agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa 696 ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag 702 gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt 708 ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gattcttct gtttgttagc gcatgtacaa ggaatgcaag 720 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat 726 cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttotg 732
ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag 702 gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt 708 ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gattcttct gtttgttagc gcatgtacaa ggaatgcaag 720 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat 726 cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttotg 732
gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt 708 ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag 720 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat 726 cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttotg 732
ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt 714 aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag 720 ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat 726 cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg 732
aaaattgtat tgtaaaaagg gatttettet gtttgttage geatgtaeaa ggaatgeaag 720 ttttgagega gggggeatea aagatetgge tgtgttteea getgtttttg ttageeceat 726 egaateettg acataatgat eeegettaaa taageaacet egettgtata gtteettgtg 732
ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat 726 cgaatccttg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg 732
cgaatcettg acataatgat eccepettaaa taageaacet egettgtata gtteettgtg 732
ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca 738
³⁵ gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta 744
ttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg 750
acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact 756
tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga 762
agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cqttttqtcc 768
40 caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt 774
40caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt774gtgctccctg ctactgcgaa cgttttagag ctagaaatag caagttaaaa taaggctagt780

	<210> 126
45	<211> 7843
	<212> DNA
	<213> Artificial

<220> 50 <223> artificial

<400> 126

### EP 3 191 595 B1

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatogt	ctaaaqqaca	attgagtatt	240
5	ttgacaacag	gactetacag	ttttatcttt	ttagtgtgg	tatattata	+++++++++	300
	assatsaatt	gaccectacag	atacttoato	coupercouper a	atagatagat	ttaggettta	360
	caaalayeee		atacticate	tatttatta	glacalecal	ctayyyttta	420
	gggttaatgg	LLLLLALAGA		tagtacatet	atttattet	atttageet	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaaacta	540
10							
15							
20							
25							
30							
25							
35							
10							
40							
45							
50							
55							

	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
5	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
0	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctcccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acqccqctcq	tcctcccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	catattata	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
10	gtacgtcaga	cacottctoa	ttoctaactt	gccagtgttt	ctctttagag	aatcctggga	1200
	tooctctaoc	cattccacaa	acqqqatcqa	tttcatgatt	tttttttttt	cottocatao	1260
	aatttaattt	accetttec	tttatttcaa	tatatoccot	gcacttgttt	otcoootcat	1320
	cttttcatoc	tttttttat	cttaattata	atgatgtggt	ctaattaaac	ggtcgttcta	1380
	gatcogagta	gaattetott	tcaaactacc	tootogattt	attaatttto	gatetotato	1440
	tototoccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcoatctag	1500
15	gataggtata	catottoato	cooottttac	tgatgcatat	acagagatoc	tttttattca	1560
	cttaattata	atgatgtggg	ataattaaac	ggtcgttcat	tcattctaga		1620
	atactottto	aaactaccto	atatattat	taattttooa	actotatoto	tatatatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	atatacatat	1740
	taatataaat	tttactgatg	catatacato	atoocatato	carcatctat	tcatatoctc	1800
20	taacetteae	tacctatcta	ttataataaa	caagtatatt	ttataattat	tttatatatta	1860
20	atatacttog	atgatgggat	atacaacaaa	tatatata	ttttttaccac	catagatta	1920
	tacactett	atyacyycac	tactotttct	tttatatgcgga	ataacatat	tatttaatat	1920
	tacttotoca	actogectog	agaggateca	taggacgacg	gaagaagggg	aaggtgatgatga	2040
	according	ggttgatter	ayayyattea	raganagaata	gaagaagege	aaggugaugg	2040
	acaagaagta	tageategge	tagaagaag	tabaataat	gguggguugg	geegeeatea	2160
25	cyyacyaata	caaggieeeg	ccyaayaayi	tettagetee	cyycaataca	gaeegeeaea	2100
	gcalcaagaa	adactigate	ggegeeetee	lgillgalag	cggcgagacc	geggaggega	2220
	taggeteaa	gaggaccycc	aggagacggt	acactaggeg	caagaacagg	alcigciace	2200
	tgcaggagat	cttcagcaac	gagatggcga	aggrggacga	etcettette	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	ageatgageg	gcacccaatc	tteggeaaca	2400
	tegtegaega	ggtaagtttc	tgettetace	tttgatatat	atataataat	tatcattaat	2460
30	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	TIGCTITICT	gtagtttata	agtgtgtata	τττταατττα	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagetgtte	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
35	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaagget	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
40	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
40	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg	3240
	tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct	3300
	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
45	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
	ccgtgtacaa	cgageteace	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840

tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg

agateteggg cgtggaggat cggtteaacg ceteactegg caegtateae gaeeteetea

agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca

tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt

ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca

tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg

	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagetegtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcotcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcococo	4560
5	agcogatgaa	acquatcqaq	gagggcatta	aagaggtcog	otcccagate	ctgaaggagg	4620
	acccotoga	aaatacccag	ctccagaatg	aaaageteta	cctctactac	ctocagaaco	4680
	accacaacat	gtacgtggac		acattaatco	getateggae		4740
	accacatcot	accacaatca	ttcctcaagg	acqataqcat	caacaacaaa	atactcaccc	4800
	actacates	aaatcoooc	aagagggagaga	acgueageae	cgacgacgacg	atasaasaa	4860
10	tassasata	ataccyyyyc	ataataaaaa	acgegeeeag	cgaggaggee	aagttagaaga	4000
10	cyaaaaacta	agagaaaaga	actaccttaccy	cgaaactgat	tacccagege	t+gataaaaa	4920
	accugacyaa	ggeggaaege	gguggeuuga	gegaaetetaga	caaggeggge		5040
	ggeagerggr	cyagacycyc	cagalcacga	ageatgrege	ccagaleety	gacageegea	5100
	Lyaalaciaa	glacyalgaa	aacyacaayc	Lyalcoggga	gglgaagglg	alcacyclya	5100
	agtecaaget	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
15	acaactacca	ccacgcccac	gacgcctacc	tgaatgeggt	ggtcgggacc	geeetgatea	5220
	agaagtaccc	gaagetggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
20	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
20	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
25	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
20	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
30	gcgctccggc	agcetteaag	tacttcgaca	ccacgattga	ccqqaaqcqq	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	taggaggccg	caagcggggaa	aggtaggtag	cottaaccta	gacttotcca	tcttctggat	6420
	tooccaactt	aattaatota	toaaataaaa	ggatgcacac	atagtgacat	octaatcact	6480
35	ataatgtggg	catcaaagtt	ototottato	totaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	totettata	attetteat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	atctaggtat	gttttgcgaa	tacaaccaaa	6720
	ctocaggaat	tcgatagett	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
10	tctgaaaaat	gcaccetcag	tctatgatcc	agaaaatcaa	gattgettga	agecetatte	6840
40	agttattccg	gattagagee	ccggattaat	tectageegg	attacttctc	taatttatat	6900
	agattttgat	gagetggaat	gaatectooc	ttattccoot	acaaccgaac	aggecetgaa	6960
	agateccegat	aatcoctoao	ctasattooc	atactataa	actotcacta	ttacaacaaa	7020
	ggacaccagt	aaccgccgag	ataataaaaa	tttataataaaa	agegeeagea	tagagatagt	7020
	gragegagat	aaccygcatc	acggcgccag	tatgatggea	ccaccagggt	ataggalagt	7000
45	ggeeatggge	tatasasa	gecaacticg	attatata	ggcagggcga	acayyaaayc	7140
	tttta	rgraaaaayy	gatttettet	totottage	gcalglacaa	ggaacgcaag	7200
		ggggggcatca	aagatetgge	tytyttteea	gergeret		7200
	cyaalcelly	acalaalyal	cccycllaaa		cycligiala	gllccllglg	7320
	CTCTAACACA	cgatgatgat	aagtegtaaa	atagtggtgt	ccaaagaatt	tecaggeeea	7380
50	gttgtaaaag	ctaaaatget	attegaattt	ctactageag	taagtegtgt	ttagaaatta	7440
50	CEEEEEE	TACCTTTTT	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	/500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	/560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
55	ggtgcaggca	ggagaattgt	tttagagcta	gaaatagcaa	gttaaaataa	ggctagtccg	7800
	ttatcaactt	gaaaaagtgg	caccgagtcg	gtgcttttt	ttt		7843

<210> 127

	<211> 7847 <212> DNA <213> Artificial
5	<220> <223> artificial
10	<400> 127
15	
20	
25	
30	
35	
40	
45	
50	
55	

	atacaacata	acccootcot	acccctctct	agagataatg	agcattgcat	otctaaotta	60
	taaaaatta	ccacatattt	ttttqtcac	acttottoa	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacqaat	aatataatct	atagtagtag	aataatatca	180
	atatttaa	gaatgatata	aataaaaaat	tagagatgat	atageaceac	attaactatt	240
5	ttgagaaga	gaatataaaa	++++at at ++	ttagacatggt	tatattata	++++++++	300
	cogacaacay	gaccectacag	atacttacta	asttttstts	atagatagat	ttoggattto	360
	caaalayeet	tttttatata	atacticate	tattilatta	glacalecal	ctayyyttta	420
	gggllaalgg	llllalaga		Lagladald		atttageet	420
	ctaaattaag	aaaactaaaa	CTCTATTTA	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctcccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acqqqatcqa	tttcatgatt	tttttqttt	cgttgcatag	1260
	aatttaattt	accetttec	tttatttcaa	tatatoccot	gcacttottt	atcagatcat	1320
	cttttcatoc	tttttttat	cttaattata	atgatgtggt	ctaattaaac	ggtcgttcta	1380
	gatcogagta	gaattetott	tcaaactacc	tootogattt	attaatttto	gatetotato	1440
	tatataccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcoatctag	1500
25	gataggtata	catgttgatg	coortttac	tgatgcatat	acagagatac	tttttattca	1560
20	cttaattata	atgatgtoguog	ataattaaac	gatcattcat	tcattctaga	tragagtaga	1620
	atactette	aaactaccto	at at at t t at	taattttaaa	actatatata	tatatata	1680
	atattgette	ttaccactt	aggetacceata	caactetgga	totacostac	atatacatat	1740
	tastatagat	tttacgagett	aayatyyaty	gaaatatega	acceptates	tastatata	1000
	toogettoog	togatotato	ttatatata	acygeataty	tageatetat	tttalgele	1960
30	caacellyag	lacclatcla			tttttt		1000
		algalggeat		tatatgtgga	ctccccage	tetttea	1920
		attigettgg	tactgtttet	trugtegatg	ctcaccctgt		1980
	tacttetgea	ggtcgactct	agaggateea	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
05	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagetgtte	atccageteg	tgcagacgta	caatcaactq	ttcgaggaga	2820
45	accccataaa	cactageage	atagacacca	aggecatect	ctcggccagg	ctctcgaaat	2880
	caagaagget	ggagaacctt	atcgcgcagt	taccaaacaa	aaagaagaac	aacctcttca	2940
	gcaaccttat	tacactcaac	ctcggcctga	coccoaactt	caaatcaaac	ttcgacctcg	3000
	cggaggagg	caagetccag	ctctcaaago	acacctacca	cgacgacete	gacaacctor	3060
	tagacagat	aggagaggag	tacgoggagg	tettecter	caccaacaac	ctctcccacc	3120
50	ctatectect	cagogacato	cttcagatca	acaccoaaat	taccaagge	constateog	31.80
'	craggetget	taaacactec	racrageace	atcaggagadt	cacoctacta	aaggeegeeeg	3240
	tooggaagaa	actococcac	aadtacaaac	agatettett	caaccaatca	aaaaaaaaaa	2200
	aggggggta	tatagagaga	aaytacaayy	agacett	atagaaatta	addaddyydl	2200
	tactor	calcyacyge	ygugudagee	ayyaayayit	antanan		0000
	Leetggagaa	yatggacggC	accyaggagt	igerggreaa	yeteaacagg	yayyacctcc	3420

	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccqtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatettgacg	ttccgcatcc	catactacqt	qqqcccqctq	gctcgcggca	3600
	actcccqqtt	cacctagata	accoggaagt	cqqaqqaqac	catcacaccc	tggaactttg	3660
5	aggaggtggt	coataagggc	gctagcgctc	agagetteat	cgagcgcatg	accaacttco	3720
5	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	getgetetae	gagtacttca	3780
	ccatatacaa	cgagetcace	aaggtcaaat	acgtcaccga	gaggatgagg	aagccggcgt	3840
	tcctgagcga	cgageeeaee	aaggccatag	togacctcct	cttcaagacg	aacaqqaaqq	3900
	taaccataaa	ccaattaaaa	aaggegaeag	traaraaaat	agagtactto	aactccataa	3960
	agatetogog	gcaaccaaaa	gaggactact	catagaaaaa	agagtgeete	gacetcetca	4020
10	agatettaa	agagaaggad	ttaataaaaa	aggaggaggag	caegrateae	gaeeeeeeea	4020
	tagtattaa	agacaaggac	tteetegaca	acyayyayaa	cyayyacate	atapaggada	4000
	Legiceleae	attanaga	clegaggace	gegaaatgat	cyayyayayy	togaagacet	4140
	acgegeacet	gllegaegae	aaggicalga	aacageteaa	gaggegeege		4200
	ggggaagget	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	teetggaett	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
15	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacategee	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
20	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
25	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
20	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
30	agcgcccgct	categaaace	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	agacagatte	agcaaggagt	ccatcctccc	qaaqcqcaac	tccgacaage	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatqq	cggcttcgac	agecegaeeg	5640
	tcgcatacag	catcctcatc	gtggcgaagg	togagaaggg	caagtcaaag	aagetcaagt	5700
35	ccotoaagoa	actactcaaa	atcacgatta	togagcogtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactoc	5820
	cgaagtactc	actettegag	ctogaaaaco	gccgcaagag	gatgetegee	teegeaggeg	5880
	agttgcagaa	gggggagg	ctogcoctco	cgagcaaata	cotcaatttc	ctgtacctcg	5940
	ctagecacta	tgaaaagete	aagggcagcc	cogagogacaa	cgagcagaag		6000
	togagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaage	6060
40	aggageagea	caccaccaca	aacctogaca	agatactata	gaccagegag	aaggagggggg	6120
	agaaagaaat	agggggggg	acceggaea	tastaasaat	ggcacacaac	aageacegeg	6180
	acaaaccaac	acycyaycay	taattaaaaa	agaggatta	accession	tagaagaaga	6240
	gegeeeegge	agececcaag	acceccyaca	ccacyaccya	ccggaagcgg	tatacgagca	6300
	cyaayyayyt	garagaaata	acyclyatee	accayaycat	cacayyyctic	calyadacaC	6300
	geategaeet	yayccagetg	yycyyagada	ayayaccacg	yyaccgccaC	yatyycgage	0300
45	taggggggggggg		aggraggrad	cyttaaccta	gacttgtcca		0420
	rggecaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	getaateaet	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attettgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660

aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg

ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag

tctgaaaaat gcaccctcag tctatgatcc agaaaatcaa gattgcttga ggccctgttc ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat

agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag

gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt

ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt

aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag

50

55

6720

6780 6840

6900 6960

7020

7080

7140

5 10	ttttgagcga cgaatccttg ctctaacaca gttgtaaaag tttttttata acggagaata tcgtcacaga agcccaaaca caccttgact gatcgataca tccgttatca	ggggggcatca acataatgat cgatgatgat ctaaaatgct taccttttt tttgcaaaaa gagggccata gcagtccgta aatcacaaga catacacttg acttgaaaaa	aagatctggc cccgcttaaa aagtcgtaaa attcgaattt ccttctatgt agtaaaagag agaaacatgg ggtggagcaa gtggagcgta cagttttaga gtggcaccga	tgtgtttcca taagcaacct atagtggtgt ctactagcag acagtaggac aaagtcatag cccacggccc agcgctgggt ccttataaac gctagaaata gtcggtgctt	gctgttttg cgcttgtata ccaaagaatt taagtcgtgt acagtgtcag cggcgtatgt aatacgaagc aatacgcaaa cgagccgcaa gcaagttaaa tttttt	ttagccccat gttccttgtg tccaggccca ttagaaatta cgccgcgttg gccaaaaact accgcgacga cgttttgtcc gcaccgaatt ataaggctag	7260 7320 7380 7440 7500 7560 7620 7620 7680 7740 7800 7847
15	<210> 128 <211> 7849 <212> DNA <213> Artificial						
20	<220> <223> artificial <400> 128						
25							
30							
35							
40							
45							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
_	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctattta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctcccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
••	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
30	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520

EP 3 191 595 B1ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac2580

	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
5	ccoacotooa	caagetotte	atccagetcg	tocagacota	caatcaacto	ttcgaggaga	2820
5	accccataaa	cactagegge	otogacocca	aggccatcct	ctcooccaoo	ctctcgaaat	2880
	caagaagget	ggagaacctt	atcococaot	toccaoocoa	aaagaagaag	aacetettea	2940
	gcaacettat	tacactcaac		coccoaactt	caaatcaaac	ttcgacctcg	3000
	cadadacac	caagetccage	ctctcaaagg	acacctacca	cgacgacctc	gacaacctcc	3060
	taacccaat	aggagaggag	tacgcggacc	tetteetege	caccaacaac	ctctcccacc	3120
10	ctatectect	caggugaceag	cttcagatca	acacccaaat	taccaagge	ccactatcca	3180
	ccaccetget	tagegacate	acasaaca	ataaggaaat	caccadggca	aagggaagtag	3240
	tragcatgat	actoccoca	aadtacaaco	accaggacet	caegeegeee	aaaaaccoct	3300
	acacacata	tatogag	aataccaagg	aggaeagagtt	ctacaactto	atcaaaccaa	3360
	tootooaaaa	gatggacggc	accoraccant	tactactas	actasacaaa	gaggaggt cc	3420
	tcaggagaa	gacggacggc	accaccoct	ccatccccca	tcagatccag	ctagacaaac	3480
15	taggaagea	gaggaccee	gacaacyget	tatacaget	cotgaeccac	aaccorraca	3540
	agatagagaaa	cetycyycyc	ttaggaggact	astactoget	aggaaggata	aaccyyyaya	3600
	agategagaa	gatettyacy	aggggaagt	catactacyt	gggcccgccg	tagaagttta	3660
	acceedget	ageteegaag	acceggaage	cggaggagac	cattacatta	aggaacting	3720
	aggagguggu	cyacaayyyc	gelagegele	agagetteat	cyaycycary	accaacticg	2700
	alaadadddl	geeealgaa	aaagteetee	ccaagcacte	gelgelelae	gaglactica	2/00
20	ccgtgtacaa	cgagetcace	aaggtcaaat	acgicacega	gggcatgcgg	aageeggegt	3840
	teetgagegg	cgagcagaag	aaggegatag	tggaceteet	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgette	gactccgtgg	3960
	agateteggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtateac	gaceteetea	4020
	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
25	tegtecteae	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacet	4140
20	acgegeacet	gttcgacgac	aaggtcatga	aacageteaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	teetggaett	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacategee	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
30	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
35	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
40	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
40	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
45	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
50	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
55	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
~~	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300

	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
5	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
10	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
15	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
10	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
20	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gcataataag	tgaggagata	atctgtttta	gagctagaaa	tagcaagtta	aaataaggct	7800
25	agtccgttat	caacttgaaa	aagtggcacc	gagtcggtgc	ttttttt		7849

<210> 129 <211> 7844 <212> DNA <213> Artificial

> <220> <223> artificial

35 <400> 129

40

30

45

50

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	tttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620

---

atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg atggcatag cagcatctat tcatatgctc taaccttgg tacctatca ttataataa caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcag tatagtgg tttttttag cctgccttca tacgctatt attgcttgg tactgttct tttgtcgatg cacacctg tgttgggt acaagaagta cagcatcg ctcgacatcg gcaccact ggtgggctgg gccgtcatca cggacgaata taaggtccc aggagaggt tcaaggtcc tgttcgatag cgcgagacc gcggaggcga ccaggctcaa gaggaccgc aggagaggt acactaggc cacacagg accesses gagagagg accesses aggagagg aggacaga aggtggag acactagg gaggacaga aggtggag acactagg gaggacaga aggtggag acactagg gaggacag aggtggag acactagg gaggacag aggtggag acactagg gaggacaga aggtggag atctgctacc tgcaggagat cttcagcac gagatggcg aggtggag aggacaga aggtggacg ctccttctt caccgcctgg aggaatcat cctggtggag gaggacaga aggtggacg aggtggag acactagt ttgatata tatcattat

5

				-			
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
10	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
15	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
15	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
20	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cqqaqqacqc	caagetecag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcqc	cgccaagaac	ctctccgacg	3120
	ctatcctgct	cagegacate	cttcqqqtca	acaccgaaat	taccaaggca	ccqctqtccq	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
25	tccgccagca	acteccegaa	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
	acocoooata	tatcgacggc	agtaccagec	aggaagagtt	ctacaaottc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	toctootcaa	actcaacagg	gaggacctcc	3420
	tcaggaagca	gaggaccttc	gacaacggct	ccatcccoca	tcagatccac	ctogocoaac	3480
	tocatoccat	cctgcggcgc	caggaggact	tctacccott	cctgaaggat	aaccoogaga	3540
~~	agatcgagaa	gatettgacg	ttccgcatcc	catactacot	aaacccacta	gctcgcggca	3600
30	actcccoott	cocctogato	acccogaagt	cogaggagag	catcacaccc	togaacttto	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaaotcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
	ccgtgtacaa	cgagetcace	aaggtcaaat	acotcaccoa	gaggatgaga	aagccggcgt	3840
	tectgagegg	cgagcagaag	aaggcgatag	togacctcct	cttcaagacc	aacaggaagg	3900
35	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
	agatetegog	catagaggat	cogttcaacg	cctcactcoo	cacqtatcac	gacetectea	4020
	agatcattaa	agacaaggac	ttoctogaca	acgaggagaa	cgaggacatc	ctcgaggaga	4080
	togtoctcac	cctgaccctg	ttcgaggacc	acqaaatgat	cgaggacaco	ctgaagacct	4140
	acgcgcacct	attogacgac	aaggtcatga	aacagetcaa	aaaacaccac	tacactoott	4200
	acgegeaeee	atcccacaaa	ctcattaato	acatcagaga	caageageage	ggcaagaggee	4260
40	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccocaa	cttcatgcag	ctcattcacq	4320
	acqactcact	cacottcaao	gaegggeeeg	agaagggagaga	agtgaggggg	cagggtgact	4380
	ccctccacca	acacategee	aacctoocco	acteaceaac	cattaaaaaa	aggggggguee	4440
	agacggt caa	actcatcatc	aagetegteg	aggtgatggg	concerence	ccccaaaata	4500
	tcatcataca	gatagecagae	gageeegega	ccacccaaaa	agggcacaaag	aactcococo	4560
	aggggatgaa	acquateraaq	gagaaccaga	aagagetegg	agggcagaag	ctgaaggagg	4620
45	ageggatgaa	acygattgag	gagggcatta	aagagetegg	getetagate	ctgaaggagc	4680
	acceccycyga	atacataca	caccagaactor	adaayeeeea	gatataggaa	taggaggagg	4000
	accacator	gracyrygac	ttaggageegg	acattaacey	getateggat	atactaca	4800
	accacaccyc	geegeageeg	aggaggggggg	acyacaycac	cyacaacaay	gtgeteacee	4800
	tanna	ataccgggggc	aayaycyaca	acgugeeeag	cyayyayyuc	grgaagaaga	4000
50	lyaaaaacta	aagaaaaaaa	antanattan	cgaaactgat	tacccagege	ttattatta	4920
	accuyacyaa	ggeggaaege	gguggettga	agatetaga	caayycyyyc	and a concerned	4700
	tapata	cyayacycyc	cayaccacga	agcalgicge	coayateetg	yacayccyca	5040
	igaatactaa	ycacyatgaa	aacyacaage	Lyateeggga	ggtgaaggtg	accacgetga	5100
	agtecaaget	cgtgtcggac	tteegeaagg	acttecagtt	ctacaaggtC	egegagatea	2100
	acaactacca	ccacgcccac	yacgectace	tgaatgcggt	ggtcgggacc	yccctgatca	5220
55	agaagtaccc	gaagetggag	Leggagtteg	Lgtacggcga	ccacaaggtC		5280
	ycaaaatgat	cgccaagtdd	yagcaggaga	Leggeaagge	cacggcaaaa		5340
	actegaacat	catgaacttC	LECAAGACCG	agatcaccct	cgcgaacggc	yagateegea	5400

1680

1740 1800

1860

1920

1980

2040

	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
5	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
10	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
15	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
15	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
20	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
25	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
30	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
50	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
35	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gcaatttgta	tcttgcgcag	ttttagagct	agaaatagca	agttaaaata	aggctagtcc	7800
	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	tttt		7844
40							
	<210> 130						
	<211> 7845						
	<212> DNA						

<213> Artificial

# 45

<220>

<223> artificial

<400> 130

50

5	gtgcagcgtg taaaaaatta atacatatat gtgttttaga ttgacaacag caaatagctt gggttaatgg ctaaattaag	acccggtcgt ccacatattt ttaaacttta gaatcatata gactctacag cacctatata tttttataga	gcccctctct tttttgtcac ctctacgaat aatgaacagt ttttatcttt atacttcatc ctaatttttt	agagataatg acttgtttga aatataatct tagacatggt ttagtgtgca cattttatta tagtacatct	agcattgcat agtgcagttt atagtactac ctaaaggaca tgtgttctcc gtacatccat attttattct	gtctaagtta atctatcttt aataatatca attgagtatt tttttttttg ttagggttta attttagcct	60 120 180 240 300 360 420 480
10	tagaataaaa aggaaacatt ctaacggaca cggcatctct	taaagtgact tttcttgttt ccaaccagcg gtcgctgcct	aaaaattaaa cgagtagata aaccagcagc ctggacccct	caaataccct atgccagcct gtcgcgtcgg ctcgagagtt	ttaagaaatt gttaaacgcc gccaagcgaa ccgctccacc	aaaaaaaacta gtcgacgagt gcagacggca gttggacttg	540 600 660 720
15							
20							
25							
30							
35							
40							
45							
50							
55							

	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	acaacctcct	cctcctctca	caacaccaac	agetacgggg	gattcctttc	ccaccoctcc	840
	ttcgctttcc	attectedee	coccotaata	aatagacacc	ccctccacac	cctcttccc	900
	caacctcoto	ttattcagaa	cocacacaca	cacaaccaca	tetecceaa	atccacccot	960
	aggagagtag	acttaccart	cgcacacaca	tactaccaga	cececetata	togettetet	1020
5	cygcaceree	yerceaayyr	acyccyclcy				1020
	agateggegt	teeggteeat	geatggttag	ggeeeggtag	ttetacttet	gttcatgttt	1140
	gtgttagate	cgtgtttgtg	ttagateegt	getgetageg	ttcgtacacg	gatgegaeet	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
10	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	qqatqqaaat	atcgatctag	1500
	gataggtata	catottoato	coootttac	tgatgcatat	acagagatgc	tttttattca	1560
	cttaattata	atgatgtogt	ataattaaac	ggtcgttcat	tcottctaga	tcogagtaga	1620
	atactotttc	aaactaccto	atatattat	taattttaga	actotatoto	tatatatac	1680
15	atattata	ttaccacttt	aagatggatg	gaaatatgga	tatagaatag	atatacatat	1740
	tacticatag	tttacgagete	aayatgyaty	gaaacatota	acceptates	tastatata	1000
	tgatgtgggt	terrtetete	calalacaly	acygeataty	Cagcalclat		1000
	taacettgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatettg	1000
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttage	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
20	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tocaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccocctoo	2340
25	aggaatcatt	cctootogag	gaggacaaga	agcatgagcg	gcacccaatc	ttcoocaaca	2400
	tcatcaacaa	ggtaagtttc	tocttotacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatattta	2222222222	ttoaaaataa	aggaatataa	tatataggaa	2520
	tagtagtaat	ataatatte	adacactete		tagattttat	atatagcaa	2520
		gragitiara	aytytytata			toccoctoc	2500
	caaaacatgg	tgatgtgcag	gtggeetaee	acgagaagta	ceegacaate	taccacetee	2640
30	ggaagaaact	ggtggacage	acagacaagg	cggacctccg	geteatetae	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
35	cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaqqca	ccactatcca	3180
	ccagcatgat	taaacoctac	gacgagcacc	atcaggacct	cacoctoctc	aaggcactcg	3240
		geteecgag	aagtacaagg	agatettett	coaccaatca	aaaaacooct	3300
	acgroggata	tatcgacggc	antaccaacc	aggaagagatt	ctacaaqttc	atcaaaccaa	3360
40	taatagaaaa	atagaagaa	aggegeeagee	taataataaa	actasacaa	azaaaataa	3420
	tacagoogaa	gacggacggc	accyayyayt	cgctggtcaa	tacataa	gaggacette	2420
	teaggaagea	gaggacette	gacaacyyct	tatesaatt	cayaceeae	elgggegaae	2540
	tgcatgccat	cetgeggege	caggaggact	tetaccegtt	cetgaaggat	aaccgggaga	3540
	agatcgagaa	gatettgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
45	aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
	ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
	agateteggg	cgtggaggat	cggttcaacg	cctcactcoo	cacgtatcac	gacctcctca	4020
50	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	togtoctoac	cctgaccotg	ttcgaggagg	gcgaaatgat	cgaggagagag	ctgaagacct	4140
	acqcqcacct	attegacgac	aaggtcatge	aacagetcaa	aaaacaccac	tacactoott	4200
	angagegeacet	atacaaaaa	ctcattaata	gratgeread	raarrarara	addaadaada	4260
	taataasatt	actopactor	agaggetter	geaceayyya	attastasa	at at t as a c	1200
		anattance	gacyyytteg	agaagaagaaga	antananan		4320
55	acyactoget	cacylteaag	yaayacatdd	ayaaygcada	yyryagcggg	cayyytgact	4380

#### EP 3 191 595 B1

ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge

agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata

	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
5	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
10	tgaatactaa	gtacgatgaa	aacqacaaqc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	catatcagac	ttccgcaagg	acttccagtt	ctacaaqqtc	cgcgagatca	5160
	acaactacca	ccacqcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagetggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
45	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
15	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	qqqcqqqttc	aqcaaqqaqt	ccatcctccc	qaaqcqcaac	tccgacaage	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	catcctcatc	qtqqcqaaqq	tqqaqaaqqq	caaqtcaaaq	aagctcaagt	5700
20	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	qqatataaqq	aggtcaagaa	qqacctgatt	attaaactqc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcqccctcc	cgagcaaata	cqtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aaqqqcaqcc	cqqaqqacaa	cqaqcaqaaq	cagetetteg	6000
25	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaage	6060
	gggtgatcct	cqccqacqcq	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agcetteaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
••	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
30	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
35	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
40	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
45	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
50	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gaggaaacac	agacaagttg	gttttagagc	tagaaatagc	aagttaaaat	aaggctagtc	7800
	cgttatcaac	ttgaaaaagt	ggcaccgagt	cggtgctttt	tttt		7845

55 <210> 131

<211> 7848

<212> DNA

<213> Artificial

	<220>
	<223> artificial
-	<400> 131
5	
10	
15	
20	
20	
25	
30	
35	
40	
45	
50	

	ataasaata	a a a a a a a t	accept at at	agagataatg	aggattggat	atataaatta	60
	grgcagegrg	acceggeege	geeeeeeee	ayayataaty	agcattgtat	glulagila	100
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
_	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaqqaca	attgagtatt	240
5	ttgacaacag	gactetacag	ttttatcttt	ttagtgtgca	tatattetee	ttttttta	300
	caaatagett	cacctatata	atacttcatc	catttatta	atacatacat	ttagggttta	360
	caaatayeee	tittetatata	atacticatt	testestet	glacalleat		420
	gggttaatgg	tttttataga	CTAATTTTT	tagtacatet	atttattct	atttageet	420
	ctaaattaag	aaaactaaaa	ctctatttta	gtttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aqqaaacatt	tttcttqttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacogaca	ccaaccagcg	aaccagcagc	atcacatcaa	gecaagegaa	gcagacggca	660
	concetetet	atcactacct	ctoraccoct	ctccacactt	ccactccacc	attagactta	720
	cygcattett	gregergeer	ciggaceeee	cicyayayit	cegetecate	geeggaeeeg	720
	CTCCGCTGTC	ggcatccaga	aattgegtgg	cggagcggca	gacgtgagee	ggcacggcag	/80
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	coocacctcc	getteaaggt	acoccoctco	tcctccccc	ccccctctc	taccttctct	1020
	agat coocot	tccaatccat	acataattaa	aacccaataa	ttctacttct	attestattt	1080
	atattaata	actatttata	ttaataat	ggeeeggeeg	ttaataaaaa	geteacgeet	1140
	glyllagalc	cgrgrrrgrg	LLAYALCCYL	gergerageg	LLCGLacacg	galgegaeet	1000
20	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	CTCTTTgggg	aatcctggga	1200
	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttqt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcogagta	gaattetott	tcaaactacc	tootogattt	attaattto	gatetotato	1440
	tatatacat	acatattcat	anttaccaat	taaaataat	agatagaaat	atcoatctag	1500
25	cycyccac	acatatteat	agecacyaac	tgaagatgat	ggatggaaat	tttt	1500
20	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatge	ttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatq	atggcatatg	cagcatctat	tcatatgctc	1800
20	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
30	atatagttag	atgatgggat	atagagagaga	tatatataaa	++++++	actgaatta	1920
	terretett	atgatggtat	acycaycayc	thteterete	atacastat	tetttettet	1000
	tacgetattt	atttgettgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	aacaccctcc	tottcoatag	coocoacacc	acagaagacga	2220
	ccaggetcaa	gaggaccocc	aggagagggt	acactagoog	caagaacagg	atctoctacc	2280
	taaggoooda	attaaaaaaa	aggagaoggo	acatoraggeg	ataattatta	asaagaataa	2340
	cycayyayat	ceteageaac	yayatyytya	agguggauga			2340
	aggaatcatt	ccugguggag	gaggacaaga	agcargageg	geacecaate	LLCGGCaaCa	2400
	tcgtcgacga	ggtaagtttc	tgettetace	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	agtagagag	acagacaagg	conaccticco	actentetac	cttacctca	2700
	ggaagaaat	ggoggacage	acception	tataaaaa	geocatora	coggeceeg	2760
	cycatatyat	caageteege	ggccacttee	terrerere	cyaccuyaac		2700
45	ccgacgtgga	caagetgtte	atccageteg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cogaggacgc	caageteeag	ctctcaaagg	acacctacoa	cgacgacctc	gacaacctcc	3060
	tooccagat	aggagaggag	tacgcggacc	tetteetege	caccaagaac	ctctcccacq	3120
50	atataataat	aggagaccag	attaggeta	agaggagagt	tagaaagaaa	accetataca	2100
	clatectyct	Caycyacalc	CLLCggglCa	acaccyaaat	Laccaayyca	cegergreeg	3100
	ccagcatgat	taaacgctac	gacgagcacc	accaggacct	cacgetgete	aaggcactcg	3240
	tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct	3300
	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctgqtcaa	gctcaacagg	gaggacctcc	3420
55	tcaggaagca	gaggacette	gacaacooct	ccatcccoca	tcagatccac	ctgggcgaac	3480
	tacataccat	cetacaacac	caggaggagt	totaccost	cctgaaggat	aacconnaga	3540
	agatagaga	cotycyycyc	ttaggagguet	astactocc	aaaaaaata	aatagggaga	3600
	ayalcyayaa	yatettyaeg	LLCCYCATCC	calaciacyt	yyyeeeyetg	yeregeggea	2000

actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg	3720
ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840
tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaqa	6540

aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat

gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg

ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag

totgaaaaat gcaccotcag totatgatec agaaaatcaa gattgottga ggccctgttc

ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat

agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa

ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt

ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt

aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag

ttttgagcga ggggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat

cgaatcottg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg

ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca

### EP 3 191 595 B1

5	gttgtaaaag tttttttata acggagaata tcgtcacaga agcccaaaca caccttgact gtacttgctc gtccgttatc	ctaaaatgct taccttttt tttgcaaaaa gagggccata gcagtccgta aatcacaaga actgtctaaa aactgtctaaa	attcgaattt ccttctatgt agtaaaagag agaaacatgg ggtggagcaa gtggagcgta tacgttttag agtggcaccg	ctactagcag acagtaggac aaagtcatag cccacggccc agcgctgggt ccttataaac agctagaaat agtcggtgct	taagtcgtgt acagtgtcag cggcgtatgt aatacgaagc aatacgcaaa cgagccgcaa agcaagttaa ttttttt	ttagaaatta cgccgcgttg gccaaaaact accgcgacga cgttttgtcc gcaccgaatt aataaggcta	7440 7500 7560 7620 7680 7740 7800 7848
10	<210> 132 <211> 7846 <212> DNA <213> Artificial						
15	<220> <223> artificial						
20	<400> 132						
25							
30							
35							
40							
45							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
_	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	ttttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
••	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	tttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
30	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
25	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700

cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg cggaggacgc caagetecag eteteaaagg acacetaega egaegaeete gacaacetee tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatectget cagegacate ettegggtea acaeegaaat taecaaggea cegetgteeg ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc tcaggaagca gaggacette gacaacgget ceateeegea teagateeae etgggegaae tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agategagaa gatettgaeg tteegeatee catactaegt gggeeegetg getegeggea actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agateteggg cgtggaggat eggtteaaeg eeteaetegg eaegtateae gaeeteetea agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcqtcctcac cctqaccctq ttcqaqqacc qcqaaatqat cqaqqaqqq ctqaaqacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaagget gteecgeaag eteattaatg geateaggga eaageagage ggeaagaeea tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acqactcqct cacqttcaaq gaaqacatcc aqaaqqcaca qqtqaqcqqq caqqqtqact ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg fgctcaccc ftgaagaaga agttcgaca tcataaaaa Jacageegea

accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga
tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca
acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa
ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca
tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga
agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca
acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca
agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc
gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct
actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca
agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg
atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg
aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc
tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg
tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt
ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga
tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc
cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg
agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg
ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg
tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc
gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg
acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg
gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca
cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac
gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc
tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat
tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact

	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
5	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
10	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	ggggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
15	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	tacctttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
20	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gcataatgag	gatcgaggat	ggttttagag	ctagaaatag	caagttaaaa	taaggctagt	7800
	ccgttatcaa	cttgaaaaag	tggcaccgag	tcggtgcttt	ttttt	_	7846
	-						

<210> 133
 25
 <211> 7843
 <212> DNA
 <213> Artificial

<220> 30 <223> artificial

<400> 133

35

40

45

50

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
-	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
••	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800

taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg 1860 1920 atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt 1980 2040 tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca 2100 cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca 2160 gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga 2220 2280 ccaggetcaa gaggaccgec aggagacggt acactaggeg caagaacagg atetgetace tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg 2340 2400 aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca 2460 tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat tagtagtaat ataatatttc aaatattttt ttcaaaataa aagaatgtag tatatagcaa 2520 ttgcttttct gtagtttata agtgtgtata ttttaattta taacttttct aatatatgac 2580 caaaacatgg tgatgtgcag gtggcctacc acgagaagta cccgacaatc taccacctcc 2640 ggaagaaact ggtggacagc acagacaagg cggacctccg gctcatctac cttgccctcg 2700 cgcatatgat caagttccgc ggccacttcc tcatcgaggg cgacctgaac ccggacaact 2760 ccgacgtgga caagctgttc atccagctcg tgcagacgta caatcaactg ttcgaggaga 2820 accccataaa cgctagcggc gtggacgcca aggccatcct ctcggccagg ctctcgaaat 2880 caagaaggct ggagaacctt atcgcgcagt tgccaggcga aaagaagaac ggcctcttcg 2940 gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg 3000 cggaggacgc caagetecag eteteaaagg acacetaega egaegaeete gacaacetee 3060 tggcccagat aggagaccag tacgcggacc tottcctcgc cgccaagaac ctctccgacg 3120 ctatectget cagegacate ettegggtea acaeegaaat taeeaaggea eegetgteeg 3180 ccaqcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg 3240 3300 tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct 3360 acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctggagaa gatggacggc accgaggagt tgctggtcaa gctcaacagg gaggacctcc 3420 tcaggaagca gaggacette gacaacgget ceatecegea teagateeae etgggegaae 3480 tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga 3540 3600 agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg 3660 aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 3780 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca 3840 ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt 3900 tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg 3960 agateteggg egtggaggat eggtteaaeg eeteaetegg eaegtateae gaeeteetea 4020 agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca 4080 tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct 4140 acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt 4200 4260 ggggaagget gteecgeaag eteattaatg geateaggga caageagage ggeaagaeea tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg 4320 acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact 4380 4440 ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge

agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg

agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc

accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg

gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg

accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc

ggtcggataa aaatcgggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga

tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca

acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa

ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga

agtccaaget cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca

agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct

actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg

atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg

aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc

5

10

15

20

25

30

35

40

45

50

55

4500

4560

4620

4680

4740

4800

4860

4920 4980

5040

5100

5160

5220 5280

5340 5400

5460

	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
5	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
10	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
15	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
15	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
20	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
25	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
20	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
50	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
35	gctcgtgttg	gagatacagt	tttagagcta	gaaatagcaa	gttaaaataa	ggctagtccg	7800
	ttatcaactt	gaaaaagtgg	caccgagtcg	gtgcttttt	ttt		7843
	<210> 134						

40 <211> 7844
40 <212> DNA
<213> Artificial

<220> <223> artificial

45

<400> 134

50

	gtgcagcgtg taaaaaatta atacatatat	acccggtcgt ccacatattt ttaaacttta	gcccctctct tttttgtcac ctctacgaat	agagataatg acttgtttga aatataatct	agcattgcat agtgcagttt atagtactac	gtctaagtta atctatcttt aataatatca	60 120 180
5	gtgttttaga ttgacaacag caaatagctt gggttaatgg	gaatcatata gactctacag cacctatata tttttataga	aatgaacagt ttttatcttt atacttcatc ctaatttttt	tagacatggt ttagtgtgca cattttatta tagtacatct	ctaaaggaca tgtgttctcc gtacatccat attttattct	attgagtatt tttttttttg ttagggttta attttagcct	240 300 360 420
10	ctaaattaag tagaataaaa aggaaacatt ctaacggaca	aaaactaaaa taaagtgact tttcttgttt ccaaccagcg	ctctatttta aaaaattaaa cgagtagata aaccagcagc	gttttttat caaataccct atgccagcct gtcgcgtcgg	ttaataattt ttaagaaatt gttaaacgcc gccaagcgaa	agatataaaa aaaaaaacta gtcgacgagt gcagacggca	480 540 600 660
15	cggcatctct ctccgctgtc gcggcctcct ttcgctttcc	gtcgctgcct ggcatccaga cctcctctca cttcctcgcc	ctggacccct aattgcgtgg cggcaccggc cgccgtaata	ctcgagagtt cggagcggca agctacgggg aatagacacc	ccgctccacc gacgtgagcc gattcctttc ccctccacac	gttggacttg ggcacggcag ccaccgctcc cctctttccc	720 780 840 900
20							
25							
30							
35							
40							
45							

	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
5	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
0	tggctctagc	cgttccgcag	acqqqatcqa	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttqt	cttggttgtg	atgatgtggt	ctaattaaac	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tootooattt	attaattttg	gatctgtatg	1440
	tatataccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
10	gataggtata	catottoato	coootttac	tgatgcatat	acagagatgc	ttttattca	1560
	cttaattata	atgatgtggt	ataattaaac	ggtcgttcat	tcottctaga	tcogagtaga	1620
	atactotttc	aaactaccto	gtgtatttat	taattttoga	actotatoto	tototcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
		tttactgatg	catatacato	atggcatatg	cagcatetat	tcatatoctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
15	atatacttoo	atgatggcat	atgraggagg	tatatataga	ttttttage	cctgccttca	1920
	tacoctattt	atttacttaa	tactotttct	tttatcata	ctcaccctqt	tatttaatat	1980
	tacttctgca	gatcgactct	agaggatcca	tagcaccaaa	gaagaagcgc	aaggtgatgatga	2040
	acaaqaaqta	carcatcroc	ctcgacatcg	gggcacegua	gaagaagege	accatcatca	2100
	conaccaata	taagetccgge	traagaaga	tcaaggtcct	coccaataca	geogeoacea	2160
20	coguegadea	aaacttoato	aggaggagge	tattcataa	cadcaadaca	acadaaacaa	2220
20	ccacctcaa	gaggaggggg	aggageeeeee	acactacccc	caagaagagagaga	atctactacc	2280
	tacaggeeeau	cttcaccaac	gagatgacgge	agatagacaa	ctccttcttc	caccocctoo	2340
	aggaatcatt	cctageaac	gagaeggega	aggeggaega	gcacccaatc	ttcggcaaca	2400
	tcatcaacaa	aataaattta	tacttetace	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatattta	2222222222	ttcaaaataa	aagaatgtag	tatataggaa	2520
25	ttacttttct	ataatttata	agtgtgtgtata	ttttaattta	taacttttct	aatatataac	2580
	caaaacatoo	taatatacaa	agegegeaca	accacaacta	ccccacaatc	taccacctcc	2640
	ggaagaaagt	agtagegeag	acagacaagg	conacct.cco	actcatctac	cttaccctca	2700
	cocatatoat	caagttccgc	gaccacttcc	tcatcgaggg	cgacctgaac	coggeceecg	2760
	ccacataa	caagetette	atccactcc	tacagacata	caatcaacto	ttcgaggagaga	2820
	accccataaa	cactaccac	atagacacca	aggeografeet	ctcggccagg	ctctcgaagaga	2880
30	caagaagget	agagaacett	at cococact	taccaaacaa	aaagaagaag	agactetta	2940
	caagaagget	tacactcaac	atogogotage	caccaggega	casatcasac	ttcaacctca	3000
	gcaaccettat	agagatagaa	atatassaa	agagetaget	agagagata	ragaaataa	3060
	tagaagaagat	aggettetag	taggggaagg	tattaataga	cgacgacete	gacaacetee	3120
	atataataat	aggagaccag	attagggtacc	agaggagagt	tagaaagaaa	accetetacc	3120
25	clateetyet	tagegacate	anagagaga	acaccyaaat	caccaayyca	aggeograd	3240
30	taggaaggaa	cataggerac	gacyageace	accaggacet	caegetgete	aaggeaeeeg	3300
	ceegeeagea	totacagag	aaytacaayy	agaiettett	cyaccaatta	aaaaacyycu	3300
	tastasas		ggugeeagee	aggaagaguu	clacaagile	alcadaccad	2420
	teetggagaa	galggacggc	accyaggagt	rgelggleaa	geleadeagg	gaggacetee	2420
	teaggaagea	gaggacette	gacaacgget	tategaaatt	teagateeae	ctgggcgaac	25400
40	tgcatgccat	cctgcggcgc	caggaggact	tetaccegtt	cctgaaggat	aaccgggaga	3540
	agategagaa	gatettgacg	ttccgcatcc	catactacgt	gggcccgctg	getegeggea	3600
	acteceggtt	cgcctggatg	accoggaagt	cggaggagac	catcacaccc	tggaactttg	3000
	aggaggtggt	cgataagggc	getagegete	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	geceaatgaa	aaagtcctcc	ccaagcactc	getgetetae	gagtacttca	3/80
	ccgtgtacaa	cgageteade	aaggtCaaat	acgreacega	gggcatgcgg	aageeggegt	3840
45	teetgagegg	cgagcagaag	aaggegatag	tggaceteet	etteaagade	aacaggaagg	3900
	Lyacegtgaa	ycaattaaaa	yayyactact	leaagaaaat	agagtgette	yactccgtgg	3900
	agateteggg	cgtggaggat	cggttCaaCg	ceteactegg	cacgtateac	gaceteetea	4020
	agateattaa	agacaaggaC	LECCECGACA	acyaygagaa	cgaggacate	eccyaggaca	4080

tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct

acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt

ggggaaggct gtcccgcaag ctcattaatg gcatcaggga caagcagagc ggcaagacca

tcctggactt cctcaagtcc gacgggttcg ccaaccgcaa cttcatgcag ctcattcacg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact

ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge

agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg

agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc

accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg

50

55

4140

4200

4260

4320

4380

4440 4500

4560

	accacaacat	gtacgtggac	caggagetgg	acattaatco	gctatcggac	tacgacgtcg	4740
	accacatcot	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	atactcaccc	4800
	ggtcggataa		aagagggaga	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta		ctcctcaacq				4920
5	acctgacgaa	gacagaacac	agtagetta	gcgaactcga		ttcataaaaa	4980
	accagetagt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatecto	gacageegea	5040
	tgaatactaa	gagaegege	aacqacaaqc	tgatccggg	agtgaaggtg	atcacoctoa	5100
	agtccaaget	catatcagac	ttccccaage	acttccagtt	ctacaaggeg	cacaaatca	5160
	acaactacca	ccaccccac	gacgectace	tgaatgcggt	antcaggec	accetatea	5220
10	agaagtaccc	gaagetgeede	tcggagttcg	tatacaacaa	ctacaaggtc	tacgacgtgc	5280
10	gcaaaatgat	caccaaatco	raggageeeg	tcoocaagoo	cacqqcaaaa	tacttcttct	5340
	actogaacat	catgaacttc	ttcaagaccg	agatcaccct	cacqaacqac	gagatecce	5400
	agcgcccgct	catcgaaacc	aacqqcqaqa	cagacaagat	catctagat	aaggggggggg	5460
	atttcgcgac	gatecacaag	atacteteea	taccacaaat	caatatcoto	aaaaagacaggg	5520
	aggtccagac	agacagatte	agcaaggagt	ccatcctccc	gaagegeaac	tccgacaage	5580
15	tcatcgcgag	gagegggeee	tagaacccaa	aaaaatatoo	caacttcaac	agecegaeaage	5640
	tcgcatacag	catecteate	atagcaaaaa	tagagaagga	caagtcaaag	aagetcaagt	5700
	ccataaaaa	actactcaaa	atcacgatta	tagaacaata	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggt caagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	actetteraa	ctonaaaaco	aggeeaagaa	gatactacc	tccgcaggg	5880
20	agttgcagaa	gaacaacaaa	ctcgccctcc	cgagcaaata	catcaatttc	ctatacctca	5940
	ctagggagta	tgaaaaggtg	aaggggaggg	cggaggagaga	cgagcagaag	cagetetteg	6000
	togagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaage	6060
	gggggggggg	caccaacaca	aacctogaca	aggtactata	gaceagegag	aagcaccocg	6120
	acaaaccaat	acacaaacaa	accasasta	tcatccacct	cttcaccctc	accaacctcg	6180
	acactccaac	accttcaac	tacttogaca	ccaccattca	ccadaaacaa	tacacqaqca	6240
25	caaaaaaaa	actcataca	acactaataa	accagageat	cacaggegg	tatgaaacac	6300
	gcatcgacct	geeegaegeg	acquagaca	agagageac	ggaccgccac	gatggggggg	6360
	taggagggccg	caageeugeeg	aggeggggggeg	cottaaccta	gacttgtcca	tettetagat	6420
	tooccaactt	aattaatota	taaataaaa	agatacacac	atagtgacat	actaatcact	6480
	ataatataga	catcaaagtt	atatattata	totaattact	agttatctga	ataaaagaga	6540
30	aagagatcat	ccatatttct	tatectaaat	gaatgtcacg	tototttata	attetteat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttaggaa	aacaaatcta	atctagatat	atttacaaa	tacaaccaaa	6720
	ctocaoqaat	tcgatagett	taagaataga	atgatgaacg	tagattaatc	aatoccaaao	6720
	totoaaaaat	acacceteaa	totatoatoo	acgacgaace	attactta	aacgectatte	6840
35	agttattaa	geatecceag	ccccattaat	toctaccoc	attacttctc	taatttatat	6900
00	agattttgat	gaccagagee	gaatectooc	ttattcccct	acaaccgaac	aggeeetgaa	6960
	agatecceat	aatcoctoao	ctaaattooc	atactataa	actatcaata	ttacaacaaa	7020
	ggacaccage	aaccgccgag	ataataccaa	tttataataa	coattagoat	tagagatgat	7020
	gcagcgagac	acceggeate	acquestta	tatgatggca	aggaggtaa	atagagacygc	7000
	agecalgyge	tataaaaaaa	gecaacticg	attatta	ggcagggcga	acayyaaayc	7200
40	ttttaaggaa	ragagaataa	agatotogo	tatatttage	gcatgtataa	ttaggggggt	7200
	agaatagtta	agataatgat	aagacettaaa	taaggaagga	geographic	attagettata	7200
	cyaateetty	acataatgat	aagtaataaa	addadcet	ggaaagaatt		7320
	attatacaca	cyacyacyac	adylegiaaa	atagtygtgt	tooatagtat	ttocaygeeea	7380
	yuuyuaaadg		actor	agagtaggag	agagtetase	crayaddiid	7440
45			cettetatgt	acagtaggac	acagigicag	cgeegegeeg	7500
	tagtagaata	cicigicaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaa	aylaaaayag	adayiCatag	astaggaage	yccaaaaact	7300
	aggggggggg	gayyyccata	ayaaacatyg		aataggggg	accycyacga	1020
	aycccaaaca	astasassas	gyryyaycaa	agegergggt	aatacycada	agaccesst+	/000 77/0
	atagaataa	aaccacaaya	tttta	agaaatagga	agttacate	agaataataa	7740
50	gryayeerga	tassassata	agaggggt	ayaaatayCa	ayıladddid	ayyclaylcc	7000
50	yttateaaet	igaaaaagtg	ycaccgagte	ggtgetttt	しじしし		/844

<210> 135 <211> 7845 <212> **DNA** <213> Artificial

55

<220> <223> artificial

	<400> 135			
5				
10				
15				
20				
25				
30				
35				
40				
45				
50				

EP 3 191 595 B1

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	ttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tatattctcc	ttttttta	300
5	caaatagett	cacctatata	atacttcatc	cattttatta	otacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctattta	ottttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaaacta	540
	aggaaacatt	tttcttattt	coagtagata	atgccagcct	attaaacacc	atcaacaaat	600
10	ctaacqqaca	ccaaccaaca	aaccagcagc	atgecageee	gecaaccgee	geegaegage	660
	concatatat	atcactacct	ctocaccoct	ctcgagagtt	ccactccacc	attagactta	720
	ctocactata	gccgccgccc	aattacataa	cagaacagaa	acatagaca	geeggaeeeg	720
	acagactect	ggcacccaga		agetaggggg	gattcottto	ggcacggcag	840
	ttagatttag	attactaca	agaataata	agecaegggg	gacteccecc	actatttaaa	900
	assactanta	ttattaggag	agaagaagaaga	aacagacacc	tatagagaaaa	atagagggt	960
15	caacetegtg	acttaccart	ogcacacaca	tactaccaya	cocceccaa	tagettetet	1020
	agatagagat	tagaatagat	acyccyctcy	ragagata	tetetetete	attactett	1020
	agaleggege	antattata	gealggelag	ggeeeggeag	ttactici	gittalgitt	1140
	gtgttagate	cgcgctcgcg	ttagateegt	gergerageg	ctegtacaeg	gatgegaeet	1200
	gracyrcaya	cattagagag		gecagigitt		aatteetyyya	1200
	restate	cgllccgcag	acgggatega	tetetegact		cgllgcalag	1200
20	ggtttggttt	gecetttee	tttatttcaa	tatatgeegt	gcacttgttt	gtcgggtcat	1320
	ctttcatgc		cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gateggagta	gaattetgtt	tcaaactacc	tggtggattt	attaattttg	gatetgtatg	1500
	tgtgtgccat	acatatteat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatge	ttttgttcg	1560
25	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	toggagtaga	1620
20	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtCataC	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1/40
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttage	cctgccttca	1920
30	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
35	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
40	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
40	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
45	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg	3240
	tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct	3300
50	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
55	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
55	aggaggtggt	cgataagggc	gctagcgctc	agagetteat	cgagcgcatq	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780

ccqtqtacaa cqaqctcacc aaqqtcaaat acqtcaccqa qqqcatqcqq aaqccqqcqt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agateteggg cgtggaggat cggtteaacg ceteactegg caegtateae gaeeteetea agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaagget gtcccgcaag ctcattaatg gcatcaggga caagcagage ggcaagacca tectggaett ceteaagtee gaegggtteg ceaacegeaa etteatgeag eteatteaeg acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc

ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa 5040 ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga 5100 agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca 5160 acaactacca ccacqccccac gacqcctacc tgaatqcqqt gqtcqqqacc qccctgatca 5220 agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg 5460 5520 atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg 5580 aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt 5700 ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga 5760 5820 tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc 5880 cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg 5940 ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc gggtgatcct cgccgacgcg aacctggaca aggtgctgtc ggcatataac aagcaccgcg acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc 6420 tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag totgaaaaat gcaccotcag totatgatec agaaaatcaa gattgottga ggccotgtto 6840 ggttgttccg gattagagcc ccggattaat tcctagccgg attacttctc taatttatat 6900 agattttgat gagctggaat gaatcctggc ttattccggt acaaccgaac aggccctgaa 6960 ggataccagt aatcgctgag ctaaattggc atgctgtcag agtgtcagta ttgcagcaag gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag

55

50

5

10

15

20

25

30

35

40

45

ttttgagcga ggggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat

cgaatcottg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg

ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta

tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg

acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact

#### EP 3 191 595 B1

3840 3900

3960

4020

4080

4140

4200 4260

4320 4380

4440

4500

4560 4620

4680 4740

4800 4860

4920 4980

5280

5340

5400

5640

6000 6060

6120

6180 6240

6300

6360

6480

6540

6600

6660 6720

6780

7020

7080

7140

7200

7260

7320 7380

7440

7500

## EP 3 191 595 B1

5	tcgtcacaga agcccaaaca caccttgact gttgatcaaa cgttatcaac	gagggccata gcagtccgta aatcacaaga gcgatggcac ttgaaaaagt	agaaacatgg ggtggagcaa gtggagcgta gttttagagc ggcaccgagt	cccacggccc agcgctgggt ccttataaac tagaaatagc cggtgctttt	aatacgaagc aatacgcaaa cgagccgcaa aagttaaaat ttttt	accgcgacga cgttttgtcc gcaccgaatt aaggctagtc	7620 7680 7740 7800 7845
10	<210> 136 <211> 7845 <212> DNA <213> Artificial s	sequence					
	<220> <223> Artificial S	Sequence					
15	<400> 136						
20							
25							
30							
35							
40							
45							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	ttttttttg	300
	caaatagett	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaaq	aaaactaaaa	ctctattta	ottttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
10	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
15	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctcccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
05	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
20	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
30	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
10	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
40	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
45	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
caagaagget ggagaacett ategegeagt tgeeaggega aaagaagaae ggeetetteg 2940 3000 gcaaccttat tgcgctcagc ctcggcctga cgccgaactt caaatcaaac ttcgacctcg 3060 cggaggacgc caagetecag eteteaaagg acacetaega egaegaeete gaeaacetee tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg 3120 ctatectget cagegacate ettegggtea acaeegaaat taecaaggea cegetgteeg 3180 3240 ccagcatgat taaacgctac gacgagcacc atcaggacct cacgctgctc aaggcactcg tccgccagca gctccccgag aagtacaagg agatcttctt cgaccaatca aaaaacggct 3300 3360 acgcgggata tatcgacggc ggtgccagcc aggaagagtt ctacaagttc atcaaaccaa tcctqqaqaa qatqqacqqc accqaqqaqt tqctqqtcaa qctcaacaqq qaqqacctcc 3420 3480 tcaggaagca gaggaccttc gacaacggct ccatcccgca tcagatccac ctgggcgaac 3540 tgcatgccat cctgcggcgc caggaggact tctacccgtt cctgaaggat aaccgggaga agatcgagaa gatcttgacg ttccgcatcc catactacgt gggcccgctg gctcgcggca 3600 actcccggtt cgcctggatg acccggaagt cggaggagac catcacaccc tggaactttg 3660 aggaggtggt cgataagggc gctagcgctc agagcttcat cgagcgcatg accaacttcg 3720 ataaaaacct gcccaatgaa aaagtcctcc ccaagcactc gctgctctac gagtacttca 3780 3840 ccgtgtacaa cgagctcacc aaggtcaaat acgtcaccga gggcatgcgg aagccggcgt tcctgagcgg cgagcagaag aaggcgatag tggacctcct cttcaagacc aacaggaagg 3900 3960 tgaccgtgaa gcaattaaaa gaggactact tcaagaaaat agagtgcttc gactccgtgg agateteggg cgtggaggat cggtteaacg ceteactegg caegtateae gaeeteetea 4020 4080 agatcattaa agacaaggac ttcctcgaca acgaggagaa cgaggacatc ctcgaggaca tcgtcctcac cctgaccctg ttcgaggacc gcgaaatgat cgaggagagg ctgaagacct 4140 4200 acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaagget gtcccgcaag ctcattaatg gcatcaggga caagcagage ggcaagacca 4260 tectggaett ceteaagtee gaegggtteg ceaacegeaa etteatgeag eteatteaeg 4320 4380 acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact 4440 ccctccacga acacategee aacetggeeg getegeegge cattaaaaag ggeateetge agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata 4500 tcqtcataga gatgqccagq gagaaccaga ccacccaaaa agqqcagaag aactcqcqcq 4560 4620 agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc 4680 accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg 4740 gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc 4800 ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga 4860 4920 tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca 4980 acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca 5040 tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga 5100 agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca 5160 acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca 5220 agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc 5280 5340 gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct actcgaacat catgaacttc ttcaagaccg agatcaccct cgcgaacggc gagatccgca 5400 agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg 5460 5520 atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg 5580 aggtecagae gggegggtte ageaaggagt ceatecteee gaagegeaae teegaeaage

tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg

tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt

ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga

tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc

cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg

agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg

ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg

tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc

gggtgateet egeegaegeg aacetggaea aggtgetgte ggeatataae aageaeegeg acaaaeeaat aegegageag geegaaaata teateeaeet etteaeeete aceaaeeteg

gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca cgaaggaggt gctcgatgcg acgctgatcc accagagcat cacagggctc tatgaaacac

gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc

tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat

tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga

aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat

gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

5640

5700

5760 5820

5880

5940 6000

6060

6120

6180

6240

6300 6360

6420

6480

6540

6600

6660

5

10

15

20

25

30

35

40

45

50

	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
5	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
10	ttttgagcga	ggggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	tacctttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
15	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	ageceaaaea	gcagtccgta	ggtggagcaa	agegetgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	CCTTATAAAC	cgagccgcaa	gcaccgaatt	7740
	gcagttggat	atgretagee	gttttagage	tagaaatagc	aagttaaaat	aaggetagte	7800
20	egitateaae	ttgaaaaagt	ggcaccgagt	eggegeette			/645
20	.0.4.0 4.0.7						
	<210> 137						
	<211> /84/						
	<212> DNA						
	<213> Artificial s	equence					
25							
	<220>						
	<223> Artificial S	Sequence					
	<400> 137						
30							
35							
40							
45							
10							
50							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
5	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
20	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
30	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980

tacttctgca ggtcgactct agaggatcca tggcaccgaa gaagaagcgc aaggtgatgg acaagaagta cagcatcggc ctcgacatcg gcaccaactc ggtgggctgg gccgtcatca cggacgaata taaggtcccg tcgaagaagt tcaaggtcct cggcaataca gaccgccaca gcatcaagaa aaacttgatc ggcgccctcc tgttcgatag cggcgagacc gcggaggcga ccaggetcaa gaggaccgec aggagacggt acactaggeg caagaacagg atetgetace tgcaggagat cttcagcaac gagatggcga aggtggacga ctccttcttc caccgcctgg aggaatcatt cctggtggag gaggacaaga agcatgagcg gcacccaatc ttcggcaaca tcgtcgacga ggtaagtttc tgcttctacc tttgatatat atataataat tatcattaat taqtaqtaat ataatatttc aaatattttt ttcaaaataa aaqaatqtaq tatataqcaa ttct gtagtttata agtgtgtata ttttaattta taacttttct aatata

5

2040

2100

2160

2220

2280

2340

2400

2460

	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
10	caaaacatqq	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cogacctccg	gctcatctac	cttaccctca	2700
	cocatatoat	caagttccgc	ggccacttcc	tcatcgaggg	coacctoaac	ccogacaact	2760
	ccgacgtgga	caagetgtte	atccagctcg	tocagacota	caatcaacto	ttcgaggaga	2820
	accccataaa	cactageoge	otogacocca	aggecatect	ctcggccagg	ctctcgaaat	2880
	caagaagggt	ggagaacctt	at cococaot	taccagacga	aaagaagaag	acctcttca	2940
15	acaaccttat	tacactcaac	ctcggcgcuge	caccaaactt	caaatcaaac	ttccacctcc	3000
	caaaaaaaaa	caagetceage	ctctcaaaqq	acacctacca	caacaacata	gacaacctcc	3060
	taacccaaat	aggagaggag	tacgcggacc	tetteetege	caccaacaac	ctctcccacc	3120
	atataataat	aggagaccag	attaggata	agaggaaaat	tagaaagaaa	accetetaca	3190
	ccaccetget	tagegacate	ciccygyica	acaccyaaat	caccaaggea	according	3240
	taagaaagaa	cataggerac	gacyageace	accaggacet	caegergere	aaggeacteg	2240
20	Leegeeagea	geteeegag	aagtacaagg	agalellell	cyaccaatca	adaaacggct	3300
	acgegggala	Lategaegge	ggugeeagee	aggaagagtt	CLacadyLLC	alcadaccad	3360
	teetggagaa	gatggacggc	accgaggagt	tgetggteaa	geteaacagg	gaggacetee	3420
	tcaggaagca	gaggacette	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
25	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
25	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
	ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
30	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
	agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
35	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagetegg	gtcccagatc	ctgaaggagc	4620
40	accccqtqqa	aaatacccag	ctccagaatg	aaaageteta	cctctactac	ctocagaaco	4680
	gccgcgacat	gtacgtggac	caggagetgg	acattaatco	gctatcggac	tacgacgtcg	4740
	accacatcot	gccgcagtcg	ttcctcaagg	acgatagcat	coacaacaao	otoctcaccc	4800
	ggtcggataa	aaatcoogg	aagagcgaca	acotoccao	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctoococcao	ctcctcaaco	cgaaactgat	cacccagcgc	aagttcgaca	4920
45	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
45	agcagetget	cgagacgcgc				gacageegea	5040
	tgaatactaa	atacataa	aacqacaaqc	tgatccggg	antgaaggtg	atcacoctoa	5100
	agtccaaget	catatcagac	ttccccaac	acttccagtt	ctacaaggeg	coccagatca	5160
	ageecaagee	ccaccccac	gacgectace	taaatacaat	agtaggee	accetatea	5220
	acaactacca	gaagetggag	taggettage	tatacagaga	gyccygyacc	taccacctac	5280
50	agaageacee	gaageeggag	aggageeeg	tagaaaagaa	caccacaggee	tacgacgtgc	5340
	actocascet	cyccaaytee aataaaatta	ttaaaaaaaa	agataagagt	cacyycaada	gagatagaga	5340
	accegaacat	catgaactic	cicaayaccy	agarcaccet	cycyaacyyc	gagaceegea	5460
	aycycccyct	antagagaga	atattatata		cycccyyydt	aayyyeegyg	5400
	accoggegac	ggueegeaag	grgereteea	agetactact	caalatogtg	aaaaayacyg	5520
	aggreeagae	yyycyggttC	agcaaggagt	ccatectede	yaayegcaac	Lecgacaage	5580
55	Leategegag	yaagaaggat	Lgggacccga	aaaaatatgg	cggettegae	ageeegaeeg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aageteaagt	5/00
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760

	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
5	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
10	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
15	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
20	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
25	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
~~	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
30	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gacacgcact	gcaccccgtc	gtgttttaga	gctagaaata	gcaagttaaa	ataaggctag	7800
	tccgttatca	acttgaaaaa	gtggcaccga	gtcggtgctt	tttttt		7847

- 35 <210> 138 <211> 7844 <212> DNA <213> Artificial sequence
- 40 <220> <223> Artificial Sequence

<400> 138

45

50

5	gtgcagcgtg taaaaaatta atacatatat gtgttttaga ttgacaacag caaatagctt gggttaatgg	acccggtcgt ccacatattt ttaaacttta gaatcatata gactctacag cacctatata tttttataga	gcccctctct tttttgtcac ctctacgaat aatgaacagt ttttatcttt atacttcatc ctaatttttt	agagataatg acttgtttga aatataatct tagacatggt ttagtgtgca cattttatta tagtacatct	agcattgcat agtgcagttt atagtactac ctaaaggaca tgtgttctcc gtacatccat attttattct	gtctaagtta atctatcttt aataatatca attgagtatt tttttttttg ttagggttta atttagcct	60 120 240 300 360 420
10	ctaaattaag tagaataaaa aggaaacatt ctaacggaca cggcatctct ctccgctgtc	aaaactaaaa taaagtgact tttcttgttt ccaaccagcg gtcgctgcct ggcatccaga	ctctattta aaaaattaaa cgagtagata aaccagcagc ctggacccct aattgcgtgg	gttttttat caaataccct atgccagcct gtcgcgtcgg ctcgagagtt cggagcggca	ttaataattt ttaagaaatt gttaaacgcc gccaagcgaa ccgctccacc gacgtgagcc	agatataaaa aaaaaaacta gtcgacgagt gcagacggca gttggacttg ggcacggcag	480 540 600 660 720 780
15	gcggcctcct ttcgctttcc caacctcgtg cggcacctcc agatcggcgt	cctcctctca cttcctcgcc ttgttcggag gcttcaaggt tccggtccat	cggcaccggc cgccgtaata cgcacacaca acgccgctcg gcatggttag	agctacgggg aatagacacc cacaaccaga tcctcccccc ggcccggtag	gattcctttc ccctccacac tctcccccaa cccccctctc ttctacttct	ccaccgctcc cctctttccc atccacccgt taccttctct gttcatgttt	840 900 960 1020 1080
20							
25							
30							
35							
40							
45							
50							
55							

	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	aatttaattt	accetttec	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
5	cttttcatoc	tttttttat	cttaattata	atgatgtggt	ctaattaaac	ggtcgttcta	1380
5	gatcogagta	gaattetott	tcaaactacc	tootogattt	attaatttto	gatctgtatg	1440
	tototoccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcoatctag	1500
	gataggtata	catottoato	coortttac	tgatgcatat	acagagatac	ttttattca	1560
	cttaattata	atgatgtogdog	ataattaaac	ggtcgttcat	tcattctaga	tragagtaga	1620
	atactottto	aaactaccto	atatattat	taattttaa	actatatata	tatatata	1680
10	atattata	ttaggagttt	agataata	gaaatatgga	totacatag	atatacatat	1740
	tastatagat	tttacgageee	aayatyyaty	atagaatata	aggatatat	tastataata	1900
	taagttgggt	tactyaty	ttatacalg	acygeataty	ttattattat	tttatgete	1960
	Laacellyag	lacclatcla	llalaalaaa		LLALAALLAL		1000
	atatacttgg	atgatggcat	atgeageage	tatatgtgga	ttttttage	cctgccttca	1920
	tacgetattt	attigettigg	tactgtttet	trigtegatg	ctcaccctgt	tgtttggtgt	1980
15	tacttctgca	ggtcgactct	agaggateea	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
20	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
25	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagetgtte	atccagctcg	tgcagacgta	caatcaactq	ttcgaggaga	2820
	accccataaa	cactageage	gtggacgcca	aggecatect	ctcggccagg	ctctcgaaat	2880
	caagaagget	ggagaacctt	atcgcgcagt	taccaaacaa	aaagaagaac	aacctcttca	2940
	gcaaccttat	tococtcaoc	ctcggcctga	coccoaactt	caaatcaaac	ttcgacctcg	3000
	cogaggacgc	caageteeag	ctctcaaagg	acacctacoa	cgacgacctc	gacaacctcc	3060
30	tooccagat	aggagaggag		tettectege	cgccaagaac	ctctccgacg	3120
	ctatectet		cttcgggtca	acaccgaaat		ccactat.cca	3180
	ccagcatgat	taaacoctac	gacgaggaca	atcaggacct	cacgetgete	aaggcactcg	3240
	teegecagea	geteccegag	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
	acocococata	tatcgacggg	aataccaacc	aggaaggagtt	ctacaadttc	atcaaaccaa	3360
35	tootooaaaa	gatggacggc	accoaccage	tactactas	actcaacaaa	gaggagetcc	3420
55	taaggaaggaa	gacggacggc	accyagyagt	agatagagaa	taggatagag	gaggacceec	3420
	traggaagea	gaggaccece	gacaacgyct	tatagagett	actacacac	aaggggggaac	3540
	cycacyccac	cetgeggege	ttaggaggact	cetaceeget	cecyaayyat	aaccyyyaya	3540
	agalogagaa	galeligaeg	cleegealee	catactacgt	gggeeegetg	gelegeggea	3600
	actoccygtt	cgcccggatg	acceggaage	cggaggagac	catcacaccc	tggaactttg	2220
40	aggaggtggt	cgataagggc	getagegete	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	geccaatgaa	aaagteetee	ccaagcactc	getgetetae	gagtacttca	3780
	ccgtgtacaa	cgageteace	aaggtcaaat	acgtcaccga	gggcatgcgg	aageeggegt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
	agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
45	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
50	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaaq	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcogatoaa	acggatcgag	gagggcatta	aagagetegg	gtcccagatc	ctgaaggagg	4620
	accccotooa	aaatacccao	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtogac	caggagetgg	acattaatco	gctatcogac	tacgacgtcg	4740
55	accacatcot	gccgcagtcg	ttcctcaagg	acgatagcat	cqacaacaaq	gtgctcaccc	4800
	ggtcggataa	aaatcoogooc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860

	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
5	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
10	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
15	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
20	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
25	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
~~	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
30	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
35	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	ggggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
40	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	tacctttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
45	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
40	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gcacagctta	catcagettg	ttttagagct	agaaatagca	agttaaaata	aggctagtcc	7800
	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	tttt		7844

- <210> 139 <211> 7847 50
  - - <212> DNA <213> Artificial sequence
    - <220>
- 55 <223> Artificial Sequence

<400> 139

		gtgcagcgtg taaaaaatta atacatatat	acccggtcgt ccacatattt ttaaacttta	gcccctctct ttttgtcac ctctacgaat	agagataatg acttgtttga aatataatct	agcattgcat agtgcagttt atagtactac	gtctaagtta atctatcttt aataatatca	60 120 180
	5							
	10							
	15							
	20							
	25							
	30							
	35							
45 50 55	40							
50	45							
55	50							
	55							

	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
	ttgagaacag	gactetacag	ttttatcttt	ttagtgtgge	tatattata	++++++++	300
	cogacaacag	gaccectacag				therest	260
	Caaalayeee	Caccuatata	atacticate	Callialia	glacalecal	LLAYYYLLLA	300
	gggttaatgg	ttttataga	CLAALLLLL	tagtacatet	atttattct	atttageet	420
5	ctaaattaag	aaaactaaaa	ctctatttta	gtttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccactatc	ggcatccaga	aattgcgtgg	cqqaqcqqca	gacgtgagcc	ggcacggcag	780
10	acaacctcct	cctcctctca	coocaccooc	agetacogog	gattcctttc	ccaccoctcc	840
	ttcgctttcc	attectore	coccotaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcoto	ttattcagag	cgcacacaca	cacaaccaga	tetecceaa	atccaccot	960
	concacctcc	acttcaagat	acaccactica	tecteccec	ccccctctc	taccttctct	1020
	agat concot	tocontocat	acataattaa	ageccantag	ttataattat	attatatt	1080
	agattygtgt	actatttata	ttaggttag	ggcccggcag	ttactoccc	geteacgeet	1140
15	glyllagall		theateeatt	gecgecageg	ctcytacacy	gatgegaeee	1200
	gracgreaga	cacguicuga	LIGCLAACLL	gecagigitt	CLCLLLGGGG	aateetggga	1200
	tggetetage	cgttccgcag	acgggatcga	tttcatgatt	LLLLLGLLL	cgttgcatag	1260
	ggtttggttt	gecetttee	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
20	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
25	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttoo	atgatggcat	atgcagcagc	tatatotoga	ttttttagc	cctgccttca	1920
	tacoctattt	atttacttag	tactotttct	tttgtcgatg	ctcaccctgt	tatttaatat	1980
	tacttctcca	ggtcgactct	agaggateca	toocaccoaa	gaagaagcgc	aaggtgatgg	2040
	acaacaacta	carcator	ctcgacatcg	gggcaeegaa	gatgaagtgo	accatcatca	2100
	acaagaagta	taagatagaa	togaagaagt	tassataat	ggegggeegg	geogeoaeca	2160
30	cyyacyaata	aaaggteeeg	ccyaayaayt	tattagetee	cygcaacaca	gaccyccaca	2220
	gcaccaagaa	aaactigate	ggegeeeeee	cyclegalag	cyycyayacc	geggaggega	2220
	ccaggereaa	gaggaccgcc	aggagacggt	acactaggeg	caagaacagg	alcigciacc	2200
	tgcaggagat	cttcagcaac	gagatggega	aggrggacga	CLECTLELLE	cacegeetgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgettetace	tttgatatat	atataataat	tatcattaat	2460
35	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
10	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
40	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cqqaqqacqc	caagetecag	ctctcaaaqq	acacctacqa	cgacgacctc	gacaacctcc	3060
	tooccagat	aggagaccag	tacgcggacc	tcttcctcac	coccaagaac	ctctccgacg	3120
15	ctatcctoct	cagcgacatc	cttcoootca	acaccoaaat	taccaaggca	ccactatcca	3180
40	ccagcatgat	taaacoctac	gacgagcacc	atcaggaget	cacgetgete	aaggcactcg	3240
		actoccoad	aagtacaagg	agatettett	cgaccaatca	aaaaacooct	3300
	acacagata	tatcgacggg	aataccaacc	aggaaggagtt	ctacaacttc	atcaaaccaa	3360
	taatagaaaa	gatggagga	aggegeeagee	taataataaa	actassage	accadaccad	3420
	taaggaaggaa	gacggacggc	accyayyayt	agatagagaa	tagataga	gaggaccecc	3420
50	taataast	gayyaccill	gacaacyyct	tatagaatt	aataaaaaat	aaggggggaac	2400
	aget age as -				agaggggt	aaccyggaga	3340
	agategagaa	gatettgadg	LECGCATCC	catactacgt	yyycccgctg	yeregeggea	3600
	acteceggtt	egeetggatg	acceggaagt	cggaggagac	Catcacaccc	Lggaactttg	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
55	ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960

agateteggg egtggaggat eggtteaacg eeteactegg eaegtateae gaeeteetea agateattaa agacaaggae tteetegaea aegaggagaa egaggaeate etegaggaea tegteeteae eetgaeeetg ttegaggaee gegaaatgat egaggagagg etgaagaeet

	tcotcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	ottogacgac	aaggtcatga	aacageteaa	gaggegegg	tacactoott	4200
-	aagaaagaat	atcccacaaa	ctcattaato	gcatcaggga	caagcagagc	ggcaagacca	4260
5	toctocactt	cctcaactcc	gacgggttcg	ccaaccocaa	cttcatgcag	ctcattcacq	4320
	aggaget	ceccaageee	gaegggeteg	agaagggagaga	actagoog	agggetgagt	4320
	acgaetegee	cacytteaay	gaagacatee	agaaggcaca	ggtgageggg	cayyyuyacu	4300
	CCCLCCaCga	acacategee	aaccuggeeg	gelegeegge	Calladadag	ggcalcelge	4440
	agacggtcaa	ggtcgtcgac	gagetegtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
10	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
10	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
15	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatectg	gacageegea	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacoctoa	5100
	agt.ccaaget	cotot.cogac	ttccgcaagg	acttccagtt	ctacaaggtc	cocoagatca	5160
	acaactacca	ccaccccac	gacgectace	tgaatgcggt	antcagagee	accetatea	5220
00	acaactacca	ceacycecae	taggagttag	tataaaaaa	ggeegggaee	taggagtag	5220
20	agaagtacct	gaageeggag	anganganan	taraaaaaraa	ccacaaggee	tacyacycyc	5200
	gcaaaalyal	cyccaagtee	yaycayyaya	ceggeaagge	cacygcaaaa		5340
	actogaacat	Calgaactic	LLCaagaccg	agateaccet	cgcgaacggc	gagateegea	5400
	agegeeeget	categaaaee	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
25	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
25	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
20	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
30	ctagccacta	tgaaaagctc	aaqqqcaqcc	cqqaqqacaa	cgagcagaag	cagetetteg	6000
	tagaacaaca	caagcattac	ctogacgaga	tcatcgagca	gatcagcgag	ttctcgaage	6060
	aggtgatcct	caccaacaca	aacctogaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acocoaocao	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	acactecaac	agentteaag	tacttccaca	ccacgattga	ccggaagcgg	tacacgagca	6240
35	caaagaagat	actcastaca	acactaataa	accagageat	cacaggeggg	tatgaaagag	6300
00	gaatagaagt	geeegaegeg	acgeegaeee	accagageac	agaagaaaa	atgaagaa	6360
	tagaagaaga	gagecagecg	ggcggagaca	agagaccacg	gyaccyccac	tattataat	6420
	tgggaggeeg	caayegygea	agglagglad	cyclaaceca	gaettyteea	cettetggat	6420
		aataaaatt	Lyadalada at at at t at a	ggalgcacac	alagigadat	gelaaleael	6460
	ataatgtggg	CatCaaagtt	grgrgrrarg	tgtaattact	agttatetga	ataaaagaga	6540
40	aagagatcat	ccatatttct	tatectaaat	gaatgtcacg	tgtettata	attettgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
45	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	ggggggcatca	aagatctggc	tgtgtttcca	gctgtttttq	ttagccccat	7260
50	cgaatcetto	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttqtq	7320
	ctctaacaca	cgatgatgat	aagtcotaaa	atagtootot	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatoct	attcgaattt	ctactagcag	taagtcotot	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatot	acagtaggag	acagtotcag	caccacatta	7500
	acquaqaata	tttocaaaaa	agtaaaagag	aaaotcatao	caacatatat	accaaaaact	7560
	togtoacaga	gaggggggata	agaaacatoo	cccacqqqqq	aatacqaaqq	accordacoa	7620
55	agercasara	acaat coat a	antanaaaaa	aggedtaggt	aatacccaaa	catttata	7680
	agenterat	aataaaaaaa	atagaaata	aattataaaa	adaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		7000
	Calculyact	uaccacaaya	yuyyayuyua	CCLLALAAAC	cyayccycaa	ycaccyaatt	11-20

	gcatgtacat tccgttatca	gcaatgcaat acttgaaaaa	cagttttaga gtggcaccga	gctagaaata gtcggtgctt	gcaagttaaa ttttttt	ataaggctag	7800 7847
5	<210> 140 <211> 7847 <212> DNA <213> Artificial s	equence					
10	<220> <223> Artificial S	sequence					
15							
20							
25							
30							
35							
40							
45							
50							
55							

	atacaacata	accogategat	acceptetet	agagataatg	aggattggat	atctaaatta	60
	taaaaatta	ccacatattt	ttttatcac	acttotttoa	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacqaat	aatataatct	atactactac	aataatatca	180
	atatttaaa	gaatgatata	aataaaaaat	tagagatagt	ctageaceac	attaaatatt	240
5	ttaacaacaa	gaatetacaa	ttttatcttt	ttagacatgge	tatattata	++++++++	300
•	cigacaacay	gaccetatata	atacttoato	dattttatta	atagatagat	ttaggettta	360
	caaatayeee	tttttatata	atacttcatt	tacticatia	gtacatecat	atttaggguuua	420
	gygilaalgg	cicicalaya		aglacatet		acctageet	420
	togootoooo	taaactaaaa	ciciallila	guullulat	ttaacaactt	ayalalaaaa	400
	Lagaalaaaa		addallada	caaalaccel	ctaayaaall	adadadCLa	540
10	aygaaacall		cgaglagala	algecageet	gllaadgee	glegaegagt	600
	ctaacggaca	ccaaccageg	aaccagcagc	gtegegtegg	gecaagegaa	gcagacggca	550
	cggcatctct	gtegetgeet	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgegtgg	cggagcggca	gacgtgagee	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gatteette	ccaccgctcc	840
15	TTEGETTTEE	CTTCCTCGCC	cgccgtaata	aatagacacc	CCCTCCaCaC	CCTCTTTCCC	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctcccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
30	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
10	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
40	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaago	cggacctccq	gctcatctac	cttgccctca	2700
	cgcatatgat	caagttcccc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctottc	atccagctcg	tgcagacgta	caatcaacto	ttcgaggaga	2820
45	accccataaa	cactaacaac	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaagget	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttca	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cqccqaactt	caaatcaaac	ttcgacctcg	3000
	cqqaqqacqc	caagetecag	ctctcaaagg	acacctacoa	cgacgacctc	qacaacctcc	3060
	JJ JJ== 30	J J			J J		

tggcccagat aggagaccag tacgcggacc tcttcctcgc cgccaagaac ctctccgacg ctatcctgct cagcgacatc cttcgggtca acaccgaaat taccaaggca ccgctgtccg ccagcatgat taaacgctac gacgagcacc atcaggtact cacgctgctc aaggcactcg

	ccagcatgat	taaacoctac	gacgaggacg	atcaggacct	cacactacto	aagggactcg	3240
	taggaaagaa	catacgecae	acgageace	accuggueee	acageegeee	aaggeaceeg	3300
	Leegeeagea	geleeegag	aaytacaayy	agalellell	cyaccaatca	aaaaacyyct	3300
5	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
	actcccqqtt	cacctagata	acccqqaaqt	cqqaqqaqac	catcacaccc	tggaactttg	3660
10	aggaggtggt	coataagggc	actagegete	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	geccaatgaa	aaagtectee	ccaagcacto	actactetac	gagtacttca	3780
	ccatatacaa	crarctcacc	aarotcaaat	acatcacca	gaagatacaa	aagccggcgt	3840
	taataaaaaa	cgageeeace	aaggeeaaatag	tageatagt	attassasa	aageeggege	3010
	teergagegg	cyaycayaay	aaggegatag	tggaeeccec	ccccaagacc	aacayyaayy	2000
	Lyaccylyaa	gcaallaaaa	gaggactact	LCaagaaaal	agagigette	gactccgtgg	3960
15	agateteggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtateac	gaceteetea	4020
	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
20	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacatcocc	aacctggccg	actcaccaac	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	gatcatcaac	gagetegtga	aggtgatggg	ccoocacaao	cccgaaaata	4500
	tcatcataga	ggtogtogu	gageeegega	ccacccaaaa	agggcacaaag	aactcococo	4560
	agggggatgaa	acconstrance	gagaaceatta	aagaggtogg	atcccagato	ctasagaaga	4620
	ageggaegaa	acggategag	gagggcacta	aagageeegg	getetagte	ataaagaaaa	4020
25	acceegigga	adalacccag	clocagaalg	adaageteta	celetaetae	togeagaacg	4000
20	geegegaeat	gtacgtggac	caggagetgg	acattaatcg	gctatcggac	tacgacgtcg	4/40
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatageat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
30	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
00	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	cqtqtcqqac	ttccgcaagg	acttccagtt	ctacaaqqtc	cgcgagatca	5160
	acaactacca	ccacqcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagetggag	tcogagttcg	totacoocoa	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	caccaagtee	gaggaggaga		cacqqcaaaa	tacttcttct	5340
35	actogaacat	catgaactto	ttcaagacca	agatcaccct	cacqaacqaa	gagatococo	5400
55	accegaacat	catgaactee	accaagaccy	agarcaccet	cgcgaacggc	gagaceegea	5460
	agegeeegee	categaaaee	aacyycyaya	tagagagat	cycccyyyac	aagggeeggg	5400
	atttegegae	ggleegeaag	gigeleleea	Lyccycaagi	caatategtg	aaaaayacgg	5520
	aggteeagae	gggcgggttc	agcaaggagt	CCATCCTCCC	gaagegeaae	teegacaage	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agecegaeeg	5640
40	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
40	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagetetteg	6000
45	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaage	6060
45	gggtgatcct	caccaacaca	aacctogaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acocoaocao	accaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	acactecoac	accttcaac	tacttccaca	ccaccattca	ccagaaacag	tacacqaqca	6240
	gegeeeegge	ageceeaag	cacticgaca	ccacyaccya	ccggaagegg	tatacyayca	6240
		gologalgog	acyclyatec	accayaycat	cacayyycte	calyadaCaC	6300
50	ycategaedt	yayceagerg	yycyyagada	ayayaccacg	yyaccgccac	yaryycgage	0300
50	rgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	LCLLCLGGAL	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
55	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
55	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaaq	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgettga	aaccctattc	6840

	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
5	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
5	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
10	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
15	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gacctgtaca	ggaaggcaac	gagttttaga	gctagaaata	gcaagttaaa	ataaggctag	7800
	tccgttatca	acttgaaaaa	gtggcaccga	gtcggtgctt	tttttt		7847

- <210> 141
- 20 <211> 7847 <212> DNA <213> Artificial sequence
  - <220> <223> Artificial Sequence
- 25

<400> 141

30

- 35
- 40

- 45
- 50

gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	tttttgttt	cgttgcatag	1260
ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
	gtgcagcgtg taaaaaatta atacatatat gtgttttaga ttgacaacag caaatagctt gggttaatgg ctaaattaag tagaataaaa aggaaacatt ctaacggaca cggcatctct ctccgctgtc gcggcctcct ttcgctttcc caacctcgtg gggttagatc gtacgtcaga ggtttggttt	gtgcagcgtg acccggtcgt taaaaaatta ccacatattt atacatatat ttaaacttta gtgttttaga gaatcatata ttgacaacag gactctacag caaatagct cacctatata gggttaatgg tttttataga ctaaattaag aaaactaaaa tagaataaa taaagtgact aggaacatt tttcttgttt ctaacggaca ccaaccagcg cggcatctc gtcgctgcct ctccgctgtc ggcatccaga gcggcctcct ctcctcca ttcgctttcc cttcctcgc caacctcgtg ttgttcggag cggcacctcc gctgtcagg ggttagatc cgtgttgtg gtacgtcaga cacgttctga tggttggtt gccctttcc ctttcatgc ttttttt gatgggata cacgttctgt gataggta acatattcat gataggta cacgtcgt tggttggtt tactgatg cttggttgg atgatggt atactgttc aacatatcat gataggta acatattcat gataggta acatattcat gatagtagg tttactgatg taccttgag tacctatcta atatacttga atgatggcat tacgctatt atttgcttgg tacttctgca ggtcgactct acaagaagta cagcatcgc cggacgaata taaggtcccg	gtgcagcgtgacccggtcgtgcccctctcttaaaaattaccacatattttttttgcacagtgttttagagaatcatataaatgaacagtttgacaacaggactctacagttttatctttcaaatagcttcacctatataatacttcatcgggttaatggttttatagactaatttttctaaataaataaagtgactaaaactaaaagaaacatttttcttgtttcgagtagatactaacggacaccaaccagcgaaactagcgcgcggcatctctgtcgctgcctctggaccggctgcttccgtcgctgcagaaatgcggggtgttagatcccacctagaaatgcggggggcacctccgccctctcacggcaccggttggctgggcggttcgggcgcaccacacggcacctccgctgtcggcgcaccacacggcacctccgctgtcggcgcaccacagggttaggtcgtgttcggcgcacgggtgttgggcgttccggaacggggggtttggttgccctttcctttattcaagggttgggcgttcggaacggggggttgggtgaattcggagcagggggttgggtgaattcggaacggggggttgggtgaattcggaggggggttgggtgaattcgatgggggatcggagtagaattcgatgggggataggtatacatgttgggtgttgggatactgttcaaactacctggtgttggggatactgtggttactgatggtgttgggggataggtatacatgttgggcatatacatgtaactgtggttactgatggtgttggggtaactgtggttactgttcaagatgggggatggggtttactgatggtgttgggggatggggtttactg	gtgcagcgtgacccggtcgtgcccctctctagagataatgtaaaaattaccacatattttttttgtcacacttgtttgaatacatatatttaaacttactacgaataatataatctgtgtttagagaatcatataaatgacagttagacatggtttgacaacaggactctacagttttatctttttagtgtgcacaaatagcttcacctatataatacttcatccattttatagggtaataggttttatagactaatttatgttttttattagaataaataaagtgactaaaattaaacaataccctaggaacatttttcttgtttcgagtagataatgccagcgtctaacggacaccaaccagcgaaccagcagcgtcgcgcgcgcgcatcttgtcgctgcctctggaccggagtacaggggtgcgcctctcctcccccccggacacaggagtacagggggtgttagatcgcgccdccgccccccccagatagggttccggtcggcgcacacacagcgcactccgctgttggcgcacacacagcgcacctccgctgttggcgcacacacagatcggggttccggtccatgcacggggggtgttagatccgtgtttggttgctagcgggttggtccgtgtttggttgcagggggggggggggggggggggggggggggggggg	gtgcagcgtg acccggtcgt gccctctct agagataatg agcattgcat taaaaatta ccacatatt tttttgtcac acttgttga agtgcagtt atacatata ttaaactta ctctacgaat aataatct atagtactac gtgttttaga gaatcataa aatgaacagt tagacatggt ttgacaacag gactctacag tttatctt tagtgtgca gggtaatgg ttttataga ctaattttt tagtgtgca tgtgttccc caaatagct cacctataa atactcatc catttata gtacatcat gggtaatag ttttataga ctaattttt tagtacatca atttatt tagaataaa taagtgaca aaaattaaa caataccc ttaagaatt aggaaacat tttcttgtt cgggtgata atgccagcg gtcagcgc gggcatctc gtcgctgcc ctggaaccc ctcgaagtt ccgctcacc ctaccgtgtc ggcatccag aattgcgtg cggacggg gactgagc ggggctcct ctcctca cggcaccgc agcagcgg gactgcgc ggggcacct ctcctca cggcaccaca cacaaccag tcccccaca cggaacctc gttgtggg cgaagag tcccaccac caacccgg ttgttggg cgaagag tcccaccac caacccgg ttgttggg cgaagag tcccaccac caacccgg ttgttggg cgaagag tcccaccac caacccgg cgttcag gactcag acgcgctcg tcctccccc agaacgcag tccgtcga gacgaga gggcacctc ctcctca cggcaccaca cacaaccag tcccccaca caacccgg ttgttggg tagatcga ggccggtg tccgtcag gggacctag cgttcag acgcgctcg tcctccccc ccccacac caacctcgg ttgttgg ttagatccg gccgatag tccccccac ggaacgaag cggtttgg ttagatccg gccgatag tccgtcag gtacgtcag cgttcgg gacggag acggggtg tccggtcg gtacgtcag cgttcgg gacggat gacgaggg tccgatgg gtacggaga gaattcgt tctggttgg atgatggg tcggtggg gatcggag gaattcgt tctggttgg atgatggg cgggatg gatcggag gaattcgt tcaaactac tggtgatt ataatttg gtgttggca acatatca agtacgaa tgatggag gaattgg gtaggtag agattgg ggggttgg ggagatga atactgttc aaactact gtgggttgg ggaatacg gtaggtgg ttaccgg cgggtttac taatttgg acggagat gataggtaa caggtgg gatggag gaattgg gaatacg gtaggggt gagatgg ttaccgg cacaaca cagtatg taactgtgg ttaccgg cataca gaggagg gaattgg ttacttcag ttaccgag tagaggag gaatacg taactgtgg ttaccacca tggagatg gaatacg taactgg taccaccac dgggatcg taattgg atcatgat taactgg taccaccac tggagata cagaatgg taactggag taccatca ttaataaa caagtagt ttaatttg taactggg taccacca ttaatacag atggagaa tcagaatgg taactggg taccaccac tggagaca taggagaca taacactgg taccaccac tggagaca taggagag taacagaga taccaccac tggagaca taggagaca taggagaga taacactgg agaagag tcacaccac tg	gtgcagcgtg accgggcgt gcccctctct agagataatg agcattgat gtctaagtta taaaaatta ccacatatt tttttgtcac acttgttga agtgcagtt atctattt taacatata ttaacttaa ctcaacgat aataatacta atagtactac ataaataca gtgtttaga gaatcataa aatgacagt tagacatgg ctaaaggaca attgagtatt ttgacaacag gactctacag ttttatcttt tagtgtgca tgtgttcc tttttttg caaatagct cacctataa atactcatc catttata gtacatcat ttaaggtta gggttaatgg ttttataga ctaattttt tagtacatct atttattct atttagcct ctaaataag aaaactaaa ctcattta gtttttat ttaataatt agataaaa tagaataaa taaagtgact aaaaattaa caaatacct ttaagaatt aaaaacta gggatact gtcgtccc cggacgcg gtcgcgtcg gtcaagcga gccgacgg ctaacggaca ccaaccagg aaccagcg gtcgcgtcg gtcaacgca gtcgactg gtcgcgtcg ggcatccag aattgcgtg cggacggca gacgtgagc ggcagcgg gcggactcc gtcgctcc cggcacaca cacaccagg gactgagc ggcacgcc caaccacgg ttgttgg ggcacacac cacaccaga ttctacttc gtcgttcc tacggtag tgttgtg tagtacg ggcagggag ttctcttc cacaccgt gggacctcc gctcaagg aggggacg gccggtag ttctactc gtcaggcd gggacctcc gctcaagg agggggcg gccggtag ttctacttc gtcagttt gtgttagac cggttgg tgggggacg gccagcag ttctacttc gtcagttt gggtaggg tggcdcd gcatggttag ggccggtag ttctacttc gtcagttt gggtagg cgctca gadggacg gcacacac cacaccaga ttctactct agatcggg tcggtcca gadggacg tgccggtag ttctacttc gtcatgtt gggtagg cggtcd gcatggtag gccaggag gadggacg gadggacd gaggggac cggtttgg ttggtcgg gcggtag ttctatct gttatgtt ggttagg cggtttgg tggtgggg ggaggtag ttcatactg gtcgggacg gagggag acagttctg ttgtcgag ggggttg gccggtag ttctattt ggttggtt gcctttcc tttattcaa tatagcgg gcatggg ggtggtca gatgggag gaatctgt tcaaactac gggggtgg ggaggaa atcgatcag gataggta acagttgg ggggtttac tggtggat acaggagg cgtggtca gatgggag agatggg ggggtttac tgatgata ggaggagg cggatgag ggttggtt acatatcat agttaggat ggaggatga acgagagg cggatgg ggtaggag taccatca tatacaac agtaggatg acaggagg cggatgag gataggta acatatcat gttaggag gaatatgg acaggagg cggatgag gataggta acatatcat gtgaggag gaatatgg acgagagg cggatgag atacggag taccatca tatacaac agaggagg gaatatgg acgagagg cggatgag gacaggagg taccatca tatacaag atggagag acagagagg acgagagg gacaggagg taccata agagagg caaggagag acagagagg ggagagga

gcatcaagaaaaacttgatcggcgccctcctgttcgatagcggcgagaccgcggaggcgaccaggctcaagaggaccgccaggagacggtacactaggcgcaagaacaggatctgctacctgcaggagatcttcagcaacgaggacgaagaaggtggacgactccttcttccaccgcctggaggaatcattcctggtggaggaggacaagaagcatgagcggcacccaatcttcggcaacatcgtcgacgaggtaagtttctgcttctacctttgatataatatatatattatcattaattagtagtaatataatatttcaaatatttttttaaataaaagaatgagtatatagcaattgcttttctgtagtgcaggtggcctaccacgagaagacccgacaatctaccacctccggaagaactggtggacagcacagacaaggcggacctccggctcatctaccttgccctcgggaagaactggtggacagcacagacaaggcggacctccggctcatctaccttgccctcgcgaagaagtcaagtccgcggcgacctctcatggggcaagcagaagacccggacaactccgaagtggcaagtccgcggcgacctctcatggggcaaccactgttcgggagaccaacatggtgtggacagcaccagctgggcggacctcgcccggacaactcccggacaactccgaagtggcaagtccgcggcaccttactccggcaggcccggacactcccggacaactccgaagggcaagtcggcgtggacgcaaggccacctactccggacggccggacaactcgaagaggcaagtcggcgtggacgcaaggccacctacctcggacggcccggacactccaagaaggcgggacgcaggtggccgcaaggccacctacctcggacggcccgacaccccaacctaaacgcagcgcggtggccaccaaggccacctacctcggacgg<t

	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
10	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
45	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
15	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
	tccgccagca	gctccccgag	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
20	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
25	ccgtgtacaa	cgagetcace	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
	agateteggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
20	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
30	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacategee	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
35	agacggtcaa	ggtcgtcgac	gagetegtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcqtcataqa	gatggccagg	qaqaaccaqa	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acqqatcqaq	gagggcatta	aagagetegg	gtcccagatc	ctgaaggagc	4620
	accccqtqqa	aaatacccag	ctccagaatg	aaaaqctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagetgg	acattaatcq	gctatcggac	tacgacgtcg	4740
	accacatcqt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
40	ggtcggataa	aaatcqqqqc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctggcgccag	ctcctcaacq	cqaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
45	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
40	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
	agaagtaccc	gaagetggag	tcqqaqttcq	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacqqcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cqcqaacqqc	gagatccgca	5400
	agcgcccgct	catcgaaacc	aacqqcqaqa	cqqqcqaqat	cgtctgggat	aagggccggg	5460
50	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgaattc	agcaaqqaqt	ccatcctccc	gaagcqcaac	tccgacaage	5580
	tcatcocoao	gaagaaggat	tgggacccga	aaaaatatoo	cggcttcgac	agecegaeeg	5640
	tcgcatacag	cqtcctcatc	gtggcgaagg	tggagaagga	caaqtcaaaq	aagetcaagt	5700
	ccqtqaaqqa	gctgctcaaa	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactoc	5820
55	cgaagtactc	gctcttcgag	ctggaaaacq	gccgcaagag	gatgctcgcc	tccgcaggcq	5880

agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg

	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
F	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
5	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
10	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
15	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
20	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
20	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
25	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
30	gaactcttgc	acggccaatc	cagttttaga	gctagaaata	gcaagttaaa	ataaggctag	7800
	tccgttatca	acttgaaaaa	gtggcaccga	gtcggtgctt	tttttt		7847

<210>	142
-------	-----

# <211> 7848

# 35 <212> DNA

<213> Artificial sequence

#### <220>

<223> Artificial Sequence

#### 40

<400> 142

#### 45

...

50

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
15	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260

	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tototocat	acatattcat	agttacgaat	tgaagatgat	qqatqqaaat	atcgatctag	1500
5	gataggtata	catottoato	coogttttac	tgatgcatat	acagagatgc	tttttattca	1560
5	cttaattata	atgatgtggt	ataattaaac	ggtcgttcat	tcottctaga	tcogagtaga	1620
	atactotttc	aaactaccto	ototatttat	taattttooa	actotatoto	tototcatac	1680
	atetteatag	ttacgagttt		gaaatatoga	totaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacato	atoocatato	cagcatctat	tcatatoctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatatt	ttataattat	tttgatgttg	1860
10	atatacttog	atgatgggat	atacaacaaa	tatatata	tttttta	actgactta	1920
	taggetatt	atyatyytat	tacgcagcagc	tttatgtgga	atasaatat	tatttaatat	1920
	tacyclatti	actigotty	accyllet	tagaagaagaa	anagagaga	agetester	2040
		gglegaelel	agaggateea	rggcaccgaa	gaagaagege	aaggigalgg	2040
	acaagaagta	cagcaloggo	tereserve	gcaccaacce	ggugggeugg	geoglealea	2100
	cggacgaata	taaggteeeg	tegaagaagt	teaaggteet	cggcaataca	gacegeeaca	2160
15	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggeteaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
20	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
25	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cqqaqqacqc	caagetecag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	togcccagat	aggagaccag	tacgcggacc	tcttcctcqc	coccaagaac	ctctccgacg	3120
	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccactatcca	3180
~~	ccagcatgat	taaacoctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
30	tccgccagca	geteccegag	aagtacaagg	agatettett	coaccaatca	aaaaacooct	3300
	acocoooata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tectogagaa	gatggacgge	accoaccaget	tactactcaa	actcaacago	gaggacctcc	3420
		gaggacette	gacaacggct	ccatccccca	tcagatccag	ctogocoaac	3480
	tacataccat	cctacacac	caggagagagag	tctacccgtt	cctgaaggat	aaccooraga	3540
35	agategadaa	gatettgacg	ttccccatcc	catactacot	agaccagta	actogogogo	3600
55	agaccyagaa	gacetegatg	aggggaagt	cacaccacge	gggcccgccg	tagaaattta	3660
	acceedget	agataagaa	acceggaage	agaggagagac	agagggata	aggaacttog	3720
	aggagguggu	cyacaayyye	geragegere	agagetteat	cyaycycary	accaacticg	2700
	alaadaCCL	geeealgaa	aaagteetee	ccaagcacte	gelgelelae	gaglacilca	2040
	ccgtgtacaa	cgageteace	aaggtCaaat	acgreacega	gggcatgegg	aageeggegt	3840
40	teetgagegg	cgagcagaag	aaggegatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgette	gactccgtgg	3960
	agateteggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
45	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
50	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
<i>EE</i>	tgaaaaacta	ctggcgccag	ctcctcaacg	cgaaactgat	cacccagcgc	aagttcgaca	4920
00	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatcctg	gacagccgca	5040

	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacgctga	5100
	agtccaagct	cgtgtcggac	ttccgcaagg	acttccagtt	ctacaaggtc	cgcgagatca	5160
	acaactacca	ccacgcccac	gacgcctacc	tgaatgcggt	ggtcgggacc	gccctgatca	5220
~	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
5	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
10	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
15	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
20	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
25	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
30	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
25	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
35	ttttgagcga	ggggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	tacctttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
40	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gaactcgagg	aagacggttc	taggttttag	agctagaaat	agcaagttaa	aataaggcta	7800
45	gtccgttatc	aacttgaaaa	agtggcaccg	agtcggtgct	ttttttt		7848

<210> 143 <211> 7844 <212> DNA <213> Artificial sequence

<220> <223> Artificial Sequence

55 <400> 143

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360

	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaaacta	540
	aggaaacatt	tttcttattt	cgagtagata	atoccaocct	ottaaacocc	otcoacoaot	600
-	ctaacqqaca	ccaaccagcg	aaccagcagc	atcacatcaa	gccaagcgaa	geegeegege	660
5	aggastatat	atagatagat	atagagaga	atagagagtt	goodagogaa	attagaatta	720
	atagaatata	geogeogeo	aattaaataa	aggagagagag	cegeteeace	geeggaeeeg	720
	ccccgccgcc	ggcacccaga	aactgegegg	cyyaycyyca	gacgegagee	ggeaeggeag	240
	geggeeteet	CCLCCLCLCA	cggcaccggc	ageraegggg	galleelle	ccaccyctcc	040
	ttegetttee	CTTCCTCGCC	cgccgtaata	aatagacacc	CCCTCCaCaC	CCTCTTTCCC	900
10	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
10	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
15	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
15	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	qqatqqaaat	atcgatctag	1500
	gataggtata	catottoato	coogttttac	toatocatat	acagagatgc	tttttattca	1560
	cttaattata	atgatgtggt	ataattaaac	ggtcgttcat	tcottctaga	tcogagtaga	1620
20	atactotttc	aaactacctg	gtgtatttat		actotatoto	tatatatac	1680
20	atcttcatag	ttacgagett	aagatggatg	gaaatatoga	totaggatag	atatacatat	1740
	tastatagat	tttacgagete	catatacato	ataacatata	caccatotat	tatatatata	1800
	taacgttgggt	tactuate	ttatacatg	acygeataty	ttattattat	tttatgete	1960
	caacectyag	otacciaccia	ctacacaaa	tatatatata	tttttt	actoretter	1000
	atatacttgg	atgatggcat	atgeageage	tatatgtgga	ttttttage	cctgccttca	1920
25	tacgetattt	atttgettgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
20	tacttctgca	ggtcgactct	agaggateea	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
30	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatatttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
35	ggaagaaact	ggtggacagc	acagacaagg	cogacctccg	gctcatctac	cttaccctca	2700
	cocatatoat	caagttccgc	ggccacttcc	tcatcgaggg	coacctoaac	ccogacaact	2760
	ccgacgtgga	caagetotte	atccagetcg	tocagacota	caatcaacto	ttcgaggaga	2820
	accccataaa	cactageogeoe	atagacacca	aggecatect	ctcggccagg	ctctcgaaat	2880
	caagaagget	ggagaacctt	atcococaot	taccagacaa	aaagaagaag	aacetettea	2940
	gaaagattat	tagataga	atogagatas	caccaggegu	casatcasac	ttogagetog	3000
40	geaaccectae	caagetcaage	atataaaaaa	agaggtagga	caaaccaaac	racaactor	3060
	tagaagaaga	caagetteag	terrarage	tattactacya	cgacgaccic	gacaaccecc	2120
	cygeeeagat	aggagaccag		Letteetege	torroom	cleteegaeg	2120
	ctatectget	cagegacate	cttcgggtca	acaccgaaat	taccaaggea	cegetgteeg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
	tccgccagca	gctccccgag	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
45	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
	tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
50	aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
	ccgtgtacaa	cgageteace	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaqqaaqq	3900
	tgaccotgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtoctto	gactccgtog	3960
	agateteggg	cotogaggat	coottcaaco	cctcactcog	cacgtatcac	gacctcctca	4020
55	agatcattaa	agacaaggag	ttcctccaca	acgaggagaa	cgaggagato	ctcgaggaga	4080
	tcotcctcac	cctgaccctg	ttcgaggagg	gcgaaatgat	cgaggagagag	ctgaagacct	4140

4200 acgcgcacct gttcgacgac aaggtcatga aacagctcaa gaggcgccgc tacactggtt ggggaagget gtcccgcaag ctcattaatg gcatcaggga caagcagage ggcaagacca 4260 4320 tectggaett ceteaagtee gaegggtteg ceaacegeaa etteatgeag eteatteaeg 4380 acgactcgct cacgttcaag gaagacatcc agaaggcaca ggtgagcggg cagggtgact ccctccacga acacatcgcc aacctggccg gctcgccggc cattaaaaag ggcatcctgc 4440 4500 agacggtcaa ggtcgtcgac gagctcgtga aggtgatggg ccggcacaag cccgaaaata tcgtcataga gatggccagg gagaaccaga ccacccaaaa agggcagaag aactcgcgcg 4560 4620 agcggatgaa acggatcgag gagggcatta aagagctcgg gtcccagatc ctgaaggagc accccgtgga aaatacccag ctccagaatg aaaagctcta cctctactac ctgcagaacg 4680 gccgcgacat gtacgtggac caggagctgg acattaatcg gctatcggac tacgacgtcg 4740 accacatcgt gccgcagtcg ttcctcaagg acgatagcat cgacaacaag gtgctcaccc 4800 ggtcggataa aaatcggggc aagagcgaca acgtgcccag cgaggaggtc gtgaagaaga 4860 4920 tgaaaaacta ctggcgccag ctcctcaacg cgaaactgat cacccagcgc aagttcgaca 4980 acctgacgaa ggcggaacgc ggtggcttga gcgaactcga taaggcgggc ttcataaaaa ggcagctggt cgagacgcgc cagatcacga agcatgtcgc ccagatcctg gacagccgca 5040 tgaatactaa gtacgatgaa aacgacaagc tgatccggga ggtgaaggtg atcacgctga 5100 agtccaagct cgtgtcggac ttccgcaagg acttccagtt ctacaaggtc cgcgagatca 5160 5220 acaactacca ccacgcccac gacgcctacc tgaatgcggt ggtcgggacc gccctgatca 5280 agaagtaccc gaagctggag tcggagttcg tgtacggcga ctacaaggtc tacgacgtgc gcaaaatgat cgccaagtcc gagcaggaga tcggcaaggc cacggcaaaa tacttcttct 5340 actegaacat catgaactte tteaagaceg agateacet egegaacgge gagateegea 5400 agcgcccgct catcgaaacc aacggcgaga cgggcgagat cgtctgggat aagggccggg 5460 atttcgcgac ggtccgcaag gtgctctcca tgccgcaagt caatatcgtg aaaaagacgg 5520 5580 aggtccagac gggcgggttc agcaaggagt ccatcctccc gaagcgcaac tccgacaagc tcatcgcgag gaagaaggat tgggacccga aaaaatatgg cggcttcgac agcccgaccg 5640 5700 tcgcatacag cgtcctcgtc gtggcgaagg tggagaaggg caagtcaaag aagctcaagt ccgtgaagga gctgctcggg atcacgatta tggagcggtc ctccttcgag aagaacccga 5760 5820 tcgacttcct agaggccaag ggatataagg aggtcaagaa ggacctgatt attaaactgc cgaagtactc gctcttcgag ctggaaaacg gccgcaagag gatgctcgcc tccgcaggcg 5880 agttgcagaa gggcaacgag ctcgccctcc cgagcaaata cgtcaatttc ctgtacctcg 5940 6000 ctagccacta tgaaaagctc aagggcagcc cggaggacaa cgagcagaag cagctcttcg tggagcagca caagcattac ctggacgaga tcatcgagca gatcagcgag ttctcgaagc 6060 6120 gggtgateet cgccgacgcg aacetggaca aggtgetgte ggeatataac aageacegeg 6180 acaaaccaat acgcgagcag gccgaaaata tcatccacct cttcaccctc accaacctcg gcgctccggc agccttcaag tacttcgaca ccacgattga ccggaagcgg tacacgagca 6240 cgaaggaggt getegatgeg acgetgatee accagageat cacagggete tatgaaacae 6300 gcatcgacct gagccagctg ggcggagaca agagaccacg ggaccgccac gatggcgagc 6360 6420 tgggaggccg caagcgggca aggtaggtac cgttaaccta gacttgtcca tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat gctaatcact 6480 ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga ataaaagaga 6540 6600 aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata attctttgat

gaaccagatg catttcatta accaaatcca tatacatata aatattaatc atatataatt

aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa tgcggccggg

ctgcaggaat tcgatagctt tgagagtaca atgatgaacc tagattaatc aatgccaaag

totgaaaaat goaccotcag totatgatco agaaaatcaa gattgottga ggocotgtto ggttgttocg gattagagco coggattaat tootagcogg attacttoto taatttatat

agattttgat gagetggaat gaateetgge ttatteeggt acaacegaae aggeeetgaa ggataeeagt aategetgag etaaattgge atgetgteag agtgteagta ttgeageaag

gtagtgagat aaccggcatc atggtgccag tttgatggca ccattagggt tagagatggt

ggccatgggc gcatgtcctg gccaactttg tatgatatat ggcagggtga ataggaaagt

aaaattgtat tgtaaaaagg gatttcttct gtttgttagc gcatgtacaa ggaatgcaag

ttttgagcga gggggcatca aagatctggc tgtgtttcca gctgtttttg ttagccccat

cgaatcottg acataatgat cccgcttaaa taagcaacct cgcttgtata gttccttgtg ctctaacaca cgatgatgat aagtcgtaaa atagtggtgt ccaaagaatt tccaggccca

gttgtaaaag ctaaaatgct attcgaattt ctactagcag taagtcgtgt ttagaaatta tttttttata tacctttttt ccttctatgt acagtaggac acagtgtcag cgccgcgttg

acggagaata tttgcaaaaa agtaaaagag aaagtcatag cggcgtatgt gccaaaaact

tcgtcacaga gagggccata agaaacatgg cccacggccc aatacgaagc accgcgacga

agcccaaaca gcagtccgta ggtggagcaa agcgctgggt aatacgcaaa cgttttgtcc caccttgact aatcacaaga gtggagcgta ccttataaac cgagccgcaa gcaccgaatt

gcagcggaac tgtgagtgag ttttagagct agaaatagca agttaaaata aggctagtcc

gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tttt

6660 6720

6780

6840

6900 6960

7020

7080

7140

7200

7260 7320

7380 7440

7500 7560

7620

7680

7740

7800 7844

5

10

15

20

25

30

35

40

45

50

5	<210> 144 <211> 7845 <212> DNA <213> Artificial sequence <220> <223> Artificial Sequence
10	<400> 144
15	
20	
25	
30	
35	
40	
45	
50	
55	

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	ttttqtcac	acttottoa	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacqaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaqqaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tatattetce	ttttttttq	300
	caaatagett	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctattta	ottttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaaacta	540
10	aggaaacatt	tttcttattt	cgagtagata	atoccaocct	ottaaacocc	atcaacaagt	600
10	ctaacqqaca	ccaaccagcg	aaccagcagc	atcacatcaa	gccaagcgaa	gcagacggca	660
	coocatctct	atcactacct	ctogacccct	ctcgagagtt	ccoctccacc	attagactta	720
	ctccactatc	ggcatccaga	aattocotoo	cadaacaaca	gacgtgagcc	aacacaacaa	780
	acaacctcct	cctcctctca	caacaccaac	agctacgggg	gattcctttc	ccaccoctcc	840
	ttcactttcc	cttcctcocc	coccotaata	aatagacacc	ccctccacac	cctctttccc	900
15	caacctcoto	ttattcagag	cocacacaca	cacaaccaga	tctccccaa	atccacccot	960
	coocacctcc	gcttcaaggt	acaccactca	tcctccccc	ccccctctc	taccttctct	1020
	agatcogcot	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	attcatattt	1080
	gtgttagatc	catatttata	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacottctoa	ttoctaactt	gccagtgttt	ctctttaaaa	aatcctooga	1200
20	togetetage	cattecacaa	acgggatcga	tttcatgatt	ttttttattt	cottocatao	1260
	aatttaattt	accetttec	tttatttcaa	tatatoccot	gcacttgttt	atcagatcat	1320
	cttttcatoc	tttttttt	cttaattata	atgatgtggt	ctaattaaac	ggtcgttcta	1380
	gatcogagta	gaattetott	tcaaactacc	tootogattt	attaatttto	gatctgtatg	1440
	tototoccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcoatctag	1500
25	gataggtata	catottoato	cooottttac	tgatgcatat	acagagatg	ttttattca	1560
20	cttaattata	atgatgtggt	ataattaaac	ggtcgttcat	tcottctaga	tcogagtaga	1620
	atactotttc	aaactaccto	gtgtatttat	taattttoga	actotatoto	tototcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacato	atggcatatg	cagcatctat	tcatatoctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
30	atatacttoo	atgatggcat	atgcagcagc	tatatotoga	ttttttagc	cctoccttca	1920
	tacgctattt	atttgcttgg	tactotttct	tttgtcgatg	ctcaccctqt	tatttaatat	1980
	tacttctgca	ggtcgactct	agaggatcca	toocaccoaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcogc	ctcgacatcg	gcaccaactc	aataaactaa	accatcatca	2100
	cogacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	coocaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	aacaccctcc	tattcaataa	coocoaoacc	acadaadacaa	2220
	ccaggetcaa	gaggaccgcc	aggagacggt	acactaggeg	caaqaacaqq	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccacctag	2340
	aggaatcatt	cctggtggag	gaqqacaaqa	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcqtcqacqa	ggtaagtttc	tgettetace	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
40	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cqqacctccq	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagetgtte	atccagctcg	tgcagacgta	caatcaactq	ttcgaggaga	2820
45	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcq	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcq	3000
	cggaggacgc	caagetecag	ctctcaaagq	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
50	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg	3240
	-				-	-	

tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct	
acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	
tcctggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	
tcaggaagca	gaggaccttc	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	
tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	
agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	
actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	
aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg	
ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	
ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	
tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	
tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	
agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	
agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	
tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	
acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	
ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	
tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	
acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	
ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	
agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	
tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	
agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	
accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	
gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	
accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	
ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	
+						

5	tgcatgccat	cctgcggcgc	caggaggact	tetaccegtt	cctgaaggat	aaccgggaga	3340
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagetteat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaaqcactc	gctgctctac	gagtacttca	3780
	ccgtgtacaa	cgagetcacc	aaggtcaaat	acgtcaccga	aggcatgcag	aagccggcgt	3840
10	tectgagegg	cgagcagaag	aaggcgatag	togacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	graattaaaa	gaggagtact	tcaagaaaat	agagtgette	actccataa	3960
	agatetegeguu	cataaaaaat	canttoaaca	cotcactor	cacqtatcac	gacctoctos	4020
	agatottaa	agagaaggad	ttaataaaaa	aggaggaggag	agaggagata	gaccecceca	4020
	tagtattaa	agacaaggac	tteetegaea	acyayyayaa	cyayyacate	atapagaaat	4000
	concercae	ectyaccety	clegaggace	gegaaatgat	cyayyayayy	togaayacct	4140
15	acgegeacet	gttcgacgac	aaggtCatga	aacageteaa	gaggegeege	tacactggtt	4200
	ggggaaggct	gtcccgcaag	CTCattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
20	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcqqqqc	aagagcgaca	acgtgcccag	cqaqqaqqtc	gtgaagaaga	4860
25	tgaaaaacta	ctooccao	ctcctcaacq	cgaaactgat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	acaaactcaa	taaggcgggc	ttcataaaaa	4980
	ggcagctggt	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatectg	gacageegea	5040
	tgaatactaa	gtacgatgaa	aacgacaagc		ggtgaaggtg	atcacoctoa	5100
	agtccaaget	catatcagac	ttccccaage	acttccagtt	ctacaaqqtc	coccagatca	5160
	acaactacca	ccaccccac	acacataca	taatacaat	aatcaaggee	accetatea	5220
30	acaactacca	ceacycecae	taggagttag	tgtacgcggt	atacaacta	tagaagtag	5220
	agaagtacct	gaageeggag	aggageeeg	tgcacggcga	clacaaggic	tacyacycyc	5200
	ycaaaacyac	cyccaagtee	yaycayyaya	ceggeaagge	cacyycaaaa		5400
	actogaacat	Calgaactic	LLCaagaccg	agalCacccl	cgcgaacggc	gagaleegea	5400
	agegeeeget	categaaace	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgeteteea	tgeegeaagt	caatategtg	aaaaagacgg	5520
35	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagegeaae	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
10	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
40	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
45	acactccaac	ageetteaag	tacttcgaca	ccacgattga	ccqqaaqcqq	tacacgagca	6240
40	cgaaggaggt	actcgatgcg	acoctoatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagecagetg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	taggagggccg	caageougeog	aggtaggtag	cottaaccta	gacttgtcca	tettetggat	6420
	tooccaactt	aattaatota	tgaaataaaa	ggatgcacac	atantnacat	actaatcact	6480
	ataatataaa	catcaaagtt	atatattata	totaattact	agttatctga	ataaaaaaaa	6540
50	aagagatgat	ccatatttct	tatootaaat	gaatataaca	tatatttata	attatttayaya	6600
	aayayattat	astttastts	adaaataaa	tatagatata	astattasta	atotototat	6660
	yaaccayatg	Galleatta	accaaatcca	at at a set of the	adialidatic	tagaaaaaaa	6700
	aatatCaatt	yggttagcaa	aacaaatcta	gtetaggtgt	yctttgcgaa	Lycyyccggg	6720
	ctgcaggaat	tegatagett	tgagagtaca	atgatgaadd	tagattaatC	aatgecaaag	6/80
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
55	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020

	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
-	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
5	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
10	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gtacgtgtgc	gctatcaaag	gttttagagc	tagaaatagc	aagttaaaat	aaggctagtc	7800
	cgttatcaac	ttgaaaaagt	ggcaccgagt	cggtgctttt	ttttt		7845
15							
	<210> 145						
	<211> 7845						
	<212> DNA						
	<213> Artificial s	equence					
20		lequence					
	<220>						
	<2207 <2225 Artificial S	Soquence					
	~223~ Artificial C	bequence					
	<100> 145						
25	<4002 145						
25							
~~							
30							
35							
40							
45							
50							
-							
55							

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	ttttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440
	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taattttgga	actgtatgtg	tgtgtcatac	1680
	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	tcatatgctc	1800
20	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
30	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttagc	cctgccttca	1920
	tacgctattt	atttgcttgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggatcca	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
	cggacgaata	taaggtcccg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggctcaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340

	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
5	caaaacatoo	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
5	ggaagaaact	ggtggacagc	acagacaagg	cogacctccg	gctcatctac	cttaccctca	2700
	cocatatoat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccogacaact	2760
	ccgacgtgga	caagetotte	atccagetcg	tocagacota	caatcaacto	ttcgaggaga	2820
	accccataaa	cactageogeoe	atagacacca	aggecatect	ctcggccagg	ctctcgaaat	2880
	caagaagggt	gecagegge	atcococact	taccaaacaa	aaagaagaag	agentettea	2940
10	acaaccttat	tacactcaac	ctcggcgcage	caccaggegu	caaatcaaac	ttccacctcc	3000
	gcaaccettat	caagetcaage	atataaaaaa	agaggtagga	caaccaacta	racaaceter	3060
	tagaaaaat	aggettedag	tagggggagg	tattaataga	cyacyaccee	gacaacceec	3120
	cygeeeagat	aggagaccag	attaggata	agaggagaat	tagaaagaac	accetataca	2100
	agaggatgat	tagegacate	anagagaga	ataccyaaat	caccaaggea	according	3240
	terrererer	Ladacyclac	gacgagcacc	alcaggacci	cacyclyclc	aaggcactcg	3240
15	Leegeeagea	geteeegag	aagtacaagg	agalolloll	cgaccaatca	aaaaacggct	3300
	acgcgggata	tategaegge	ggtgeeagee	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	teetggagaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
	tcaggaagca	gaggacette	gacaacggct	ccatcccgca	tcagatccac	ctgggcgaac	3480
	tgcatgccat	cctgcggcgc	caggaggact	tctacccgtt	cctgaaggat	aaccgggaga	3540
	agatcgagaa	gatcttgacg	ttccgcatcc	catactacgt	gggcccgctg	gctcgcggca	3600
20	actcccggtt	cgcctggatg	acccggaagt	cggaggagac	catcacaccc	tggaactttg	3660
	aggaggtggt	cgataagggc	gctagcgctc	agagcttcat	cgagcgcatg	accaacttcg	3720
	ataaaaacct	gcccaatgaa	aaagtcctcc	ccaagcactc	gctgctctac	gagtacttca	3780
	ccgtgtacaa	cgagctcacc	aaggtcaaat	acgtcaccga	gggcatgcgg	aagccggcgt	3840
	tcctgagcgg	cgagcagaag	aaggcgatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
25	agatctcggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
20	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
50	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacqa	acacatcocc	aacctggccg	gctcgccggc	cattaaaaaq	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagetegtga	aggtgatggg	ccqqcacaaq	cccqaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	ageggatgaa	acquatcqaq	gagggcatta	aagagetegg	gtcccagatc	ctgaaggagc	4620
35	accccotooa	aaatacccag	ctccagaatg	aaaageteta	cctctactac	ctocagaaco	4680
	gccgcgacat	gtacgtggac	caggagetog	acattaatco	gctatcogac	tacgacgtcg	4740
	accacategt	gccgcagtcg	ttcctcaagg	acgatageat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaat.coggoog	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta		ctcctcaacq	cgaaactgat	cacccagege	aagttcgaca	4920
	acctgacgaa	aacaaacac	agtagetta	gcgaactcga		ttcataaaaa	4980
40	accarctant	caagacacac	cagatcacga	agcatgtcgc	ccagatecto	gacageegea	5040
	tgaatactaa	atacataa	aacracaacra	tgatccoga	agtgaaggtg	atcaccetaa	5100
	agtagaagat	gracyargaa	ttoggaaaga	agttagagtt	ggegaaggeg	accaegetga	5160
	ageecaagee	cgcgccggac	rangetagg	tasstaget	ccacaaggcc	cgcgagatca	5220
	acaactacca	ccacycccac	taggaettage	tgaalgeggt	gguegggaee	tagaagatag	5220
	agaagtaccc	gaagerggag	reggagereg	tgtacggega	clacaaygle	tacyacytyc	5260
45	gcaaaalgal	cyccaagtee	yaycayyaya	ceggeaagge	cacygcaaaa		5340
	actogaacat	catgaacttc	ttcaagaccg	agateaceet	cgcgaacggc	gagateegea	5400
	agegeeeget	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	CCATCCTCCC	gaagegeaae	teegacaage	5580
50	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agecegaceg	5640
50	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
55	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120

	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
-	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
5	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
10	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
15	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
~~	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
20	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
25	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gccgtgcgac	acacgtactg	gttttagagc	tagaaatagc	aagttaaaat	aaggctagtc	7800
	cgttatcaac	ttgaaaaagt	ggcaccgagt	cggtgctttt	tttt		7845

30 <210> 146

<211> 7847

- <212> DNA <213> Artificial sequence
- 35 <220> <223> Artificial Sequence

<400> 146

40

45

50

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttgtttga	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tgtgttctcc	tttttttg	300
	caaatagctt	cacctatata	atacttcatc	cattttatta	gtacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	attttattct	attttagcct	420
	ctaaattaag	aaaactaaaa	ctctatttta	gttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atgccagcct	gttaaacgcc	gtcgacgagt	600
	ctaacggaca	ccaaccagcg	aaccagcagc	gtcgcgtcgg	gccaagcgaa	gcagacggca	660
	cggcatctct	gtcgctgcct	ctggacccct	ctcgagagtt	ccgctccacc	gttggacttg	720
	ctccgctgtc	ggcatccaga	aattgcgtgg	cggagcggca	gacgtgagcc	ggcacggcag	780
	gcggcctcct	cctcctctca	cggcaccggc	agctacgggg	gattcctttc	ccaccgctcc	840
15	ttcgctttcc	cttcctcgcc	cgccgtaata	aatagacacc	ccctccacac	cctctttccc	900
15	caacctcgtg	ttgttcggag	cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	960
	cggcacctcc	gcttcaaggt	acgccgctcg	tcctccccc	ccccctctc	taccttctct	1020
	agatcggcgt	tccggtccat	gcatggttag	ggcccggtag	ttctacttct	gttcatgttt	1080
	gtgttagatc	cgtgtttgtg	ttagatccgt	gctgctagcg	ttcgtacacg	gatgcgacct	1140
	gtacgtcaga	cacgttctga	ttgctaactt	gccagtgttt	ctctttgggg	aatcctggga	1200
20	tggctctagc	cgttccgcag	acgggatcga	tttcatgatt	tttttgttt	cgttgcatag	1260
	ggtttggttt	gcccttttcc	tttatttcaa	tatatgccgt	gcacttgttt	gtcgggtcat	1320
	cttttcatgc	tttttttgt	cttggttgtg	atgatgtggt	ctggttgggc	ggtcgttcta	1380
	gatcggagta	gaattctgtt	tcaaactacc	tggtggattt	attaattttg	gatctgtatg	1440

	tgtgtgccat	acatattcat	agttacgaat	tgaagatgat	ggatggaaat	atcgatctag	1500
	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatgc	tttttgttcg	1560
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tcgttctaga	tcggagtaga	1620
	atactotttc	aaactacctg	gtgtatttat	taattttgga	actotatoto	tototcatac	1680
5	atcttcatag	ttacgagttt	aagatggatg	gaaatatcga	tctaggatag	gtatacatgt	1740
5	tgatgtgggt	tttactgatg	catatacato	atggcatatg	cagcatctat	tcatatoctc	1800
	taaccttgag	tacctatcta	ttataataaa	caagtatgtt	ttataattat	tttgatcttg	1860
	atatacttog	atgatggcat	atgcagcagc	tatatotoga	ttttttage	cctgccttca	1920
	tacoctattt	atttacttac	tactotttct	tttatcaata	ctcaccctqt	tatttaatat	1980
	tacttotoca	actogectog	agaggatoga	tagaacaaa	gaagaagggg	aagatgatga	2040
10	acaacaacta	ggccgacccc	agaggattea	ggggggggggg	gaagaagege	aaggegaegg	2100
	acaayaayta	tageategge	tagaagaaga	tasaataat	gguggguugg	geogradada	2160
	cygacgaata	Laaggleeeg	ragaagaagt	tettageteet	cyycaataca	gacegeeaca	2100
	gcalcaagaa	adactigate	ggegeeetee	lyllogalag	cggcgagacc	geggaggega	2220
	ccaggeteaa	gaggaccgcc	aggagacggt	acactaggeg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	CTCCTTCTTC	cacegeetgg	2340
15	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
20	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cqqaqqacqc	caagetecag	ctctcaaaqq	acacctacqa	cgacgacctc	gacaacctcc	3060
25	tooccagat	aggagaccag	tacgcggacc	tcttcctcac	caccaagaac	ctctccgacg	3120
	ctatcctoct	cagcgacatc	cttcoootca	acaccoaaat	taccaaggca	ccactatcca	3180
	ccagcatgat	taaacoctac	gacgagcacc	atcaggacct	cacgetgete	aaggcactcg	3240
		geteecgag	aagtacaagg	agatettett	cgaccaatca	aaaaacggct	3300
	acocoocata		agtaccaacc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tectogagaa	gatggacgge	accoaccact	tactactcaa	actcaacaaa	gaggagetcc	3420
30	tcaggaggag	gaoggaoggo	gacaacgggggg	ccatccccca	tcagatccag	ctagacaaac	3480
	tacataccat	cctacacac	caggagget	tctacccgtt	cctgaaggat	aacconnana	3540
	agatagagaaa	cetgeggege	ttaggaggacc	astactoget	cccgaaggac	aatagagaga	3600
	agaccyagaa	gacctogatg	accordant	cacaccacge	gggcccgccg	taasaattta	3660
	acceegyct	ageteegaag	acceggaage	cyyayyayac	cattacatta	rggaactig	2720
25	ayyayyuyyu	cyacaayyyc	geragegere	agagetteat	cyaycycary	accaacticg	2700
35	alaaaaacci	geeeaacyaa	aaayteetee	ccaagcacte	gelgelelae	gaglactica	3760
	ccgtgtacaa	cgageteace	aaggtcaaat	acgtcaccga	gggcatgcgg	aageeggegt	3840
	teetgagegg	cgagcagaag	aaggegatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgcttc	gactccgtgg	3960
	agateteggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
40	agatcattaa	agacaaggac	ttcctcgaca	acgaggagaa	cgaggacatc	ctcgaggaca	4080
10	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
45	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagetgg	acattaatco	gctatcggac	tacgacqtcq	4740
50	accacatcot	gccgcagtcg	ttcctcaaoo	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcooooc	aagagcgaca	acqtqcccaq	cgaggaggtc	gtgaagaaga	4860
	tgaaaaacta	ctogcoccao	ctcctcaaco	cgaaactgat	cacccaccoc	aagttcgaca	4920
	acctgacgaa	ggcggaacoc	ggtggcttga	gcgaactcga	taaggcgggg	ttcataaaaa	4980
	ggcagct.ggt	cgagacgcgc	cagatcacga	agcatotogo	ccagatecto	gacageogea	5040
	tgaatactaa	gtacgatgaa	aacgacaago	tgatccggga	gatgaagata	atcacoctoa	5100
55	agtocaagot	catateagaa	ttccgcaagg	acttccant+	ctacaanote	cocoacatica	5160
	acaactacca	ccacoccac	gacgcctacc	tgaatgcogt	agtcagaaco	gccctgatca	5220
							•

	agaagtaccc	gaagctggag	tcggagttcg	tgtacggcga	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	cgccaagtcc	gagcaggaga	tcggcaaggc	cacggcaaaa	tacttcttct	5340
	actcgaacat	catgaacttc	ttcaagaccg	agatcaccct	cgcgaacggc	gagatccgca	5400
_	agcgcccgct	catcgaaacc	aacggcgaga	cgggcgagat	cgtctgggat	aagggccggg	5460
5	atttcgcgac	ggtccgcaag	gtgctctcca	tgccgcaagt	caatatcgtg	aaaaagacgg	5520
	aggtccagac	gggcgggttc	agcaaggagt	ccatcctccc	gaagcgcaac	tccgacaagc	5580
	tcatcgcgag	gaagaaggat	tgggacccga	aaaaatatgg	cggcttcgac	agcccgaccg	5640
	tcgcatacag	cgtcctcgtc	gtggcgaagg	tggagaaggg	caagtcaaag	aagctcaagt	5700
	ccgtgaagga	gctgctcggg	atcacgatta	tggagcggtc	ctccttcgag	aagaacccga	5760
10	tcgacttcct	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactgc	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgctcgcc	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagctcttcg	6000
	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
15	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
20	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacg	tgtctttata	attctttgat	6600
	gaaccagatg	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggccggg	6720
25	ctgcaggaat	tcgatagctt	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	6780
	tctgaaaaat	gcaccctcag	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	6840
	ggttgttccg	gattagagcc	ccggattaat	tcctagccgg	attacttctc	taatttatat	6900
	agattttgat	gagctggaat	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	6960
	ggataccagt	aatcgctgag	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	7020
30	gtagtgagat	aaccggcatc	atggtgccag	tttgatggca	ccattagggt	tagagatggt	7080
50	ggccatgggc	gcatgtcctg	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	7140
	aaaattgtat	tgtaaaaagg	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	7200
	ttttgagcga	gggggcatca	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	7260
	cgaatccttg	acataatgat	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	7320
	ctctaacaca	cgatgatgat	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	7380
35	gttgtaaaag	ctaaaatgct	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	7440
	ttttttata	taccttttt	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	7500
	acggagaata	tttgcaaaaa	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	7560
	tcgtcacaga	gagggccata	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	7620
	agcccaaaca	gcagtccgta	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	7680
40	caccttgact	aatcacaaga	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt	7740
	gaccacggcc	agctgtagcg	ctgttttaga	gctagaaata	gcaagttaaa	ataaggctag	7800
	tccgttatca	acttgaaaaa	gtggcaccga	gtcggtgctt	tttttt		7847
	-040-047						
	<210> 147						
40	<211> 13						
	<212> DNA						
	<213> Artificial						
	<220>						
50	<223> Artificial S	Sequence					
	<400> 147						

agcgcccagc acc 13

⁵⁵ <210> 148 <211> 18 <212> DNA <213> Artificial

<220> <223> Artificial Sequence <400> 148 5 18 gattggacgt gcggctgt <210> 149 <211> 16 <212> DNA 10 <213> Artificial <220> <223> Artificial Sequence 15 <400> 149 tagccatcgc gtgccc 16 <210> 150 <211> 16 20 <212> DNA <213> Artificial <220> <223> Artificial Sequence 25 <400> 150 16 ctgccgttgt tgttca <210> 151 30 <211> 24 <212> DNA <213> Artificial <220> 35 <223> Artificial Sequence <400> 151 tgtgtgaatc ccatttctcc taga 24 40 <210> 152 <211> 16 <212> DNA <213> Artificial 45 <220> <223> Artificial Sequence <400> 152 16 tagccatcgc gtgccc 50 <210> 153 <211> 20 <212> DNA <213> Artificial 55 <220> <223> Artificial Sequence

<400> 153 20 taggtagaaa tgtgaaggtc <210> 154 5 <211> 20 <212> DNA <213> Artificial <220> 10 <223> Artificial Sequence <400> 154 agaggttgag acgctccacg 20 15 <210> 155 <211> 22 <212> DNA <213> Artificial 20 <220> <223> Artificial Sequence <400> 155 gtgcgtgctt tgtttgtttc tt 22 25 <210> 156 <211> 17 <212> DNA <213> Artificial 30 <220> <223> Artificial Sequence <400> 156 35 cccaagtagc aattaca 17 <210> 157 <211> 29 <212> DNA 40 <213> Artificial <220> <223> Artificial Sequence 45 <400> 157 ggctaggtaa tggttgaatc tacatatta 29 <210> 158 <211> 18 50 <212> DNA <213> Artificial <220> <223> Artificial Sequence 55 <400> 158 ttctgcgttt gctcgcct 18
	<210> 159
	<211> 19
	<212> DNA
	<213> Artificial
5	
	<220>
	<223> Artificial Sequence
	<400> 159
10	acttetecaa tocoteaca 19
	<210> 160
	<211> 19
	<212> DNA
15	<213> Artificial
	<220>
	<223> Artificial Sequence
	2202 Aninolal Sequence
20	<400> 160
	ayaaycayyc icyccayaa 19
	~210> 161
	~210~ 101
25	<2112 10 (212) DNA
25	<212> DNA
	<213> Artificial
	<220>
	<223> Artificial Sequence
30	
	<400> 161
	gcaacccctc cctcgtct 18
	<210> 162
35	<211> 18
	<212> DNA
	<213> Artificial
	<220>
40	<223> Artificial Sequence
	<400> 162
	cctccatcct tttacctc 18
45	<210> 163
	<211> 21
	<212> DNA
	<213> Artificial
50	<220>
	<223> Artificial Sequence
	<400> 163
	cagttactag tataccttac t 21
55	
	<210> 164
	<211> 21
	<212> DNA
	_ · <b>_ _</b> · • · •

	<213> Artificial
5	<220> <223> Artificial Sequence
	<400> 164 gcacaggagc aaccagaatc a 21
10	<210> 165 <211> 16 <212> DNA <213> Artificial
15	<220> <223> Artificial Sequence
	<400> 165 ttgctgatgg atcaat 16
20	<210> 166 <211> 19 <212> DNA
	<213> Artificial
25	<220> <223> Artificial Sequence
30	<400> 166 ggagaagagg tgccttggc 19
	<210> 167 <211> 24 <212> DNA
35	<213> Artificial <220>
	<223> Artificial Sequence
40	<400> 167 tatgttagcc ctaatctcga ccgt 24
	<210> 168 <211> 20
45	<212> DNA <213> Artificial
	<220> <223> Artificial Sequence
50	<400> 168 tagtccagtc ttgtcatcgt 20
	<210> 169 <211> 25
55	<212> DNA <213> Artificial

<220>

	<223> Artificial Sequence	
	<400> 169	05
5		25
	<210> 170	
	<2112 Z1	
	<213> Artificial	
10		
	<220>	
	<223> Artificial Sequence	
	<400> 170	
15	tccagtgcat atcgcagttc c	21
	-040: 474	
	<210> 171	
	<2112 20	
20	<213> Artificial	
	<220>	
	<223> Altilicial Sequence	
25	<400> 171	
	caaatcctaa ggaggaccat	20
	<210> 172	
	<211> 24	
30	<212> DNA	
	<213> Artificial	
	<220>	
	<223> Artificial Sequence	
35		
	<400> 172	24
		24
	<210> 173	
40	<211> 25	
	<212> DNA	
	<220>	
45	<223> Artificial Sequence	
	<400> 173	
	cgcttctacc atatgtagtt gttgc	25
50	<210> 174	
	<211> 19	
	<212> DNA	
	<213> Artificial	
55	<220>	
	<223> Artificial Sequence	
	<400> 174	

	tactccatgt ggtcattgt	19
5	<210> 175 <211> 20 <212> DNA <213> Artificial	
10	<220> <223> Artificial Sequence	e
	<400> 175 tctgtcgctc gtccaaatcc	20
15	<210> 176 <211> 18 <212> DNA	
	<213> Artificial	
20	<220> <223> Artificial Sequence	e
	<400> 176 caggtgggga agcacgac	18
25	<210> 177 <211> 15	
	<212> DNA <213> Artificial	
30	<220> <223> Artificial Sequence	9
25	<400> 177 ttgccggtcg atgct 15	
35	<210> 178 <211> 23	
10	<212> DNA <213> Artificial	
40	<220> <223> Artificial Sequence	9
45	<400> 178 cgcttttttc tcctgctatt ctg	23
	<210> 179 <211> 20	
50	<212> DNA <213> Artificial	
	<220> <223> Artificial Sequence	9
55	<400> 179 aagacaggca gtgccagagg	20
	<210> 180	

	<211> 21
	<212> DNA
	<213> Artificial
5	<220>
	<223> Artificial Sequence
	<400> 180
10	cctaaaccta ctctcttgag c 21
	<210> 181
	<211> 24
	<213> Artificial
15	
	<220>
	<223> Artificial Sequence
	<400> 181
20	tgacactttg tattggtgct cttg 24
	<210> 182
	<211> 23
	<212> DNA
25	<213> Artificial
	<220>
	<223> Artificial Sequence
30	<400> 182
	caaaggaaag gggagtaacc aac 23
	<210> 183
25	<211> 18
35	<212> DNA <213> Artificial
	<220>
40	<223> Antificial Sequence
	<400> 183
	tctgaatacc cgctctag 18
	<210> 184
45	<211> 27
	<212> DNA
	<213> Artificial
	<220>
50	<223> Artificial Sequence
	<400> 184
	ttcatctatc ctaatgagac atcctca 27
55	<210> 185
	<211> 24
	<213> Artificial

<220> <223> Artificial Sequence <400> 185 5 agggtcataa tgcaagactc gaat 24 <210> 186 <211> 19 <212> DNA 10 <213> Artificial <220> <223> Artificial Sequence 15 <400> 186 tagttccact ctcggcaac 19 <210> 187 <211> 22 20 <212> DNA <213> Artificial <220> <223> Artificial Sequence 25 <400> 187 22 tggtgagaga agaggctttt gg <210> 188 30 <211> 24 <212> DNA <213> Artificial <220> 35 <223> Artificial Sequence <400> 188 acacctagcc tagatgcctc agtc 24 40 <210> 189 <211> 16 <212> DNA <213> Artificial 45 <220> <223> Artificial Sequence <400> 189 ccaagcctct gcatct 16 50 <210> 190 <211> 17 <212> DNA <213> Artificial 55 <220> <223> Artificial Sequence

<400> 190 cgaaccttgt ccgcgtc 17 <210> 191 5 <211> 24 <212> DNA <213> Artificial <220> 10 <223> Artificial Sequence <400> 191 caaagtccca gagagcttgt tatc 24 15 <210> 192 <211> 21 <212> DNA <213> Artificial 20 <220> <223> Artificial Sequence <400> 192 tgctccttta tcactaggta t 21 25 <210> 193 <211> 29 <212> DNA <213> Artificial 30 <220> <223> Artificial Sequence <400> 193 35 gaataaacta gacgaaaaat gaggttgac 29 <210> 194 <211> 25 <212> DNA 40 <213> Artificial <220> <223> Artificial Sequence 45 <400> 194 aggactgatg agacttgtct tgagc 25 <210> 195 <211> 15 50 <212> DNA <213> Artificial <220> <223> Artificial Sequence 55 <400> 195 tttgccaatt ctttc 15

	<210> 196
	<211> 26
	<212> DNA
	<213> Artificial
5	
	<220>
	<223> Artificial Sequence
	·
	<400> 196
10	gcaaaagctc ttagaatatc cctttc 26
	gouardoto auguatato como 20
	<210> 197
	<211> 28
	<212> DNA
15	<212 DNA
15	
	-000
	<220>
	<223> Artificial Sequence
20	<400> 197
	agctataata aagtcttccc ctctagtt 28
	<210> 198
	<211> 21
25	<212> DNA
	<213> Artificial
	<220>
	<223> Artificial Sequence
30	
	<400> 198
	attctctgtt aaggaatgac t 21
	0 00 0
	<210> 199
35	<211> 19
	<212> DNA
	<213> Artificial
	<220>
40	<223> Artificial Sequence
	<400> 199
	conarcatt ttctcccca 19
45	<210> 200
	<211> 23
	<217 25 <212> DNA
	<212 DNA
50	<220>
50	
	>223> Artificial Sequence
	<400> 200
55	iyaciacgya igicaatgga gaa 23
55	<210> 201
	~2 IU2 2U1
	<211> 10
	<212> DNA

	<213> Artificial		
5	<220> <223> Artificial Sequence		
	<400> 201 cctgctactg cgaacc 16		
10	<210> 202 <211> 17		
	<212> DNA <213> Artificial		
15	<220>		
10			
	<400> 202 ccaaccagcg gcagagg	17	
20	<210> 203		
	<211> 19		
	<212> DNA		
	<213> Artificial		
25	<220>		
	<223> Artificial Sequence		
	<400> 203	10	
30	gcagcgtaca tggctcatg	19	
	<210> 204		
	<211> 20		
	<212> DNA		
25	<213> Artificial		
30	<220>		
	<223> Artificial Sequence		
	<400> 204		
40	tgttccaaat tctcctgcct 2	0	
	<210> 205		
	<211> 26		
45	<212> DNA		
45	<213> Artificial		
	<220> <223> Artificial Sequence		
50	<400> 205 gttcttatat ctggcgataa ccactt		26
	<210> 206		
55	<211> 26		
00	<212> DNA <213> Artificial		

<220>

	<223> Artificial Sequence	
	<400> 206	
_	ttgtagcact tgcacgtagt tacata	26
5	<210> 207	
	<211> 19	
	<212> DNA	
	<213> Artificial	
10		
	<220>	
	<223> Artificial Sequence	
	<400> 207	
15	cacatacact tgcacggca 19	
	0 00	
	<210> 208	
	<211> 25	
	<212> DNA	
20	<213> Artificial	
	<220>	
	<223> Artificial Sequence	
25	<400> 208	
	tgggagtagt agtgaacgga atacg	25
	<210> 200	
	<211> 24	
30	<2112 24 <2125 DNA	
00	<213> Artificial	
	<220>	
	<223> Artificial Sequence	
35		
	<400> 209	
	tccaaaaatt atatagcacg cacg	24
	<210> 210	
40	<211> 18	
	<212> DNA	
	<213> Artificial	
	< 220 >	
45	<223> Artificial Sequence	
40	<223> Altilicial Sequence	
	<400> 210	
	cgtccaagat tatctcct 18	
50	<210> 211	
	<211> 24	
	<212> DNA	
	<213> Artificial	
55	<220>	
	<223> Artificial Sequence	
	<100> 211	

	ccaccactct cgcataataa gtga 24
	<210> 212
	<210>212
5	<2112 20 <2125 DNA
5	<212> DNA
	<220>
	<223> Artificial Sequence
10	
	<400> 212
	gcttggaatc agtagaatgg aacac 25
	<210> 213
15	<211> 21
	<212> DNA
	<213> Artificial
	<220>
20	<223> Artificial Sequence
	<400> 213
	taggcaattt gtatcttgcg c 21
25	<210> 214
	<211> 21
	<212> DNA
	<213> Artificial
30	<220>
	<223> Artificial Sequence
	<400> 214
	acacctccag tagccacatc c 21
35	
	<210> 215
	<211> 27
	<212> DNA
	<213> Artificial
40	
	<223> Antificial Sequence
	<400> 215
45	tgctttacgc taggtgtgta tcttaca 27
	<210> 216
	<211> 17
	<212> DNA
50	<213> Artificial
	<220>
	<223> Artificial Sequence
55	<400> 216
	aaacacagac aagttgg 17
	<210> 217

	<211> 24
	<212> DNA
	<213> Artificial
5	<220>
	<223> Artificial Sequence
	<400> 217
	gaatcacatt ctctcctccc tctt 24
10	
	<210> 218
	<211> 16
	<212> DNA
	<213> Artificial
15	<220
	<2202
	<223> Antificial Sequence
	<400> 218
20	cacagaatca acgaga 16
	<210> 219
	<211> 22
	<212> DNA
25	<213> Artificial
	< 220
	<223> Artificial Sequence
30	<400> 219
	actotctaaa tactootatc tt 22
	5 55
	<210> 220
	<211> 29
35	<212> DNA
	<213> Artificial
	<220>
	<223> Artificial Sequence
40	/ / / / / / / / / / / / / / / / /
	<400> 220
	gatggaggat agaattgtat cttttagga 29
	<210> 221
45	<211> 29
	<212> DNA
	<213> Artificial
	-220
50	
50	<223> Artificial Sequence
	<400> 221
	actgtcttaa tttactcgac tctttctta 29
55	<210> 222
	<211> 18
	<212> UNA
	<213> Artificial

<220> <223> Artificial Sequence <400> 222 5 attgctcctc atcctcga 18 <210> 223 <211> 24 <212> DNA 10 <213> Artificial <220> <223> Artificial Sequence 15 <400> 223 ccacggactg gattagatag tggt 24 <210> 224 <211> 25 20 <212> DNA <213> Artificial <220> <223> Artificial Sequence 25 <400> 224 25 tctagctttg catcatgtct tgaac <210> 225 30 <211> 18 <212> DNA <213> Artificial <220> 35 <223> Artificial Sequence <400> 225 tgtccctgta tctccaac 18 40 <210> 226 <211> 19 <212> DNA <213> Artificial 45 <220> <223> Artificial Sequence <400> 226 19 ggcaggaatc aaggctcgt 50 <210> 227 <211> 20 <212> DNA <213> Artificial 55 <220> <223> Artificial Sequence

<400> 227 20 gcctcgcctt cgctagttaa <210> 228 5 <211> 16 <212> DNA <213> Artificial <220> 10 <223> Artificial Sequence <400> 228 agcctgagcc catgca 16 15 <210> 229 <211> 17 <212> DNA <213> Artificial 20 <220> <223> Artificial Sequence <400> 229 agccaccgca ctccacc 17 25 <210> 230 <211> 18 <212> DNA <213> Artificial 30 <220> <223> Artificial Sequence <400> 230 35 gcttctgcga tctgcggt 18 <210> 231 <211> 14 <212> DNA 40 <213> Artificial <220> <223> Artificial Sequence 45 <400> 231 cctgtgccat cgct 14 <210> 232 <211> 19 50 <212> DNA <213> Artificial <220> <223> Artificial Sequence 55 <400> 232 catgtggcga aggttggat 19

	<210> 233
	<211> 26
	<212> DNA
	<213> Artificial
5	
	<220>
	<223> Artificial Sequence
	<400> 233
10	ggaagaaaaa agatgttatc gaaagc 26
	<210> 234
	<211> 19
	<212> DNA
15	<213> Artificial
	<220>
	<223> Artificial Sequence
20	<400> 234
	anttropatat atctancca 19
	lightiggener gronegoog
	<210> 235
	<211> 24
25	<212> DNA
	<213> Artificial
	<220>
	<223> Artificial Sequence
30	SZ23 Anincial Sequence
50	<100> 235
	<210> 226
25	~210~ 230
55	<2112 IO
	<212 DINA
	(000)
40	<22U>
40	<223> Anificial Sequence
	(400) 020
	<400> 236
	ttggcgtgaa acggagct 18
45	1010: 007
40	<210> 237
	<211>14
	<212> DNA
	<213> Artificial
50	< 220 >
50	
	<223> Artificial Sequence
	(100) 007
	<40U> 237
FF	igcaccccgi cgic 14
55	-0405-000
	~∠ IU ² ∠3δ
	5211222
	<212> DNA

	<213> Artificial	
5	<220> <223> Artificial Sequence	
5	<400> 238 agagaaagca gatgacacgc ac	22
	<210> 230	
10	<211> 24	
	<212> DNA	
15	<220>	
15	<223> Artificial Sequence	
	<400> 239	
	caaatccgat taccacacat tagc	24
20	<210> 240	
	<211> 19	
	<212> DNA <213> Artificial	
25	<220>	
	<223> Antificial Sequence	
	<400> 240	
20	agcttacatc agctttggt 19	
30	<210> 241	
	<211> 26	
	<212> DNA	
35		
	<220>	
	<223> Artificial Sequence	
	<400> 241	
40	tcgagataac cctagaaaaa atggtt	26
	<210> 242	
	<211> 19	
45	<212> DNA <213> Artificial	
	<220>	
	<223> Annicial Sequence	
50	<400> 242	
	gtggtccacc atcgagcaa 19	
	<210> 243	
	<211> 16	
55	<212> DNA <213> Artificial	
	<220>	

	<223> Artificial Sequence
	<400> 243
	accgtgattg cattgc 16
5	<210> 244
	<211> 21
	<212> DNA
	<213> Artificial
10	<220
	<220>
	<400> 244
15	tggaaacgct tcatattcgg a 21
	<210> 245
	<211> 23
	<212> DNA
20	<213> Artificial
	<220>
	<223> Artificial Sequence
0.5	
25	<400> 245
	iciciccidal gecaligaac lag 23
	<210> 246
	<211> 15
30	<212> DNA
	<220>
25	<223> Artificial Sequence
35	<400> 246
	aggaaggcaa cgatg 15
10	<210> 247
40	<211> 21 <212> DNA
	<212> DNA <213> Artificial
	<220>
45	<223> Artificial Sequence
	<400> 247
	atgttcgcca cctttatttg c 21
50	<210> 248
	<211> 20
	<212> DNA
	<213> Artificial
55	<220>
	<223> Artificial Sequence
	<400> 248

	catcaacccg ttctgtccct	20	
5	<210> 249 <211> 15 <212> DNA <213> Artificial		
10	<220> <223> Artificial Sequence		
	<400> 249 tctcggccat ggatt 15		
15	<210> 250 <211> 19 <212> DNA <213> Artificial		
20	<220> <223> Artificial Sequence		
	<400> 250 tggtcgaact cttgcacgg	19	
25	<210> 251 <211> 24 <212> DNA <213> Artificial		
30	<220> <223> Artificial Sequence		
35	<400> 251 attttttgaa caagaaccgt ggac		24
	<2102 252 <2112 14 <2122 DNA <2132 Artificial		
40	<220> <223> Artificial Sequence		
45	<400> 252 ctggccgcta gaac 14		
	<210> 253 <211> 23 <212> DNA		
50	<213> Artificial		
55	<223> Artificial Sequence		
	cggaaaagga acagtcttga ttg		23
	<210> 254		

	<211> 23 <212> DNA <213> Artificial
5	<220> <223> Artificial Sequence
10	<400> 254 tgtgctctct acctttgcat gtg 23
	<210> 255 <211> 17 <212> DNA
15	<213> Artificial
	<223> Artificial Sequence
20	cggaactgtg agtgacg 17
25	<211> 25 <212> DNA <213> Artificial
	<220> <223> Artificial Sequence
30	<400> 256 ctagcctagc aggagtacga gttgt 25
35	<210> 257 <211> 26 <212> DNA <213> Artificial
40	<220> <223> Artificial Sequence <400> 257
	tgtcctagtt tttcatctgc aatctg 26
45	<211> 18 <212> DNA <213> Artificial
50	<220> <223> Artificial Sequence
	<400> 258 atggtccact ttgatagc 18
55	<210> 259 <211> 20 <212> DNA <213> Artificial

<220> <223> Artificial Sequence <400> 259 5 ggtcgtagtg ccgttgatgg 20 <210> 260 <211> 21 <212> DNA 10 <213> Artificial <220> <223> Artificial Sequence 15 <400> 260 ccagtccctg tgtacgtgtg c 21 <210> 261 <211> 18 20 <212> DNA <213> Artificial <220> <223> Artificial Sequence 25 <400> 261 acacacgtac tgcggcgt 18 <210> 262 30 <211> 22 <212> DNA <213> Artificial <220> 35 <223> Artificial Sequence <400> 262 tgtctttctt gtcgctgtgg at 22 40 <210> 263 <211> 19 <212> DNA <213> Artificial 45 <220> <223> Artificial Sequence <400> 263 ccacacgtcg tccgagttc 19 50 <210> 264 <211> 19 <212> DNA <213> Artificial 55 <220> <223> Artificial Sequence

<400> 264 aactcgtaaa cctagcgct 19 <210> 265 5 <211> 23 <212> DNA <213> Artificial <220> 10 <223> Artificial Sequence <400> 265 tagccgaaac atgacctctt tga 23 15 <210> 266 <211> 21 <212> DNA <213> Artificial 20 <220> <223> Artificial Sequence <400> 266 accccaataa aaccccctag c 21 25 <210> 267 <211> 96 <212> RNA <213> artificial 30 <220> <223> Artificial Sequence <400> 267 35 gcuguggacg uggggugcug uuuuagagcu agaaauagca aguuaaaaua aggcuagucc 60 guuaucaacu ugaaaaagug gcaccgaguc ggugcu 96 40 <210> 268 <211> 96 <212> RNA <213> artificial 45 <220> <223> Artificial Sequence <400> 268 50 gaaccacacu gaacaacaag uuuuagagcu agaaauagca aguuaaaaua aggcuagucc 60 guuaucaacu ugaaaaagug gcaccgaguc ggugcu 96 <210> 269 55 <211> 98 <212> RNA <213> artificial

<220> <223> Artificial Sequence

<400> 269

5

gccgccuagg uagaaaugug aguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 60 ccguuaucaa cuugaaaaag uggcaccgag ucggugcu 98 10 <210> 270 <211> 98 <212> RNA <213> artificial 15 <220> <223> Artificial Sequence <400> 270 20 gacuaaaugu aauugcuacu uguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 60 ccguuaucaa cuugaaaaag uggcaccgag ucggugcu 98 <210> 271 25 <211> 97 <212> RNA <213> artificial <220> 30 <223> Artificial Sequence <400> 271 gagggaggcc ugugacgcau guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60 35 cguuaucaac uugaaaaagu ggcaccgagu cggugcu 97 <210> 272 <211> 99 40 <212> RNA <213> artificial <220> <223> Artificial Sequence 45 <400> 272 gcaggacagg gagguaaaag gaguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag 60 99 uccguuauca acuugaaaaa guggcaccga gucggugcu 50 <210> 273 <211> 97 <212> RNA 55 <213> artificial

<220> <223> Artificial Sequence <400> 273

5	gaccguugcu cguuaucaac	gauggaucaa uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugcu	aaguuaaaau	aaggcuaguc	60 97
10	<210> 274 <211> 96 <212> RNA <213> artificial						
	<220> <223> Artificial S	Sequence					
15	<400> 274						
00	guuccaacga guuaucaacu	ugacaagacg ugaaaaagug	uuuuagagcu gcaccgaguc	agaaauagca ggugcu	aguuaaaaua	aggcuagucc	60 96
20	<210> 275 <211> 97 <212> RNA <213> artificial						
25	<220> <223> Artificial S	equence					
30	<400> 275						
	gcacaauaau Cguuaucaac	gguccuccuu uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugcu	aaguuaaaau	aaggcuaguc	60 97
35	<210> 276 <211> 96 <212> RNA <213> artificial						
40	<220> <223> Artificial S	Sequence					
	<400> 276						
45	gaugaugaca guuaucaacu	augaccacag ugaaaaagug	uuuuagagcu gcaccgaguc	agaaauagca ggugcu	aguuaaaaua	aggcuagucc	60 96
50	<210> 277 <211> 97 <212> RNA <213> artificial						
55	<220> <223> Artificial S	Sequence					
	<400> 277						

	gugccagagg cguuaucaac	cagcaucgac uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugcu	aaguuaaaau	aaggcuaguc	60 97
5	<210> 278 <211> 97 <212> RNA <213> artificial						
10	<220> <223> Artificial S	Sequence					
	<400> 278						
15	gcucuugggc cguuaucaac	ucaagagagu uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugcu	aaguuaaaau	aaggcuaguc	60 97
20	<210> 279 <211> 98 <212> RNA <213> artificial						
25	<220> <223> Artificial S	equence					
	<400> 279						
30	gagacauccu ccguuaucaa	cauucuagag cuugaaaaag	cguuuuagag uggcaccgag	cuagaaauag ucggugcu	Caaguuaaaa	uaaggcuagu	60 98
35	<210> 280 <211> 99 <212> RNA <213> artificial						
40	<220> <223> Artificial S	Sequence					
	<400> 280						
45	gccucaguca uccguuauca	uaguuccacu acuugaaaaa	cuguuuuaga guggcaccga	gcuagaaaua gucggugcu	gcaaguuaaa	auaaggcuag	60 99
	<210> 281 <211> 97 <212> RNA						
50	<213> artificial						
	<220> <223> Artificial S	Sequence					
55	<400> 281						

	gagcuuguua cguuaucaac	ucagaugcag uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugcu	aaguuaaaau	aaggcuaguc	60 97
5	<210> 282 <211> 96 <212> RNA <213> artificial						
10	<220> <223> Artificial S	Sequence					
	<400> 282						
15	gagcuauacc guuaucaacu	uagugauaag ugaaaaagug	uuuuagagcu gcaccgaguc	agaaauagca ggugcu	aguuaaaaua	aggcuagucc	60 96
20	<210> 283 <211> 101 <212> RNA <213> artificial						
25	<220> <223> Artificial S	equence					
	<400> 283						
30	gaauaucccu aguccguuau	uucuacgaaa caacuugaaa	gaauguuuua aaguggcacc	gagcuagaaa gagucggugc	uagcaaguua u	aaauaaggcu	60 101
35	<210> 284 <211> 98 <212> RNA <213> artificial						
40	<220> <223> Artificial S	Sequence					
45	gucaauggag ccguuaucaa	aauucucugu cuugaaaaag	uguuuuagag uggcaccgag	cuagaaauag ucggugcu	caaguuaaaa	uaaggcuagu	60 98
50	<210> 285 <211> 95 <212> RNA <212> artificial						
50	<213> artificial <220> <223> Artificial S	Sequence					
55	<400> 285						

	guacguaacg uuaucaacuu	ugcaguacgu gaaaaagugg	uuuagagcua caccgagucg	gaaauagcaa gugcu	guuaaaauaa	ggcuaguccg	60 95
5	<210> 286 <211> 98 <212> RNA <213> artificial						
10	<220> <223> Artificial S	sequence					
	<4002 200						
15	gugcucccug ccguuaucaa	cuacugcgaa cuugaaaaag	cguuuuagag uggcaccgag	cuagaaauag ucggugcu	caaguuaaaa	uaaggcuagu	60 98
20	<210> 287 <211> 95 <212> RNA <213> artificial						
25	<220> <223> Artificial S	Sequence					
	<400> 287						
30	ggugcaggca uuaucaacuu	ggagaauugu gaaaaagugg	uuuagagcua caccgagucg	gaaauagcaa gugcu	guuaaaauaa	ggcuaguccg	60 95
	<210> 288 <211> 99						
35	<212> RNA <213> artificial						
40	<220> <223> Artificial S	sequence					
40	<400> 288						
45	gaucgauaca uccguuauca	cauacacuug acuugaaaaa	caguuuuaga guggcaccga	gcuagaaaua gucggugcu	gcaaguuaaa	auaaggcuag	60 99
50	<210> 289 <211> 101 <212> RNA <213> artificial						
	<220> <223> Artificial 9	Sequence					
		equence					
55	<400> 289						

	gcauaauaag aguccguuau	ugaggagaua caacuugaaa	aucuguuuua aaguggcacc	gagcuagaaa gagucggugc	uagcaaguua u	aaauaaggcu	60 101
5	<210> 290 <211> 96 <212> RNA <213> artificial						
10	<220> <223> Artificial S	sequence					
	<400> 290						
15	gcaauuugua guuaucaacu	ucuugcgcag ugaaaaagug	uuuuagagcu gcaccgaguc	agaaauagca ggugcu	aguuaaaaua	aggcuagucc	60 96
20	<210> 291 <211> 97 <212> RNA <213> artificial						
25	<220> <223> Artificial S	equence					
	<400> 291						
30	gaggaaacac cguuaucaac	agacaaguug uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc Cggugcu	aaguuaaaau	aaggcuaguc	60 97
35	<210> 292 <211> 100 <212> RNA <213> artificial						
40	<220> <223> Artificial S <400> 292	equence					
45	guacuugcuc guccguuauc	acugucuaaa aacuugaaaa	uacguuuuag aguggcaccg	agcuagaaau agucggugcu	agcaaguuaa	aauaaggcua	60 100
50	<210> 293 <211> 98 <212> RNA <213> artificial						
	<220> <223> Artificial S	equence					
55	<400> 293						

	gcauaaugag ccguuaucaa	gaucgaggau cuugaaaaag	gguuuuagag uggcaccgag	cuagaaauag ucggugcu	caaguuaaaa	uaaggcuagu	60 98
5	<210> 294 <211> 95 <212> RNA <213> artificial						
10	<220> <223> Artificial S	Sequence					
	<400> 294						
15	gcucguguug uuaucaacuu	gagauacagu gaaaaagugg	uuuagagcua caccgagucg	gaaauagcaa gugcu	guuaaaauaa	ggcuaguccg	60 95
20	<210> 295 <211> 96 <212> RNA <213> artificial						
25	<220> <223> Artificial S	Sequence					
	<400> 295						
30	gugagccuga guuaucaacu	gcccaugcag ugaaaaagug	uuuuagagcu gcaccgaguc	agaaauagca ggugcu	aguuaaaaua	aggcuagucc	60 96
35	<210> 296 <211> 97 <212> RNA <213> artificial						
40	<220> <223> Artificial S	Sequence					
	<400> 296						
45	guugaucaaa cguuaucaac	gcgauggcac uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugcu	aaguuaaaau	aaggcuaguc	60 97
50	<210> 297 <211> 97 <212> RNA <213> Artificial						
	<220> <223> Artificial S	Sequence					
55	<400> 297						

	gcaguuggau cguuaucaac	augucuagcc uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugcu	aaguuaaaau	aaggcuaguc	60 97
5	<210> 298 <211> 99 <212> RNA <213> Artificial						
10	<220> <223> Artificial S	equence					
	<400> 298						
15	gacacgcacu uccguuauca	gcaccccguc acuugaaaaa	guguuuuaga guggcaccga	gcuagaaaua gucggugcu	gcaaguuaaa	auaaggcuag	60 99
20	<210> 299 <211> 96 <212> RNA <213> Artificial						
25	<220> <223> Artificial S	equence					
	<400> 299						
30	gcacagcuua guuaucaacu	caucagcuug ugaaaaagug	uuuuagagcu gcaccgaguc	agaaauagca ggugcu	aguuaaaaua	aggcuagucc	60 96
35	<210> 300 <211> 99 <212> RNA <213> Artificial						
40	<220> <223> Artificial S <400> 300	equence					
45	gcauguacau uccguuauca	gcaaugcaau acuugaaaaa	caguuuuaga guggcaccga	gcuagaaaua gucggugcu	gcaaguuaaa	auaaggcuag	60 99
50	<210> 301 <211> 99 <212> RNA <213> Artificial						
	<220> <223> Artificial S	equence					
55	<400> 301						

gaccuguaca ggaaggcaac gaguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag 60 uccguuauca acuugaaaaa guggcaccga gucggugcu 99 5 <210> 302 <211> 99 <212> RNA <213> Artificial 10 <220> <223> Artificial Sequence <400> 302 15 gaacucuugc acggccaauc caguuuuaga gcuagaaaua gcaaguuaaa auaaggcuag 60 99 uccguuauca acuugaaaaa guggcaccga gucggugcu <210> 303 20 <211> 100 <212> RNA <213> Artificial <220> 25 <223> Artificial Sequence <400> 303 gaacucgagg aagacgguuc uagguuuuag agcuagaaau agcaaguuaa aauaaggcua 60 30 100 guccguuauc aacuugaaaa aguggcaccg agucggugcu <210> 304 <211>96 35 <212> RNA <213> Artificial <220> <223> Artificial Sequence 40 <400> 304 60 gcagcggaac ugugagugag uuuuagagcu agaaauagca aguuaaaaua aggcuagucc guuaucaacu ugaaaaagug gcaccgaguc ggugcu 96 45 <210> 305 <211> 97 <212> RNA <213> Artificial 50 <220> <223> Artificial Sequence 55 <400> 305

	guacgugugc cguuaucaac	gcuaucaaag uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugcu	aaguuaaaau	aaggcuaguc	60 97
	-						
5	<210> 306 <211> 97						
	<212> RNA						
	<213> Artificial						
10	<220>						
	<223> Artificial S	Sequence					
	<400> 306						
15							60
	gccgugcgac cguuaucaac	acacguacug uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugcu	aaguuaaaau	aaggcuaguc	60 97
20	<210> 307						
20	<212> RNA						
	<213> Artificial						
	<220>						
25	<223> Artificial S	Sequence					
	<400> 307						
							<b>60</b>
30	gaccacggcc uccguuauca	agcuguagcg	guggcaccga	gcuagaaaua gucggugcu	gcaaguuaaa	auaaggcuag	60 99
	-	-					
	<210> 308						
35	<211> 4107 <212> DNA						
	<213> Streptoco	ccus pyogenes N	/11 GAS (SF370)				
	<400> 308						

	atggataaga	aatactcaat	aggcttagat	atcggcacaa	atagcgtcgg	atgggcggtg	60
	atcactgatg	aatataaggt	tccgtctaaa	aagttcaagg	ttctgggaaa	tacagaccgc	120
	cacagtatca	aaaaaatct	tataggggct	cttttatttg	acagtggaga	gacagcggaa	180
	gcgactcgtc	tcaaacggac	agctcgtaga	aggtatacac	gtcggaagaa	tcgtatttgt	240
5	tatctacagg	agatttttc	aaatgagatg	gcgaaagtag	atgatagttt	ctttcatcga	300
	cttgaagagt	ctttttggt	ggaagaagac	aagaagcatg	aacgtcatcc	tatttttgga	360
	aatatagtag	atgaagttgc	ttatcatgag	aaatatccaa	ctatctatca	tctgcgaaaa	420
	aaattggtag	attctactga	taaagcggat	ttgcgcttaa	tctatttggc	cttagcgcat	480
	atgattaagt	ttcgtggtca	ttttttgatt	gagggagatt	taaatcctga	taatagtgat	540
10	gtggacaaac	tatttatcca	gttggtacaa	acctacaatc	aattatttga	agaaaaccct	600
	attaacgcaa	gtggagtaga	tgctaaagcg	attctttctg	cacgattgag	taaatcaaga	660
	cgattagaaa	atctcattgc	tcagctcccc	ggtgagaaga	aaaatggctt	atttgggaat	720
	ctcattgctt	tgtcattggg	tttgacccct	aattttaaat	caaattttga	tttggcagaa	780
	gatgctaaat	tacagctttc	aaaagatact	tacgatgatg	atttagataa	tttattggcg	840
15	caaattggag	atcaatatgc	tgatttgttt	ttggcagcta	agaatttatc	agatgctatt	900
	ttactttcag	atatcctaag	agtaaatact	gaaataacta	aggctcccct	atcagcttca	960
	atgattaaac	gctacgatga	acatcatcaa	gacttgactc	ttttaaaagc	tttagttcga	1020
	caacaacttc	cagaaaagta	taaagaaatc	ttttttgatc	aatcaaaaaa	cggatatgca	1080
	ggttatattg	atgggggagc	tagccaagaa	gaattttata	aatttatcaa	accaatttta	1140
	gaaaaaatgg	atggtactga	ggaattattg	gtgaaactaa	atcgtgaaga	tttgctgcgc	1200
20	aagcaacgga	cctttgacaa	cggctctatt	ccccatcaaa	ttcacttggg	tgagctgcat	1260
	gctattttga	gaagacaaga	agacttttat	ccatttttaa	aagacaatcg	tgagaagatt	1320
	gaaaaaatct	tgacttttcg	aattccttat	tatgttggtc	cattggcgcg	tggcaatagt	1380
	cgttttgcat	ggatgactcg	gaagtctgaa	gaaacaatta	ccccatggaa	ttttgaagaa	1440
	gttgtcgata	aaggtgcttc	agctcaatca	tttattgaac	gcatgacaaa	ctttgataaa	1500
25	aatcttccaa	atgaaaaagt	actaccaaaa	catagtttgc	tttatgagta	ttttacggtt	1560
	tataacgaat	tgacaaaggt	caaatatgtt	actgaaggaa	tgcgaaaacc	agcatttctt	1620

	tcaggtgaac	agaagaaagc	cattgttgat	ttactcttca	aaacaaatcg	aaaagtaacc	1680
	gttaagcaat	taaaagaaga	ttatttcaaa	aaaatagaat	gttttgatag	tgttgaaatt	1740
	tcaggagttg	aagatagatt	taatgcttca	ttaggtacct	accatgattt	gctaaaaatt	1800
	attaaagata	aagatttttt	ggataatgaa	gaaaatgaag	atatcttaga	ggatattgtt	1860
5	ttaacattga	ccttatttga	agatagggag	atgattgagg	aaagacttaa	aacatatgct	1920
	cacctctttq	atgataaggt	gatgaaacag	cttaaacqtc	gccgttatac	tggttgggga	1980
	cgtttgtctc	gaaaattgat	taatggtatt	agggataagc	aatctggcaa	aacaatatta	2040
	gattttttga	aatcagatgg	ttttgccaat	cgcaatttta	tgcagctgat	ccatgatgat	2100
	agtttgacat	ttaaagaaga	cattcaaaaa	gcacaagtgt	ctggacaagg	cgatagttta	2160
10	catgaacata	ttgcaaattt	agetggtage	cctgctatta	aaaaaqqtat	tttacagact	2220
	gtaaagttg	ttgatgaatt	ggtcaaagta	atagagagag	ataagccaga	aaatatcott	2280
	attgaaatgg	cacotoaaaa	tcagacaact	caaaaggggcc	agaaaaattc	acaagagcat	2340
	atgaaacgaa	tcgaagaagg	tatcaaagaa	ttaggaagtc	agattettaa	agaggatect	2400
	ottoaaaata	ctcaattoca	aaatgaaaag	ctctatctct	attatctcca	aaatogaaga	2460
	gacatotato	togaccaaga	attagatatt	aatcotttaa	otoattatoa	totcoatcac	2520
15	attottccac	aaagtttcct	taaagacgat	tcaatagaca	ataaggtett	aacgcgttct	2580
	gataaaaatc	gtggtaaatc	ggataacgtt	ccaagtgaag	aagtagtcaa		2640
	aactattooa	gacaacttct	aaacgccaag	ttaatcactc	aacotaaott	toataattta	2700
	acqaaaqctq	aacatagaaga	tttgagtgaa	cttgataaag	ctoottttat	caaacoccaa	2760
	ttaattaaaa	ctccccaaat	cactaaccat	atagcacaaa	ttttagatag	tcacataaat	2820
20	actasataco	atgaaaatga	taaacttatt	caagagatta	aantgattag	cttaaaatct	2880
	accalacacy	atgaaaatga	aaaaaattta	cyayayytta	aagtgattac	cettaadatet	2000
	taggett	cogatosta	atatataaat	acatatta	aagtacgtga	gattaacaac	3000
	taccalcaly	ttaaatagaa	gtattatatat	geogeogeogeog	gaactyctt	tattaayaaa	3060
	atcatta	actatagaa	guuguduat	ggugallala	aayttatya	attttaatat	3120
	algallycla	agtergagea	agaaalagge	adageaaceg	atagaagagat	tagaaaaaga	3120
25	aatatootaa	acticitcaa	aacayaaacc	acacttycaa	acggagagac	cegeaaaege	3240
	celetaateg	aaactaatyy	gyaaactgya	gaaallylel	gggalaaagg	gegagattt	2240
	gecacagige	gcaaagtatt	glecalgeee	Caagicaala	LIGICAAGAA	aacayaagta	3300
	cagacaggeg	gattetecaa	ggagtCaatt	ttaccaaaaa	gaaattogga	caagettatt	3360
	gctcgtaaaa	aagactggga	tccaaaaaaa	tatggtggtt	ttgatagtee	aacggtagct	3420
30	tattcagtcc	tagtggttgc	taaggtggaa	aaagggaaat	cgaagaagtt	aaaatccgtt	3480
	aaagagttac	tagggatcac	aattatggaa	agaagtteet	ttgaaaaaaa	teegattgae	3540
	ttttagaag	ctaaaggata	taaggaagtt	aaaaaagact	taatcattaa	actacctaaa	3600
	tatagtettt	ttgagttaga	aaacggtcgt	aaacggatgc	tggctagtgc	cggagaatta	3660
	caaaaaggaa	atgagetgge	tetgecaage	aaatatgtga	atttttata	tttagctagt	3720
25	cattatgaaa	agttgaaggg	tagtccagaa	gataacgaac	aaaaacaatt	gtttgtggag	3780
35	cagcataagc	attatttaga	tgagattatt	gagcaaatca	gtgaattttc	taagcgtgtt	3840
	attttagcag	atgccaattt	agataaagtt	cttagtgcat	ataacaaaca	tagagacaaa	3900
	ccaatacgtg	aacaagcaga	aaatattatt	catttattta	cgttgacgaa	tcttggagct	3960
	cccgctgctt	ttaaatattt	tgatacaaca	attgatcgta	aacgatatac	gtctacaaaa	4020
	gaagttttag	atgccactct	tatccatcaa	tccatcactg	gtctttatga	aacacgcatt	4080
40	gatttgagtc	agctaggagg	tgactga				4107
	<210> 309						
	<211> 9						
	<212> PRT						
45	<212- 11(1 <213> Simian vi	rue 40					
10		103 40					
	<400> 300						
	<b>400</b> × 505						
		Мо	+ Ala Dro T		Ang Tug Vol		
50		Me 1	L ALA PIO L	уз цуз цуз 5	ALG LYS VAL		
		T		5			
	<210> 310						
	<211> 18						
	<212> PRT						
55	<213> Aarobact	erium tumefacien	19				
	-2 10+ Ayrobacte						
	<400> 310						

		Lys 1 Ala	Arg Arg	Pro	Arg	Asp 5	Arg	His	Asp	Gly	Glu 10	Leu	Gly	Gly	Arg	Lys 15	Arg
5	<210> 3 <211> 6 <212> D <213> A	911 9717 DNA Artificia	l Sequ	ience													
10	<220> <223> A	Artificia	l Sequ	ience													
15	<400> 3	11															
20																	
25																	
30																	
35																	
40																	
45																	
50																	
55																	

	gtgcagcgtg	acccggtcgt	gcccctctct	agagataatg	agcattgcat	gtctaagtta	60
	taaaaatta	ccacatattt	tttttgtcac	acttotttoa	agtgcagttt	atctatcttt	120
	atacatatat	ttaaacttta	ctctacgaat	aatataatct	atagtactac	aataatatca	180
	gtgttttaga	gaatcatata	aatgaacagt	tagacatggt	ctaaaggaca	attgagtatt	240
5	ttgacaacag	gactctacag	ttttatcttt	ttagtgtgca	tatattetee	ttttttta	300
	caaatagett	cacctatata	atacttcatc	cattttatta	otacatccat	ttagggttta	360
	gggttaatgg	tttttataga	ctaattttt	tagtacatct	atttattct	atttageet	420
	ctaaattaag	aaaactaaaa	ctctattta	otttttttat	ttaataattt	agatataaaa	480
	tagaataaaa	taaagtgact	aaaaattaaa	caaataccct	ttaagaaatt	aaaaaaacta	540
10	aggaaacatt	tttcttgttt	cgagtagata	atoccaocct	ottaaacocc	atcaacaaat	600
10	ctaacogaca	ccaaccagcg	aaccagcagc	atcacatcaa	gccaagcgaa	gcagacggca	660
	coocatetet	atcactacct	ctggacccct	ctcgagagtt		attagactta	720
	ctccactatc	ggcatccaga	aattacataa	cadaacaaca		gacacaacaa	780
	acaacatact	cetectetea	caacaccaac	agetacggggg	gattcctttc	ccaccoctcc	840
	ttcactttcc	cttcctcacc	caccataata	aatagacacc	ccctccacac	cctctttccc	900
15	caacetcete	ttattcagaa	cocacacaca	cacaaccaca	tetecceaa	atccacccot	960
	caacacctcc	acttcaagat	acaccactica	tecteccec	ccccctctc	taccttctct	1020
	agat concot	tcccctccat	acataattaa	ageccagtag	ttataattat	attestatt	1020
	agattggtgt	catatttata	ttagatocot	ggeeeggeag	ttortaccec	getcacycct	1140
	gtgttagatt	agattatag	ttagatecyt	geogetageg	atatttagag	atgegacee	1200
20	tacyccaya	cattagaaaa	aggggatgga	tttatatatt		aattaattaa	1260
	agtttagtt	gaaatttaa	tttatttaa	tatatagaat	gaagttattt	atagataat	1320
	gytttgyttt	gecettttee	attacticaa	atatgeegt	geaettgeet	geegggeeat	1320
	gataggagta	gaattatatt				gglegileia	1440
	galoggagia	gaallelgel		tggtggattt	accalling	galcigialg	1440
	reteretete	acatatteat	agttacgaat	tgaagatgat	ggatggaaat	ategatetag	1500
25	gataggtata	catgttgatg	cgggttttac	tgatgcatat	acagagatge		1620
	cttggttgtg	atgatgtggt	gtggttgggc	ggtcgttcat	tegttetaga	toggagtaga	1620
	atactgtttc	aaactacctg	gtgtatttat	taatttgga	actgtatgtg	tgtgtCatac	1080
	atetteatag	ttacgagttt	aagatggatg	gaaatatega	tetaggatag	gtatacatgt	1 / 40
	tgatgtgggt	tttactgatg	catatacatg	atggcatatg	cagcatctat	teatatgete	1800
30	taacettgag	tacctatcta	τταταατααα	caagtatgtt	ττατααττατ	tttgatettg	1860
	atatacttgg	atgatggcat	atgcagcagc	tatatgtgga	ttttttage	cctgccttca	1920
	tacgetattt	attigettgg	tactgtttct	tttgtcgatg	ctcaccctgt	tgtttggtgt	1980
	tacttctgca	ggtcgactct	agaggateea	tggcaccgaa	gaagaagcgc	aaggtgatgg	2040
	acaagaagta	cagcatcggc	ctcgacatcg	gcaccaactc	ggtgggctgg	gccgtcatca	2100
~-	cggacgaata	taaggteeeg	tcgaagaagt	tcaaggtcct	cggcaataca	gaccgccaca	2160
35	gcatcaagaa	aaacttgatc	ggcgccctcc	tgttcgatag	cggcgagacc	gcggaggcga	2220
	ccaggeteaa	gaggaccgcc	aggagacggt	acactaggcg	caagaacagg	atctgctacc	2280
	tgcaggagat	cttcagcaac	gagatggcga	aggtggacga	ctccttcttc	caccgcctgg	2340
	aggaatcatt	cctggtggag	gaggacaaga	agcatgagcg	gcacccaatc	ttcggcaaca	2400
	tcgtcgacga	ggtaagtttc	tgcttctacc	tttgatatat	atataataat	tatcattaat	2460
40	tagtagtaat	ataatatttc	aaatattttt	ttcaaaataa	aagaatgtag	tatatagcaa	2520
	ttgcttttct	gtagtttata	agtgtgtata	ttttaattta	taacttttct	aatatatgac	2580
	caaaacatgg	tgatgtgcag	gtggcctacc	acgagaagta	cccgacaatc	taccacctcc	2640
	ggaagaaact	ggtggacagc	acagacaagg	cggacctccg	gctcatctac	cttgccctcg	2700
	cgcatatgat	caagttccgc	ggccacttcc	tcatcgaggg	cgacctgaac	ccggacaact	2760
45	ccgacgtgga	caagctgttc	atccagctcg	tgcagacgta	caatcaactg	ttcgaggaga	2820
40	accccataaa	cgctagcggc	gtggacgcca	aggccatcct	ctcggccagg	ctctcgaaat	2880
	caagaaggct	ggagaacctt	atcgcgcagt	tgccaggcga	aaagaagaac	ggcctcttcg	2940
	gcaaccttat	tgcgctcagc	ctcggcctga	cgccgaactt	caaatcaaac	ttcgacctcg	3000
	cggaggacgc	caagctccag	ctctcaaagg	acacctacga	cgacgacctc	gacaacctcc	3060
	tggcccagat	aggagaccag	tacgcggacc	tcttcctcgc	cgccaagaac	ctctccgacg	3120
50	ctatcctgct	cagcgacatc	cttcgggtca	acaccgaaat	taccaaggca	ccgctgtccg	3180
	ccagcatgat	taaacgctac	gacgagcacc	atcaggacct	cacgctgctc	aaggcactcg	3240

	tccgccagca	gctccccgag	aagtacaagg	agatcttctt	cgaccaatca	aaaaacggct	3300
	acgcgggata	tatcgacggc	ggtgccagcc	aggaagagtt	ctacaagttc	atcaaaccaa	3360
	tcctqqaqaa	gatggacggc	accgaggagt	tgctggtcaa	gctcaacagg	gaggacctcc	3420
	tcaggaagca	gaggacette	gacaacggct	ccatccccca	tcagatccac	ctoggcgaac	3480
5	tgcatgccat	cctacacac	caggaggagt	tctacccgtt	cctgaaggat	aaccoogaga	3540
	agatogadaa	atataaaa	ttaggaggaco	catactacet	agaggaggat	actogggggg	3600
	agaccgagaa	gacctgacg	accorgaagt	caractacyc	catcacacco	tagaacttta	3660
	acceedget	agataagaag	acceggaage	agaggaggagac	agagggaatg	aggaagttag	3720
	ayyayyuyyu	cyacaayyye	gecagegece	agagetteat	cgagegeatg	accaacticg	2700
10	acaaaaaccc	geeeaatgaa	aaayteetee	ccaageaece	gergererae	gagiactica	3780
10	tastasaa	cgageteace	aaggicaaat	acgreacega	gggcatgegg	aageeggegt	3040
	teetgagegg	cgagcagaag	aaggegatag	tggacctcct	cttcaagacc	aacaggaagg	3900
	tgaccgtgaa	gcaattaaaa	gaggactact	tcaagaaaat	agagtgette	gactccgtgg	3960
	agateteggg	cgtggaggat	cggttcaacg	cctcactcgg	cacgtatcac	gacctcctca	4020
	agatcattaa	agacaaggac	tteetegaea	acgaggagaa	cgaggacatc	ctcgaggaca	4080
15	tcgtcctcac	cctgaccctg	ttcgaggacc	gcgaaatgat	cgaggagagg	ctgaagacct	4140
	acgcgcacct	gttcgacgac	aaggtcatga	aacagctcaa	gaggcgccgc	tacactggtt	4200
	ggggaaggct	gtcccgcaag	ctcattaatg	gcatcaggga	caagcagagc	ggcaagacca	4260
	tcctggactt	cctcaagtcc	gacgggttcg	ccaaccgcaa	cttcatgcag	ctcattcacg	4320
	acgactcgct	cacgttcaag	gaagacatcc	agaaggcaca	ggtgagcggg	cagggtgact	4380
	ccctccacga	acacatcgcc	aacctggccg	gctcgccggc	cattaaaaag	ggcatcctgc	4440
20	agacggtcaa	ggtcgtcgac	gagctcgtga	aggtgatggg	ccggcacaag	cccgaaaata	4500
	tcgtcataga	gatggccagg	gagaaccaga	ccacccaaaa	agggcagaag	aactcgcgcg	4560
	agcggatgaa	acggatcgag	gagggcatta	aagagctcgg	gtcccagatc	ctgaaggagc	4620
	accccgtgga	aaatacccag	ctccagaatg	aaaagctcta	cctctactac	ctgcagaacg	4680
	gccgcgacat	gtacgtggac	caggagctgg	acattaatcg	gctatcggac	tacgacgtcg	4740
25	accacatcgt	gccgcagtcg	ttcctcaagg	acgatagcat	cgacaacaag	gtgctcaccc	4800
	ggtcggataa	aaatcggggc	aagagcgaca	acgtgcccag	cgaggaggtc	gtgaagaaga	4860
	tqaaaaacta	ctggcgccag	ctcctcaacq	cqaaactqat	cacccagcgc	aagttcgaca	4920
	acctgacgaa	ggcggaacgc	ggtggcttga	gcgaactcga	taaggcgggc	ttcataaaaa	4980
	aacaactaat	cgagacgcgc	cagatcacga	agcatgtcgc	ccagatectg	gacageegea	5040
	tgaatactaa	gtacgatgaa	aacgacaagc	tgatccggga	ggtgaaggtg	atcacoctoa	5100
30	agtccaaget	cototcogac	ttccgcaagg	acttccaott	ctacaaggtc	cocoaoatca	5160
	acaactacca	ccacocccac	gacgcctacc	tgaatgcogt	gotcoggacc	occctoatca	5220
	agaagtaccc	gaagetggag	tcogagttcg	totacoocoa	ctacaaggtc	tacgacgtgc	5280
	gcaaaatgat	caccaaatco	gagcaggaga		cacoocaaaa	tacttcttct	5340
	actogaacat	catgaacttc	ttcaagaccg	agatcaccct	cacaaacaac	gagatecoca	5400
35	agenceccoet	catcgaaacc	aacoocoaca	coorcoarat	catctagat	aaggggggggg	5460
	atttccccac	ant concean	atactataa	taccacaaat	caatatooto	aaaaaaaaaaa	5520
	accegegae	ggcccgcaag	aggaaggagt	agataataaa	caacaccycy	tagaagacgg	5580
	tastagagag	gggcgggttt	tgggagg	ccattettet	gaagegeaac	agagagagag	5640
	teaceyeyay	gaagaaggat	cygyaccega	tanaaalalyy	cggettegae	ageeegaeeg	5040
	tegeatacag	egteetegte	gtggcgaagg	tggagaaggg	caagtcaaag	aageteaagt	5700
40	ccgtgaagga	getgeteggg	atcacgatta	tggageggte	ctccttcgag	aagaaccega	5760
	tegaetteet	agaggccaag	ggatataagg	aggtcaagaa	ggacctgatt	attaaactge	5820
	cgaagtactc	gctcttcgag	ctggaaaacg	gccgcaagag	gatgetegee	tccgcaggcg	5880
	agttgcagaa	gggcaacgag	ctcgccctcc	cgagcaaata	cgtcaatttc	ctgtacctcg	5940
	ctagccacta	tgaaaagctc	aagggcagcc	cggaggacaa	cgagcagaag	cagetetteg	6000
45	tggagcagca	caagcattac	ctggacgaga	tcatcgagca	gatcagcgag	ttctcgaagc	6060
	gggtgatcct	cgccgacgcg	aacctggaca	aggtgctgtc	ggcatataac	aagcaccgcg	6120
	acaaaccaat	acgcgagcag	gccgaaaata	tcatccacct	cttcaccctc	accaacctcg	6180
	gcgctccggc	agccttcaag	tacttcgaca	ccacgattga	ccggaagcgg	tacacgagca	6240
	cgaaggaggt	gctcgatgcg	acgctgatcc	accagagcat	cacagggctc	tatgaaacac	6300
	gcatcgacct	gagccagctg	ggcggagaca	agagaccacg	ggaccgccac	gatggcgagc	6360
50	tgggaggccg	caagcgggca	aggtaggtac	cgttaaccta	gacttgtcca	tcttctggat	6420
	tggccaactt	aattaatgta	tgaaataaaa	ggatgcacac	atagtgacat	gctaatcact	6480
	ataatgtggg	catcaaagtt	gtgtgttatg	tgtaattact	agttatctga	ataaaagaga	6540
	aagagatcat	ccatatttct	tatcctaaat	gaatgtcacq	tgtctttata	attctttgat	6600
	gaaccagatq	catttcatta	accaaatcca	tatacatata	aatattaatc	atatataatt	6660
55	aatatcaatt	gggttagcaa	aacaaatcta	gtctaggtgt	gttttgcgaa	tgcggcc	6717

<210> 312 <211> 1000
<212> DNA <213> Zea mays

<400> 312

5

	tgagagtaca	atgatgaacc	tagattaatc	aatgccaaag	tctgaaaaat	gcaccctcag	60
	tctatgatcc	agaaaatcaa	gattgcttga	ggccctgttc	ggttgttccg	gattagagcc	120
	ccggattaat	tcctagccgg	attacttctc	taatttatat	agattttgat	gagctggaat	180
10	gaatcctggc	ttattccggt	acaaccgaac	aggccctgaa	ggataccagt	aatcgctgag	240
10	ctaaattggc	atgctgtcag	agtgtcagta	ttgcagcaag	gtagtgagat	aaccggcatc	300
	atggtgccag	tttgatggca	ccattagggt	tagagatggt	ggccatgggc	gcatgtcctg	360
	gccaactttg	tatgatatat	ggcagggtga	ataggaaagt	aaaattgtat	tgtaaaaagg	420
	gatttcttct	gtttgttagc	gcatgtacaa	ggaatgcaag	ttttgagcga	gggggcatca	480
	aagatctggc	tgtgtttcca	gctgtttttg	ttagccccat	cgaatccttg	acataatgat	540
15	cccgcttaaa	taagcaacct	cgcttgtata	gttccttgtg	ctctaacaca	cgatgatgat	600
	aagtcgtaaa	atagtggtgt	ccaaagaatt	tccaggccca	gttgtaaaag	ctaaaatgct	660
	attcgaattt	ctactagcag	taagtcgtgt	ttagaaatta	ttttttata	taccttttt	720
	ccttctatgt	acagtaggac	acagtgtcag	cgccgcgttg	acggagaata	tttgcaaaaa	780
	agtaaaagag	aaagtcatag	cggcgtatgt	gccaaaaact	tcgtcacaga	gagggccata	840
20	agaaacatgg	cccacggccc	aatacgaagc	accgcgacga	agcccaaaca	gcagtccgta	900
	ggtggagcaa	agcgctgggt	aatacgcaaa	cgttttgtcc	caccttgact	aatcacaaga	960
	gtggagcgta	ccttataaac	cgagccgcaa	gcaccgaatt			1000

<210> 313
 25 <211> 4104
 <212> DNA
 <213> Artificial sequence

<220>

30 <223> Artificial Sequence

<400> 313

35

45

	atggacaaaa	agtactcaat	agggctcgac	atagggacta	actccgttgg	atgggccgtc	60
	atcaccgacg	agtacaaggt	gccctccaag	aagttcaagg	tgttgggaaa	caccgacagg	120
	cacagcataa	agaagaattt	gatcggtgcc	ctcctcttcg	actccggaga	gaccgctgag	180
	gctaccaggc	tcaagaggac	cgctagaagg	cgctacacca	gaaggaagaa	cagaatctgc	240
5	tacctgcagg	agatcttctc	caacgagatg	gccaaggtgg	acgactcctt	cttccaccgc	300
	cttgaggaat	cattcctggt	ggaggaggat	aaaaagcacg	agagacaccc	aatcttcggg	360
	aacatcgtcg	acgaggtggc	ctaccatgaa	aagtacccta	ccatctacca	cctgaggaag	420
	aagctggtcg	actctaccga	caaggctgac	ttgcgcttga	tttacctggc	tctcgctcac	480
	atgataaagt	tccgcggaca	cttcctcatt	gagggagacc	tgaacccaga	caactccgac	540
10	gtggacaagc	tcttcatcca	gctcgttcag	acctacaacc	agcttttcga	ggagaaccca	600
	atcaacgcca	gtggagttga	cgccaaggct	atcctctctg	ctcgtctgtc	aaagtccagg	660
	aggcttgaga	acttgattgc	ccagctgcct	ggcgaaaaga	agaacggact	gttcggaaac	720
	ttgatcgctc	tctccctggg	attgactccc	aacttcaagt	ccaacttcga	cctcgccgag	780
45	gacgctaagt	tgcagttgtc	taaagacacc	tacgacgatg	acctcgacaa	cttgctggcc	840
	cagataggcg	accaatacgc	cgatctcttc	ctcgccgcta	agaacttgtc	cgacgcaatc	900
15	ctgctgtccg	acatcctgag	agtcaacact	gagattacca	aagctcctct	gtctgcttcc	960
	atgattaagc	gctacgacga	gcaccaccaa	gatctgaccc	tgctcaaggc	cctggtgaga	1020
	cagcagctgc	ccgagaagta	caaggagatc	tttttcgacc	agtccaagaa	cggctacgcc	1080
	ggatacattg	acggaggcgc	ctcccaggaa	gagttctaca	agttcatcaa	gcccatcctt	1140
	gagaagatgg	acggtaccga	ggagctgttg	gtgaagttga	acagagagga	cctgttgagg	1200
20	aagcagagaa	ccttcgacaa	cggaagcatc	cctcaccaaa	tccacctggg	agagctccac	1260
	gccatcttga	ggaggcagga	ggatttctat	cccttcctga	aggacaaccg	cgagaagatt	1320
	gagaagatct	tgaccttcag	aattccttac	tacgtcgggc	cactcgccag	aggaaactct	1380
	aggttcgcct	ggatgacccg	caaatctgaa	gagaccatta	ctccctggaa	cttcgaggaa	1440
	gtcgtggaca	agggcgcttc	cgctcagtct	ttcatcgaga	ggatgaccaa	cttcgataaa	1500
25	aatctgccca	acgagaaggt	gctgcccaag	cactccctgt	tgtacgagta	tttcacagtg	1560
20	tacaacgagc	tcaccaaggt	gaagtacgtc	acagagggaa	tgaggaagcc	tgccttcttg	1620
	tccggagagc	agaagaaggc	catcgtcgac	ctgctcttca	agaccaacag	gaaggtgact	1680
	gtcaagcagc	tgaaggagga	ctacttcaag	aagatcgagt	gcttcgactc	cgtcgagatc	1740
	tctggtgtcg	aggacaggtt	caacgcctcc	cttgggactt	accacgatct	gctcaagatt	1800
	attaaagaca	aggacttcct	ggacaacgag	gagaacgagg	acatccttga	ggacatcgtg	1860
30	ctcaccctga	ccttgttcga	agacagggaa	atgatcgaag	agaggctcaa	gacctacgcc	1920
	cacctcttcg	acgacaaggt	gatgaaacag	ctgaagagac	gcagatatac	cggctgggga	1980
	aggctctccc	gcaaattgat	caacgggatc	agggacaagc	agtcagggaa	gactatactc	2040

	gacttcctga	agtccgacgg	attcgccaac	aggaacttca	tgcagctcat	tcacgacgac	2100
	tccttgacct	tcaaggagga	catccagaag	gctcaggtgt	ctggacaggg	tgactccttg	2160
	catgagcaca	ttgctaactt	ggccggctct	cccgctatta	agaagggcat	tttgcagacc	2220
	gtgaaggtcg	ttgacgagct	cgtgaaggtg	atgggacgcc	acaagccaga	gaacatcgtt	2280
5	attgagatgg	ctcgcgagaa	ccaaactacc	cagaaagggc	agaagaattc	ccgcgagagg	2340
	atgaagcgca	ttgaggaggg	cataaaagag	cttggctctc	agatcctcaa	ggagcacccc	2400
	gtcgagaaca	ctcagctgca	gaacgagaag	ctgtacctgt	actacctcca	aaacggaagg	2460
	gacatgtacg	tggaccagga	gctggacatc	aacaggttgt	ccgactacga	cgtcgaccac	2520
	atcgtgcctc	agtccttcct	gaaggatgac	tccatcgaca	ataaagtgct	gacacgctcc	2580
10	gataaaaata	gaggcaagtc	cgacaacgtc	ccctccgagg	aggtcgtgaa	gaagatgaaa	2640
	aactactgga	gacagctctt	gaacgccaag	ctcatcaccc	agcgtaagtt	cgacaacctg	2700
	actaaggctg	agagaggagg	attgtccgag	ctcgataagg	ccggattcat	caagagacag	2760
	ctcgtcgaaa	cccgccaaat	taccaagcac	gtggcccaaa	ttctggattc	ccgcatgaac	2820
	accaagtacg	atgaaaatga	caagctgatc	cgcgaggtca	aggtgatcac	cttgaagtcc	2880
	aagctggtct	ccgacttccg	caaggacttc	cagttctaca	aggtgaggga	gatcaacaac	2940
15	taccaccacg	cacacgacgc	ctacctcaac	gctgtcgttg	gaaccgccct	catcaaaaaa	3000
	tatcctaagc	tggagtctga	gttcgtctac	ggcgactaca	aggtgtacga	cgtgaggaag	3060
	atgatcgcta	agtctgagca	ggagatcggc	aaggccaccg	ccaagtactt	cttctactcc	3120
	aacatcatga	acttcttcaa	gaccgagatc	actctcgcca	acggtgagat	caggaagcgc	3180
	ccactgatcg	agaccaacgg	tgagactgga	gagatcgtgt	gggacaaagg	gagggatttc	3240
20	gctactgtga	ggaaggtgct	ctccatgcct	caggtgaaca	tcgtcaagaa	gaccgaagtt	3300
	cagaccggag	gattctccaa	ggagtccatc	ctccccaaga	gaaactccga	caagctgatc	3360
	gctagaaaga	aagactggga	ccctaagaag	tacggaggct	tcgattctcc	taccgtggcc	3420
	tactctgtgc	tggtcgtggc	caaggtggag	aagggcaagt	ccaagaagct	gaaatccgtc	3480
	aaggagctcc	tcgggattac	catcatggag	aggagttcct	tcgagaagaa	ccctatcgac	3540
25	ttcctggagg	ccaagggata	taaagaggtg	aagaaggacc	tcatcatcaa	gctgcccaag	3600
20	tactccctct	tcgagttgga	gaacggaagg	aagaggatgc	tggcttctgc	cggagagttg	3660
	cagaagggaa	atgagctcgc	ccttccctcc	aagtacgtga	acttcctgta	cctcgcctct	3720
	cactatgaaa	agttgaaggg	ctctcctgag	gacaacgagc	agaagcagct	cttcgtggag	3780
	cagcacaagc	actacctgga	cgaaattatc	gagcagatct	ctgagttctc	caagcgcgtg	3840
	atattggccg	acgccaacct	cgacaaggtg	ctgtccgcct	acaacaagca	cagggataag	3900
30	cccattcgcg	agcaggctga	aaacattatc	cacctgttta	ccctcacaaa	cttgggagcc	3960
	cctgctgcct	tcaagtactt	cgacaccacc	attgacagga	agagatacac	ctccaccaag	4020
	gaggtgctcg	acgcaacact	catccaccaa	tccatcaccg	gcctctatga	aacaaggatt	4080
	gacttgtccc	agctgggagg	cgac				4104
35	<210> 314						

<210> 314 <211> 11 <212> PRT <213> Simian virus 40

40 <400> 314

Ser Arg Ala Asp Pro Lys Lys Lys Arg Lys Val1510

45 <210> 315
 211> 434
 212> DNA
 213> Glycine max

^{50 &}lt;400> 315

5	ccgggtgtga cctagtaata tttaataaaa catcatgaag atacttggat taatcttgcc cgttccccat atgcacaaca	tttagtataa agtaatattg ggaagaaaaa ctagaaaggc ctttctctta ttgttgtttc ttaagtccca acaa	agtgaagtaa aacaaaataa aaacaaacaa taccgataga ccctgtttat attccctaac caccgtctaa	tggtcaaaag atggtaaagt aaaataggtt taaactatag attgagacct ttacaggact acttattaaa	aaaaagtgta gtcagatata gcaatggggc ttaattaaat gaaacttgag cagcgcatgt ttattaatgt	aaacgaagta taaaataggc agagcagagt acattaaaaa agagatacac catgtggtct ttataactag	60 120 180 240 300 360 420 434
10	<210> 316 <211> 121 <212> DNA <213> Glycine m	ıax					
15	<400> 316						
20	aaaattgctt ytattattaa g	tgcgattttt aaaattaatt	ccatttgtgt tattaataaa	ggatacagga ttaaaaaaca	tatatgaatg tacggatgaa	aataaaacat ctaatcgtat	60 120 121
25	<210> 317 <211> 22 <212> DNA <213> Artificial						
	<220> <223> Artificial S	Sequence					
30	<400> 317 acgagcacac atgt	cgattt gg 2	2				
35	<210> 318 <211> 22 <212> DNA <213> Artificial						
40	<220> <223> Artificial S	Sequence					
	gtgctcgttc tcgtga	gaat gg 22					
45	<210> 313 <211> 23 <212> DNA <213> Artificial						
50	<220> <223> Artificial S	Sequence					
	<400> 319 gccacttcat ttactca	aact tgg 23	3				
55	<210> 320 <211> 22 <212> DNA <213> Artificial						

<220> <223> Artificial Sequence <400> 320 5 actcaaagtc atatttttca gg 22 <210> 321 <211> 121 <212> DNA 10 <213> Glycine max <400> 321 60 aacttcatac ttgacaccat acaaatgatg actccacaac tgggagctta agatcatgga 15 120 ytggataatg tttctcatgt aatattagtt gtctattagc acaataacaa atatttttc 121 а <210> 322 <211> 121 20 <212> DNA <213> Glycine max <400> 322 25 attattagtg ctttgttttt acaaaatatg tcttataaca tgtagggaaa agcaaagaag 60 rttgtccagg cacagaacct ctggtttgaa attctgaagt cacagataga aactggaacc 120 С 121 <210> 323 30 <211> 23 <212> DNA <213> Artificial <220> 35 <223> Artificial Sequence <400> 323 gtcccttgta cttgtacgta cgg 23 40 <210> 324 <211> 23 <212> DNA <213> Artificial <220> 45 <223> Artificial Sequence <400> 324 23 gtattctaga aaagaggaat tgg 50 <210> 325 <211> 121 <212> DNA <213> Glycine max 55

ttctgtaaga ggcacttggc atttccaccg gcgtttgtag accctcacca gtcaccacca 60 120 metttgtttg cetetgtegt geateatgae tggeceetea eteattgtea attttatata 121 t. 5 <210> 326 <211> 121 <212> DNA <213> Glycine max 10 <400> 326 tcttgacgct accaatggtt ttcacaacga cagtctcatt ggctctggcg ggtttgggga 60 120 ygtgtacaag gctcagttga aggatggaag tgttgtggct atcaagaagc tgattcatgt 121 t. 15 <210> 327 <211> 22 <212> DNA <213> Artificial 20 <220> <223> Artificial Sequence <400> 327 25 22 gtgctaagca cgacatccat gg <210> 328 <211> 22 <212> DNA 30 <213> Artificial <220> <223> Artificial Sequence 35 <400> 328 acgtgatgca tcatagatgc gg 22 <210> 329 <211> 121 40 <212> DNA <213> Glycine max <400> 329 45 agagagtccg gtggtgagaa aggggagcgt aaacctgcgc caccagacat agttggccgg 60 120 ygcactcggc gcagcgaagc aaatcggtgt ttatgggaag gggccagtcc tgtcatcaaa 121 t <210> 330 50 <211> 121 <212> DNA <213> Glycine max <400> 330 55 cgcatgcggt catccaactc gacaacctct acacctctga caatgatacg taactcgaca 60 120 rttgtttcgt taagtaagat aatgttactt tcatcgggtc gaggacatga cgatgatgtc 121 а

	<210> 331 <211> 22 <212> DNA <213> Artificial					
5	<220> <223> Artificial Sequence					
10	<400> 331 aggaaatgac tgtggcacat gg	22				
15	<210> 332 <211> 22 <212> DNA <213> Artificial					
	<220> <223> Artificial Sequence					
20	<400> 332 acatggcact gtaacatcac gg	22				
25	<210> 333 <211> 121 <212> DNA <213> Glycine max					
	<400> 333					
30	agaacctgcc agacggagca ycgccgagat cgccgatgcc c	acccgagtgg gtaggggccg	tggagccagt cgaaacgacg	cgatgaaacg tcgggtggag	gaacgcctcg cagaatgccg	60 120 121
35	<210> 334 <211> 23 <212> DNA <213> Artificial					
40	<220> <223> Artificial Sequence					
	<400> 334 ggaactgaca cacgacatga tgg	23				
45	<210> 335 <211> 23 <212> DNA <213> Artificial					
50	<220> <223> Artificial Sequence					
55	<400> 335 gacatgatgg aacgtgacta agg	23				

	<213> Artificial	
5	<220> <223> Artificial Sequence	
0	<400> 336 tgtgtgaggt acacaattat gg 22	
10	<210> 337 <211> 23 <212> DNA <213> Artificial	
15	<220> <223> Artificial Sequence	
	<400> 337 gtaatgtacg ttgttgtgtg agg 23	
20	<210> 338 <211> 121 <212> DNA <213> Glycine max	
25	<400> 338	
30	ggtctaatta ttacatctta ggagagagta acataggtgc caaagccaaa gtggctatcc mgtgtctgta cagtacaaag actattaatt gtatttaacc catctaaaag attggctctt g	60 120 121
35	<210> 339 <211> 121 <212> DNA <213> Glycine max	
	<400> 339	
40	ccaatatatt tcagtttcta ttggagcatt gaagatatct atggttgctt caacatgatg ktgtttaccg tatgaatgac ttcttgtgtt gaccttgtgt gcaggctcag aagctatgtt t	60 20 21
45	<210> 340 <211> 121 <212> DNA <213> Glycine max	
	<400> 340	
50	ctcacatacg cagaaatcat gctaaacacg attttccttt tgaatttttt atgaagaaat ygtgcacatg ctgatgattt agtattttga ttttatttta	60 20 21
55	<210> 341 <211> 121 <212> DNA <213> Glycine max	

ccatagaatg tctacctcag ctttttgggt ctgcggctgg tcaactcagg gtttgaaaac 60 kttgcatatt ataagtatgt taataatgtt acacatttta agataaatat aaaaggacag 120 5 121 t <210> 342 <211> 23 <212> DNA 10 <213> Artificial <220> <223> Artificial Sequence 15 <400> 342 ggaaactttt gtgagcaagt agg 23 <210> 343 <211> 22 20 <212> DNA <213> Artificial <220> <223> Artificial Sequence 25 <400> 343 22 gaccaaagac ttcattaatt gg <210> 344 30 <211> 121 <212> DNA <213> Glycine max <400> 344 35 aatttttttg taggactaat ttgttgcact ttttgaatat tcaaggactg gatttgaatt 60 ytttatcttt caaagaccaa tttgtcattg tttcatgttt ttatggatga atttaactat 120 121 t. 40 <210> 345 <211> 121 <212> DNA <213> Glycine max 45 <400> 345 ttgctagcta agcgaatatg gctcgcttag ccaatctgtc tcgctaagcg attccttcag 60 120 yagcatttca cacattctct tctttagcct acaaactgag ttaaattcaa tattaattca 121 С 50 <210> 346 <211> 22 <212> DNA <213> Artificial 55 <220>

<400> 346 gcaacgacaa tgaagtgcat gg 22 <210> 347 5 <211> 22 <212> DNA <213> Artificial <220> 10 <223> Artificial Sequence <400> 347 ccatgcactc acataatcgt gg 22 15 <210> 348 <211> 121 <212> DNA <213> Glycine max 20 <400> 348 tttaataaag agggcttgta gtttttactt ttgttttcca aacagaaaat ggaagatcta 60 120 ygttctgcaa ttgtctgtac tactagacta ctagtacatg cgttgtcaat gacaggtaac 121 а 25 <210> 349 <211> 121 <212> DNA <213> Glycine max 30 <400> 349 attagcagta gtaacaaacc aagttctgca tttcttattg gatagttttt actaaataat 60 ytttattgta acttttaaac tgtacttaca ggatgaagag atatagttta gttagttgaa 120 35 121 g <210> 350 <211> 22 40 <212> DNA <213> Artificial <220> <223> Artificial Sequence 45 <400> 350 22 acacaattta gttgcctgac gg <210> 351 <211> 23 50 <212> DNA <213> Artificial <220> 55 <223> Artificial Sequence <400> 351 23 gaaataaaag gcctataaaa ggg

<210> 352 <211> 121 <212> DNA <213> Glycine max 5 <400> 352 ttctgcactc acttttcccc ttttgggaat ggtcaatcaa aaatgtaatt ttacattatg 60 120 kaatgcattc cttttttgac ttccgaaatg accaatccaa aaggtcaaaa taatcgaaaa 10 121 g <210> 353 <211> 121 15 <212> DNA <213> Glycine max <400> 353 20 gagaaatgtt actttacgga gtaacatgca ttctcaaatt ctgtaggaag aatcctcacg 60 mtgaagtggt ctccccttct acgatggtgt agaatggcat aggcaattgg gaagatatga 120 121 t <210> 354 25 <211> 23 <212> DNA <213> Artificial <220> 30 <223> Artificial Sequence <400> 354 gttcaggttg ttgtacgaca tgg 23 35 <210> 355 <211> 22 <212> DNA <213> Artificial 40 <220> <223> Artificial Sequence <400> 355 atgaagacat gaatcattga gg 22 45 <210> 356 <211> 121 <212> DNA <213> Glycine max 50 <400> 356 taccacgata agacaatttt tgagtcaatt cttcactgga ataaacccaa taagatttaa 60 ratteetteg agatgtagea ttgageaagt tgegtetgta gagaetttee ttatggaatt 120 55 121 С <210> 357 <211> 121

```
<212> DNA
        <213> Glycine max
        <400> 357
5
                                                                                              60
        ctacatgctt aaagagagag agataccggc atttacctaa ttgcaaggag atgaatgagg
        kttcgatctt ataatctgtt agatgttaaa ccttgttccc ttcaactttt gggttggagt
                                                                                             120
                                                                                             121
        g
10
        <210> 358
        <211> 22
        <212> DNA
        <213> Artificial
15
        <220>
        <223> Artificial Sequence
        <400> 358
20
        gcaagttggg ttatgaaatt gg
                                22
        <210> 359
        <211> 22
        <212> DNA
25
        <213> Artificial
        <220>
        <223> Artificial Sequence
30
        <400> 359
        attatgtatg atgcaagttg gg
                                22
        <210> 360
        <211> 121
35
        <212> DNA
        <213> Glycine max
        <400> 360
40
                                                                                              60
        tattttattg tggagtgtgt gaattaatat ttttttaata cttattttaa ttaattgata
                                                                                             120
        rtataaaact ttttactcta acattacaaa tgtattttgt ttttcaattt ttttattaat
                                                                                             121
        а
        <210> 361
45
        <211> 121
        <212> DNA
        <213> Glycine max
        <400> 361
50
        ttcgaaggtg cataactgca tggataagct cacactaacc cgttaatttg tgatccaatt
                                                                                              60
                                                                                             120
        yggttcctta ggaggtatcg ggaaggaatt ttagaatgta ataatatcga ttcatacaga
                                                                                             121
        ÷.
55
        <210> 362
        <211> 121
        <212> DNA
        <213> Glycine max
```

<400> 362

5	ggcaagagcc kgtgggtgac a	aactgctggt gacctctcct	tgtttgcatc cattggactg	agatgcgttg tgaatggctg	tcagtttttt gaggaagatg	taggatctgt attctttctg	60 120 121
10	<210> 363 <211> 121 <212> DNA <213> Glycine m	nax					
	<400> 363						
15	tgaaagcaac ygtttactgt g	caaatatctt gtcatttgag	gttctttctt tccgtattca	tcatggctag acacaggagg	agatatactt tcaattactt	gcccttccag gatccatttc	60 120 121
20	<210> 364 <211> 121 <212> DNA <213> Glycine m	nax					
25	<400> 364						
	tttaggtgtc raggtgtcac g	ctattagtga tctgatggtc	agaaggtgtc tccacccttg	aggtaaaggc cttcttgttt	ttggtttctt acaaaggagg	gttagcaaaa tgcctcccta	60 120 121
30	<210> 365 <211> 22 <212> DNA <213> Artificial						
35	<2132 Artificial						
	<220> <223> Artificial S	Sequence					
40	<400> 365 accaaaggca cgta	acgtaaa gg	22				
	<210> 366 <211> 22 <212> DNA						
45	<213> Artificial						
	<220> <223> Artificial S	Sequence					
50	<400> 366 gcctttacgt acgtgc	cttt gg 22					
55	<210> 367 <211> 121 <212> DNA <213> Glycine m	nax					

agtgggttaa ataaatcacc ccattctata gttggtttgg ttcgacccga cccgtttcga 60 120 maaaaaaaa agtagggacc tgaatattca gtgacccatt tcgccccgca ctgcgtactc 121 t. 5 <210> 368 <211> 121 <212> DNA <213> Glycine max 10 <400> 368 ataaatagca ttatcctttc aatatttttt gcttctaaat tcttaattag ttattcaaat 60 120 rttaatacaa taccccaact ttttttggac tgattattag tcttgtaaaa ctttgtcact 121 а 15 <210> 369 <211> 121 <212> DNA <213> Glycine max 20 <400> 369 accatcatga ccaccatctc tccaccgcaa gcaaccacac cctgctcgat acctttgcct 60 120 ytctcattca tggagcttta gagactccaa gatcagagcc tctcctcgcg aaaaggaaaa 25 121 а <210> 370 <211> 23 <212> DNA 30 <213> Artificial <220> <223> Artificial Sequence 35 <400> 370 gatagtcatc ctagttagtg tgg 23 <210> 371 <211> 23 40 <212> DNA <213> Artificial <220> <223> Artificial Sequence 45 <400> 371 gatgtagtac cacactaact agg 23 <210> 372 50 <211> 121 <212> DNA <213> Glycine max <400> 372 55 cagcacattt aactcagatg gattaaattt tcccattcac cttgaagcaa ctccttgagg 60 ycgacttttt ctgtttcttt tttattaata tgatttctca aagtacaaca ctaaaccaaa 120 121 С

<210> 373 <211> 121 <212> DNA <213> Glycine max 5 <400> 373 tgacaatggc gagtttgctg tgcgaaagcc acgtggcctg gaaaccgtca gtggtgatgg 60 120 mgatttggta gcaggtgcaa gttgccagtt cctctagcga gtctggtcac aggtaagtaa 10 121 а <210> 374 <211> 121 <212> DNA 15 <213> Glycine max <400> 374 tatagaagag gatttgagaa aataaaagag ttcttggttg gcttggaaac agatctttgc 60 20 ygagtacgat ctcttgccct cgagactaga gttggaactc gtcgtcatca tagggtaatg 120 121 а <210> 375 <211> 121 25 <212> DNA <213> Glycine max <400> 375 30 aattggctgc cccaatcgtt cttgatcttg atgagcacac tgaggctcac acaaattcca 60 120 ycacgtcgcc gccgttactt gtgcttccac caccaagtcg ttgtcgcccc gagaagagga 121 t <210> 376 35 <211> 22 <212> DNA <213> Artificial <220> 40 <223> Artificial Sequence <400> 376 ctgtaacttc tgcactcacc gg 22 45 <210> 377 <211> 22 <212> DNA <213> Artificial 50 <220> <223> Artificial Sequence <400> 377 22 ttattggaga gtactttgcc gg 55 <210> 378 <211> 121 <212> DNA

<213> Glycine max

<400> 378

5 tagttagcat ttgtccttca gcatgtgcat gtcctagttt tatacctcta attattataa 60 kttggttttt ggtttatcaa ttactagaaa ctatggttca tgtgcccatt tcataaggct 120 121 С <210> 379 10 <211> 121 <212> DNA <213> Glycine max <400> 379 15 ggacctcgtc atttgcatga tccacatact aaacatcctt agcaacaagt acaacttctc 60 120 rttgcctaca tgtaggtgct gtgggctttc gctgctgggg tccttcatcg acatcacgac 121 t 20 <210> 380 <211> 23 <212> DNA <213> Artificial 25 <220> <223> Artificial Sequence <400> 380 gtgagatgtg gtgcgtacgt agg 23 30 <210> 381 <211> 22 <212> DNA <213> Artificial 35 <220> <223> Artificial Sequence <400> 381 40 gattettaaa aaagategaa gg 22 <210> 382 <211> 121 <212> DNA 45 <213> Glycine max <400> 382 tgatgacata cagttggtac acttggggat ggtttcaact aatgttataa aaaccggatc 60 50 rgattggttt gatcgggagt taagacctac accggtccga gctagtagtt ggatcaatca 120 t 121 <210> 383 <211> 121 55 <212> DNA <213> Glycine max

	cagcaccgcc cgatgcagtc gcgtatette gttaaccace teeecegega teeetteete reteettggt agetettget cacggaegat tgegegaaaa teeetteeta aacaatagaa e	60 120 121
5	<210> 384 <211> 23 <212> DNA <213> Artificial	
10	<220> <223> Artificial Sequence	
15	<400> 384 gtgctatggt gctcgtgtaa ggg 23 <210> 385	
20	<211> 23 <212> DNA <213> Artificial	
-	<220> <223> Artificial Sequence	
25	<400> 385 gatccaagat attgagtgat cgg 23	
30	<210- 386 <211> 121 <212> DNA <213> Glycine max	
	<400> 386	
35	ttgccaccca ccaaccctct ctacgcaccc tccacttcac ccccacccgc tcccttctcc rcacatcgct cccctctcta ctccccccct ccccgtgcgg ccatctctta tgcgccgaca a	60 120 121
40	<210> 387 <211> 121 <212> DNA <213> Glycine max	
	<400> 387	
45	cgaaggaaga tgtatagaca acaaaaaagt ctgtatcacc ctatctactt ctctctctcg rcaacggagt ggaacgcggg ggaaaggaac agacgtgagg ggatgacatg gagagaaggg a	60 120 121
50	<210> 388 <211> 23 <212> DNA <213> Artificial	
55	<220> <223> Artificial Sequence	
	<400> 388 ggctttgtac atgcctgcac ggg 23	

	<210> 389 <211> 22 <212> DNA					
5	<213> Artificial					
	<220> <223> Artificial Sequence					
10	<400> 389 tttggaaggc cccccgtgca gg	22				
45	<210> 390 <211> 121 <212> DNA					
15	<213> Glycine max <400> 390					
20	ccctcatgtt caaactaggt rcattccacc gttcttgtga c	: caaaaaggct aaaaactcac	ttgcacccat gttccataac	catcgggtat tgttcctcat	ggaacggttg catctctgat	60 120 121
25	<210> 391 <211> 121 <212> DNA <213> Glycine max					
	<400> 391					
30	gttgtgggga ctgagctgga ytggtggctc ctcagtcaca a	a gtggtctcct a ggctcctagg	tctctgttgt ctgtggaggc	tgctaatgat cccaccctct	ggtgctggtg ccagaggaag	60 120 121
35	<210> 392 <211> 23 <212> DNA <213> Artificial					
40	<220> <223> Artificial Sequence					
	<400> 392 ggtttcgtac aacaatggca cgg	23				
45	<210> 393 <211> 23 <212> DNA <213> Artificial					
50	<220> <223> Artificial Sequence					
55	<400> 393 gtgccattgt tgtacgaaac cgg	23				
	<210> 394 <211> 121 <212> DNA					

<213> Glycine max

<400> 394

5 tacggtttcg cgattttctc caaatttcat tttcaaattc aatagactag gctatgacaa 60 ygctaggttg taggcctcgg aggtcacgtc attgaagctc atcttcaaag acccgcgctg 120 а 121 <210> 395 10 <211> 121 <212> DNA <213> Glycine max <400> 395 15 caagacgtgt ccatgcaaga agaaagcaaa ttgtaacaac aaggcatgaa tcaagctaaa 60 rcttagttgc acaatgtaaa ataggatcaa aggatcataa aaggaactga gagagccgta 120 121 g 20 <210> 396 <211> 22 <212> DNA <213> Artificial 25 <220> <223> Artificial Sequence <400> 396 30 tatatgacta ggaaaattca gg 22 <210> 397 <211> 23 <212> DNA 35 <213> Artificial <220> <223> Artificial Sequence 40 <400> 397 23 gaattcgatt ggaccattag tgg <210> 398 <211> 121 45 <212> DNA <213> Glycine max <400> 398 50 ggtctggtga ggtcctattt cactttctag tctctccttc ccaaagtatt tctttctgtg 60 120 ygcacgtata tgataacttg aatgcaaaac caaggaacca aaataacaca aagcaattcc 121 а <210> 399 55 <211> 121 <212> DNA

<213> Glycine max

5	ggctgaaact raatattaac a	tgtggaccaa catttaagtt	tctagtccac atttcaaaag	aacgggtttg tttgacccga	ggttgagtta tccactaggt	ggttgataca tgaactagtg	60 120 121
10	<210> 400 <211> 6518 <212> DNA <213> Artificial						
	<220> <223> Artificial S	Sequence					
15	<400> 400						
20							
25							
30							
35							
40							
45							
50							
55							

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttogat	ctttctctta	ccctotttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttocc	ttattattc	attccctaac	ttacaggact	cagcgcatgt	catotootct	360
	catterest	ttaagtccca	caccotctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgracaaca	acaaaactta	acqaqcacac	atotcoatto	ttttagaget	agaaatagga	480
	acycacaaca	acaaagetteg	attataaat	tassasata	acaccaagta	agtactttt	540
10	tttaaaaaaa	aggetagete	geeateaaee	atttataaa	tatatatat	tttattagat	600
	ttttaataaa	categyatt	tattttatt		tactacatt	atattatta	660
	atacatacag	taaattataa	assestassa	tastasasta	atatttata	gtattatta	720
	gragaregaa	Laaallalaa	aaayataaaa	ttatatata		clatcaatca	720
		algaalalgi	aaaallaall			calalaggli	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	tteactgett	attacttta	840
15	aaaaaatcat	aaaggtttag	ταττττττα	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
20	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgttt	attatgaatc	1680
	tattgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaaq	gtttgttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtettg	tagatatgta	accotcoata	1800
••	attttttat	agatttattc	acatottatc	aagettaate	ttttactatg	tatocoacca	1860
30	tatctogatc	cagcaaaggc	gatttttaa	ttccttotoa	aacttttota	atatgaagtt	1920
	gaaattttgt	tattootaaa	ctataaatot	gtgaagttgg	agtatacctt	taccttctta	1980
	tttaacttta	toataottta	atttatatot	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatogacaa	aaagtactca	atagggctcg	acatagggac	2100
	taactccott	ggatgggggg	tcatcaccga	cgagtacaag	atacctcca	agaagttcaa	2160
35	agtattagaa	aacacccaca	racacaacat	aaaaaaaaat	ttgatcggtg	ccctcctctt	2220
	caactcccca	aacaccgata	aggetagetage	actcaacaac	accortagea	agcactacac	2280
	cacaaccaac	aagacegeeg	aggetactag	geccaagagg	tagaaaaaa	tggggaaagat	2200
	cayaayyaay	ttattaaaa	getacetyca	gyagatette	ataaaaaaaa	cygecaayyc	2340
	ggaegaetee	agaatattaa	geettgagga	accatteety	grggaggagg	acaaaaayca	2400
	cgagagacac	ccaatetteg	ggaacategt	cgacgaggtg	geetaceatg	aaaagtaccc	2400
40	taccatctac	cacctgagga	agaagetggt	cgactctacc	gacaaggetg	acttgcgctt	2520
	gatttacctg	getetegete	acatgataaa	gttccgcgga	cactteetea	ttgagggaga	2580
	cctgaaccca	gacaactccg	acgtggacaa	getetteate	cagetegtte	agacctacaa	2640
	ccagcttttc	gaggagaacc	caatcaacgc	cagtggagtt	gacgccaagg	ctatcctctc	2700
	tgctcgtctg	tcaaagtcca	ggaggcttga	gaacttgatt	gcccagctgc	ctggcgaaaa	2760
45	gaagaacgga	ctgttcggaa	acttgatcgc	tctctccctg	ggattgactc	ccaacttcaa	2820
	gtccaacttc	gacctcgccg	aggacgctaa	gttgcagttg	tctaaagaca	cctacgacga	2880
	tgacctcgac	aacttgctgg	cccagatagg	cgaccaatac	gccgatctct	tcctcgccgc	2940
	taagaacttg	tccgacgcaa	tcctgctgtc	cgacatcctg	agagtcaaca	ctgagattac	3000
	caaagctcct	ctgtctgctt	ccatgattaa	gcgctacgac	gagcaccacc	aagatctgac	3060
	cctgctcaag	gccctggtga	gacagcagct	gcccgagaag	tacaaggaga	tcttttcga	3120
50	ccagtccaag	aacggctacg	ccggatacat	tgacggaggc	gcctcccagg	aagagttcta	3180
	caagttcatc	aagcccatcc	ttgagaagat	ggacggtacc	gaggagctgt	tggtgaagtt	3240
	gaacagagag	gacctgttga	ggaagcagag	aaccttcgac	aacggaagca	tccctcacca	3300
	aatccacctg	ggagagctcc	acgccatctt	gaggaggcag	gaggatttct	atcccttcct	3360
	gaaggacaac	cgcgagaaga	ttgagaagat	cttgaccttc	agaattcctt	actacgtcgg	3420
55	gccactcgcc	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctq	aagagaccat	3480
	tactccctoo	aacttcgagg	aagtcgtgga	caagggcgct	tccgctcagt	ctttcatcga	3540
						-	

	gaggatgacc	aacttcgata	aaaatctgcc	caacgagaag	gtgctgccca	agcactccct	3600
	gttgtacgag	tatttcacag	tgtacaacga	gctcaccaag	gtgaagtacg	tcacagaggg	3660
	aatgaggaag	cctgccttct	tgtccggaga	gcagaagaag	gccatcgtcg	acctgctctt	3720
	caagaccaac	aggaaggtga	ctgtcaagca	gctgaaggag	gactacttca	agaagatcga	3780
5	gtgcttcgac	tccgtcgaga	tctctggtgt	cgaggacagg	ttcaacgcct	cccttgggac	3840
	ttaccacgat	ctgctcaaga	ttattaaaga	caaggacttc	ctggacaacg	aggagaacga	3900
	ggacatcctt	gaggacatcg	tgctcaccct	gaccttgttc	gaagacaggg	aaatgatcga	3960
	agagaggete	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agctgaagag	4020
	acgcagatat	accggctggg	gaaggctctc	ccgcaaattg	atcaacggga	tcagggacaa	4080
10	gcagtcaggg	aagactatac	tcgacttcct	gaagtccgac	ggattcgcca	acaggaactt	4140
	catgcagctc	attcacgacg	actccttgac	cttcaaggag	gacatccaga	aggctcaggt	4200
	gtctggacag	ggtgactcct	tgcatgagca	cattgctaac	ttggccggct	ctcccgctat	4260
	taagaagggc	attttgcaga	ccgtgaaggt	cgttgacgag	ctcgtgaagg	tgatgggacg	4320
	ccacaagcca	gagaacatcg	ttattgagat	ggctcgcgag	aaccaaacta	cccagaaagg	4380
	gcagaagaat	tcccgcgaga	ggatgaagcg	cattgaggag	ggcataaaag	agcttggctc	4440
15	tcagatcctc	aaggagcacc	ccgtcgagaa	cactcagctg	cagaacgaga	agctgtacct	4500
	gtactacctc	caaaacggaa	gggacatgta	cgtggaccag	gagctggaca	tcaacaggtt	4560
	gtccgactac	gacgtcgacc	acatcgtgcc	tcagtccttc	ctgaaggatg	actccatcga	4620
	caataaagtg	ctgacacgct	ccgataaaaa	tagaggcaag	tccgacaacg	tcccctccga	4680
	ggaggtcgtg	aagaagatga	aaaactactg	gagacagctc	ttgaacgcca	agctcatcac	4740
20	ccagcgtaag	ttcgacaacc	tgactaaggc	tgagagagga	ggattgtccg	agctcgataa	4800
	ggccggattc	atcaagagac	agctcgtcga	aacccgccaa	attaccaagc	acgtggccca	4860
	aattctggat	tcccgcatga	acaccaagta	cgatgaaaat	gacaagctga	tccgcgaggt	4920
	caaggtgatc	accttgaagt	ccaagctggt	ctccgacttc	cgcaaggact	tccagttcta	4980
	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
25	tggaaccgcc	ctcatcaaaa	aatatcctaa	gctggagtct	gagttcgtct	acggcgacta	5100
	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
	gtgggacaaa	gggagggatt	tcgctactgt	gaggaaggtg	ctctccatgc	ctcaggtgaa	5340
20	catcgtcaag	aagaccgaag	ttcagaccgg	aggattctcc	aaggagtcca	tcctccccaa	5400
30	gagaaactcc	gacaagctga	tcgctagaaa	gaaagactgg	gaccctaaga	agtacggagg	5460
	cttcgattct	cctaccgtgg	cctactctgt	gctggtcgtg	gccaaggtgg	agaagggcaa	5520
	gtccaagaag	ctgaaatccg	tcaaggagct	cctcgggatt	accatcatgg	agaggagttc	5580
	cttcgagaag	aaccctatcg	acttcctgga	ggccaaggga	tataaagagg	tgaagaagga	5640
	cctcatcatc	aagctgccca	agtactccct	cttcgagttg	gagaacggaa	ggaagaggat	5700
35	gctggcttct	gccggagagt	tgcagaaggg	aaatgagctc	gcccttccct	ccaagtacgt	5760
	gaacttcctg	tacctcgcct	ctcactatga	aaagttgaag	ggctctcctg	aggacaacga	5820
	gcagaagcag	ctcttcgtgg	agcagcacaa	gcactacctg	gacgaaatta	tcgagcagat	5880
	ctctgagttc	tccaagcgcg	tgatattggc	cgacgccaac	ctcgacaagg	tgctgtccgc	5940
	ctacaacaag	cacagggata	agcccattcg	cgagcaggct	gaaaacatta	tccacctgtt	6000
40	taccctcaca	aacttgggag	cccctgctgc	cttcaagtac	ttcgacacca	ccattgacag	6060
	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	ctcatccacc	aatccatcac	6120
	cggcctctat	gaaacaagga	ttgacttgtc	ccagctggga	ggcgactcta	gagccgatcc	6180
	caagaagaag	agaaaggtgt	aggttaacct	agacttgtcc	atcttctgga	ttggccaact	6240
	taattaatgt	atgaaataaa	aggatgcaca	catagtgaca	tgctaatcac	tataatgtgg	6300
15	gcatcaaagt	tgtgtgttat	gtgtaattac	tagttatctg	aataaaagag	aaagagatca	6360
40	tccatatttc	ttatcctaaa	tgaatgtcac	gtgtctttat	aattctttga	tgaaccagat	6420
	gcatttcatt	aaccaaatcc	atatacatat	aaatattaat	catatataat	taatatcaat	6480
	tgggttagca	aaacaaatct	agtctaggtg	tgttttgc			6518

<210> 401 50 <211> 6518

<212> DNA

<213> Artificial

<220>

55 <223> Artificial Sequence

	ccgggtgtga cctagtaata tttaataaaa	tttagtataa agtaatattg ggaagaaaaa	agtgaagtaa aacaaaataa aaacaaacaa	tggtcaaaag atggtaaagt aaaataggtt	aaaaagtgta gtcagatata gcaatggggc	aaacgaagta taaaataggc agagcagagt	60 120 180
5							
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							

catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag atgcacaaca acaaagcttg gtgctcgttc tcgtgagaag ttttagagct agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat ttttaatcag gctcctgatt totttttatt togattgaat togtgaagtt gtattatta actt gtattatt

5

						-	
	ttttaatcag	gctcctgatt	tctttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
10	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaaqaa	caacgcgttt	gttacacgct	caatcccacg	1140
15	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
	acctaggggc	attatcogaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctot	actccctcac	tctatttctc	agtetetgtg	tttacaacta	1320
	aggattccga	acgagtgacc	ttcttcattt	ctcgcaaagg	taacagcctc	tactettate	1380
	tettegatte	gatctatocc	totctcttat	ttacgatgat	atttcttcaa	ttatotttt	1440
20	ttatttatoc	tttatoctot	tgatgttcgg	ttatttattt	cacttattt	ttotoottca	1500
20	gtttttagg	attetttag	tttttgaatc	gattaatcoo	aagagatttt		1560
	aatatattaa	aggtgaatct	tttttttgag	gtcatagate	tattatatt	otottataaa	1620
	catocoactt	tatatattt	tttacgaggt	tatgatgttc	taattattt	attatgaatc	1680
	tattaagaca	gaaccatgat	ttttattat	attcatttac	actattaaaq	atttattta	1740
	acaggattaa	aagttttta	agcatottga	aggaggetta	tagatatgta	accotcoata	1800
25	attttt	agettetta	acatattata	aggagteetg	ttttactato	tatgcgacca	1860
	tatctocato	gggtttgttt	acatyttate	ttoottotoo	aacttttatta	atatgegacea	1920
	callergyate	tattaataa	gatterest	atapaattaa	additigta	tagettetta	1920
	tttaaattta	tattygtaaa	atttatatgt	atttaagtty	agracatet		2040
	ttattata	tttaagttaat	acctacacyc	accelgagee	ataggggtgg	agatagggag	2040
	taataatt	agatagaaa	taataaaaa	aaagtactca	atagggcccg	acacagygac	2160
30	aatattagaa	ggalgggeeg	reaccaccya	cyaytacaay	ttgatageta	agaageeeat	2100
	gguguuggga	aacaccyaca	ggcacagcac	aaayaayaac	aggatagaa	accenter	2220
	cyacteegya	gagacegerg	aggetaccag	gereadayayy	taassaasaa	ggegetaeae	2200
	cagaaggaag	aacayaatct	getacetgea	ggagatette	cccaacyaya	Lggccaaggl	2340
	ggacgactee	agostattag	geeeegagga	accatteety	gcggaggagg	acaaaaayca	2400
25	cyayayacac	cealered	ggaacategt	cgacgaggug	geelacealg	aaaagtaccc	2400
35		caccugagga	agaagetggt	cyacterace	gacaaggerg		2520
	gatttacctg	getetegete	acatgataaa	gtteegegga	cacttectea	ttgagggaga	2580
	cetgaaceea	gacaacteeg	acgrggacaa	getetteate	cagetegtte	agacetacaa	2640
	ccagettte	gaggagaacc	caatcaacgc	cagtggagtt	gacgccaagg	ctatectete	2700
	tgetegtetg	tcaaagtcca	ggaggettga	gaacttgatt	gcccagctgc	ctggcgaaaa	2760
40	gaagaacgga	ctgttcggaa	acttgatege	teteteetg	ggattgactc	ccaacttcaa	2820
	gtccaacttc	gacetegeeg	aggacgetaa	gttgcagttg	tctaaagaca	cctacgacga	2880
	tgacctcgac	aacttgctgg	cccagatagg	cgaccaatac	geegatetet	teetegeege	2940
	taagaacttg	teegaegeaa	tcctgctgtc	cgacatcctg	agagtcaaca	ctgagattac	3000
	caaageteet	CTGTCTGCTT	ccatgattaa	gcgctacgac	gagcaccacc	aagatctgac	3060
	cctgctcaag	geeetggtga	gacagcaget	gcccgagaag	tacaaggaga	tetttega	3120
45	ccagtccaag	aacggctacg	ccggatacat	tgacggaggc	gcctcccagg	aagagtteta	3180
	caagttcatc	aagcccatcc	ttgagaagat	ggacggtacc	gaggagctgt	tggtgaagtt	3240
	gaacagagag	gacctgttga	ggaagcagag	aaccttcgac	aacggaagca	tccctcacca	3300
	aatccacctg	ggagagctcc	acgccatctt	gaggaggcag	gaggatttct	atcccttcct	3360
	gaaggacaac	cgcgagaaga	ttgagaagat	cttgaccttc	agaattcctt	actacgtcgg	3420
	gccactcgcc	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctg	aagagaccat	3480
50	tactccctgg	aacttcgagg	aagtcgtgga	caagggcgct	tccgctcagt	ctttcatcga	3540
	gaggatgacc	aacttcgata	aaaatctgcc	caacgagaag	gtgctgccca	agcactccct	3600
	gttgtacgag	tatttcacag	tgtacaacga	gctcaccaag	gtgaagtacg	tcacagaggg	3660
	aatgaggaag	cctgccttct	tgtccggaga	gcagaagaag	gccatcgtcg	acctgctctt	3720
	caagaccaac	aggaaggtga	ctgtcaagca	gctgaaggag	gactacttca	agaagatcga	3780
55	gtgcttcgac	tccgtcgaga	tctctggtgt	cgaggacagg	ttcaacgcct	cccttgggac	3840
	ttaccacgat	ctgctcaaga	ttattaaaga	caaggacttc	ctggacaacg	aggagaacga	3900
	ggacatcctt	gaggacatcg	tgctcaccct	gaccttgttc	gaagacaggg	aaatgatcga	3960

## EP 3 191 595 B1

240

300 360

420

480

540

	agagaggete	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agctgaagag	4020
	acgcagatat	accggctggg	gaaggctctc	ccgcaaattg	atcaacggga	tcagggacaa	4080
	gcagtcaggg	aagactatac	tcgacttcct	gaagtccgac	ggattcgcca	acaggaactt	4140
_	catgcagctc	attcacgacg	actccttgac	cttcaaggag	gacatccaga	aggctcaggt	4200
5	gtctggacag	ggtgactcct	tgcatgagca	cattgctaac	ttggccggct	ctcccgctat	4260
	taagaagggc	attttgcaga	ccgtgaaggt	cgttgacgag	ctcgtgaagg	tgatgggacg	4320
	ccacaagcca	gagaacatcg	ttattgagat	ggctcgcgag	aaccaaacta	cccagaaagg	4380
	gcagaagaat	tcccgcgaga	ggatgaagcg	cattgaggag	ggcataaaag	agcttggctc	4440
	tcagatcctc	aaggagcacc	ccgtcgagaa	cactcagctg	cagaacgaga	agctgtacct	4500
10	gtactacctc	caaaacggaa	gggacatgta	cgtggaccag	gagctggaca	tcaacaggtt	4560
	gtccgactac	gacgtcgacc	acatcgtgcc	tcagtccttc	ctgaaggatg	actccatcga	4620
	caataaagtg	ctgacacgct	ccgataaaaa	tagaggcaag	tccgacaacg	tcccctccga	4680
	ggaggtcgtg	aagaagatga	aaaactactg	gagacagctc	ttgaacgcca	agctcatcac	4740
	ccagcgtaag	ttcgacaacc	tgactaaggc	tgagagagga	ggattgtccg	agctcgataa	4800
15	ggccggattc	atcaagagac	agctcgtcga	aacccgccaa	attaccaagc	acgtggccca	4860
	aattctggat	tcccgcatga	acaccaagta	cgatgaaaat	gacaagctga	tccgcgaggt	4920
	caaggtgatc	accttgaagt	ccaagctggt	ctccgacttc	cgcaaggact	tccagttcta	4980
	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
	tggaaccgcc	ctcatcaaaa	aatatcctaa	gctggagtct	gagttcgtct	acggcgacta	5100
••	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
20	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
	gtgggacaaa	gggagggatt	tcgctactgt	gaggaaggtg	ctctccatgc	ctcaggtgaa	5340
	catcgtcaag	aagaccgaag	ttcagaccgg	aggattctcc	aaggagtcca	tcctccccaa	5400
	gagaaactcc	gacaagctga	tcgctagaaa	gaaagactgg	gaccctaaga	agtacggagg	5460
25	cttcgattct	cctaccgtgg	cctactctgt	gctggtcgtg	gccaaggtgg	agaagggcaa	5520
	gtccaagaag	ctgaaatccg	tcaaggagct	cctcgggatt	accatcatgg	agaggagttc	5580
	cttcgagaag	aaccctatcg	acttcctgga	ggccaaggga	tataaagagg	tgaagaagga	5640
	cctcatcatc	aagctgccca	agtactccct	cttcgagttg	gagaacggaa	ggaagaggat	5700
	gctggcttct	gccggagagt	tgcagaaggg	aaatgagctc	gcccttccct	ccaagtacgt	5760
30	gaacttcctg	tacctcgcct	ctcactatga	aaagttgaag	ggctctcctg	aggacaacga	5820
	gcagaagcag	ctcttcgtgg	agcagcacaa	gcactacctg	gacgaaatta	tcgagcagat	5880
	ctctgagttc	tccaagcgcg	tgatattggc	cgacgccaac	ctcgacaagg	tgctgtccgc	5940
	ctacaacaag	cacagggata	agcccattcg	cgagcaggct	gaaaacatta	tccacctgtt	6000
	taccctcaca	aacttgggag	cccctgctgc	cttcaagtac	ttcgacacca	ccattgacag	6060
25	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	ctcatccacc	aatccatcac	6120
35	cggcctctat	gaaacaagga	ttgacttgtc	ccagctggga	ggcgactcta	gagccgatcc	6180
	caagaagaag	agaaaggtgt	aggttaacct	agacttgtcc	atcttctgga	ttggccaact	6240
	taattaatgt	atgaaataaa	aggatgcaca	catagtgaca	tgctaatcac	tataatgtgg	6300
	gcatcaaagt	tgtgtgttat	gtgtaattac	tagttatctg	aataaaagag	aaagagatca	6360
	tccatatttc	ttatcctaaa	tgaatgtcac	gtgtctttat	aattctttga	tgaaccagat	6420
40	gcatttcatt	aaccaaatcc	atatacatat	aaatattaat	catatataat	taatatcaat	6480
	tgggttagca	aaacaaatct	agtctaggtg	tgttttgc			6518

<210> 402
 <211> 6518
 <212> DNA
 <213> Artificial

<220> <223> Artificial Sequence

50

<400> 402

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	ccacttcatt	tactcaactg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600

	ttttaatcag	gctcctgatt	tctttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
5	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
10	acctaggggc	attatcqqaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcqttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatqc	tttatgctgt	tgatgttcgg	ttatttattt	cqctttqttt	ttgtggttca	1500
	atttttaga	attetttag	tttttgaatc	gattaatcog	aagagatttt	cgagttattt	1560
15	aatatattaa	aggtgaatct	ttttttgag	gtcatagatc	tottotattt	otottataaa	1620
	catocoactt	totatoattt	tttacgaggt	tatgatgttc	taattattt	attatgaatc	1680
	tattgagaga	gaaccatgat	ttttgttgat	gttcgtttac	actattaaaq	gtttgtttta	1740
	acaggattaa	aagttttta	agcatottoa	aggagtette	tagatatgta	accotcoata	1800
	attttttat	agettatta	acatottato	aagettaate	ttttactato	tatocoacca	1860
20	tateteete	caccasacc	acatyctuce	ttattata	aacttttata	atatosaott	1920
20	appart to the test of	tattaataaa	gattetetaa	ataaaattaa	accelligea	tagettetta	1920
	tttaaattta	tattygtaaa	atttatatgt	atttaagtty	agracatteta	tttatttaaa	2040
	ttastata	tttaagtila	acctacacyc	accurgayee	ataggggtag	agatagggag	2040
	togatterag	cilladyladi	tastasaaa	aaagtactca	atagggeteg	acatagggac	2100
		ggalgggeeg	ccatcaccya	cyaglacaag	glgeeeleea	agaaguudaa	2100
25	ggtgttggga	aacaccgaca	ggcacagcat	aaagaagaat	ttgattggtg	CCCCCCCCCCC	2220
20	cgactccgga	gagacegetg	aggetaceag	geteaagagg	accgetagaa	ggcgctacac	2280
	cagaaggaag	aacagaatct	gctacctgca	ggagatette	tccaacgaga	tggccaaggt	2340
	ggacgactcc	ttettecace	gccttgagga	atcattcctg	gtggaggagg	ataaaaagca	2400
	cgagagacac	ccaatcttcg	ggaacatcgt	cgacgaggtg	gcctaccatg	aaaagtaccc	2460
	taccatctac	cacctgagga	agaagctggt	cgactctacc	gacaaggetg	acttgcgctt	2520
30	gatttacctg	gctctcgctc	acatgataaa	gttccgcgga	cacttcctca	ttgagggaga	2580
	cctgaaccca	gacaactccg	acgtggacaa	gctcttcatc	cagctcgttc	agacctacaa	2640
	ccagcttttc	gaggagaacc	caatcaacgc	cagtggagtt	gacgccaagg	ctatcctctc	2700
	tgctcgtctg	tcaaagtcca	ggaggcttga	gaacttgatt	gcccagctgc	ctggcgaaaa	2760
	gaagaacgga	ctgttcggaa	acttgatcgc	tctctccctg	ggattgactc	ccaacttcaa	2820
	gtccaacttc	gacctcgccg	aggacgctaa	gttgcagttg	tctaaagaca	cctacgacga	2880
35	tgacctcgac	aacttgctgg	cccagatagg	cgaccaatac	gccgatctct	tcctcgccgc	2940
	taagaacttg	tccgacgcaa	tcctgctgtc	cgacatcctg	agagtcaaca	ctgagattac	3000
	caaagctcct	ctgtctgctt	ccatgattaa	gcgctacgac	gagcaccacc	aagatctgac	3060
	cctgctcaag	gccctggtga	gacagcagct	gcccgagaag	tacaaggaga	tcttttcga	3120
	ccagtccaag	aacggctacg	ccggatacat	tgacggaggc	gcctcccagg	aagagttcta	3180
10	caagttcatc	aagcccatcc	ttgagaagat	ggacggtacc	gaggagctgt	tggtgaagtt	3240
40	gaacagagag	gacctgttga	ggaagcagag	aaccttcgac	aacggaagca	tccctcacca	3300
	aatccacctg	ggagagctcc	acgccatctt	gaggaggcag	gaggatttct	atcccttcct	3360
	gaaggacaac	cgcgagaaga	ttgagaagat	cttgaccttc	agaattcctt	actacgtcgg	3420
	gccactcgcc	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctg	aagagaccat	3480
	tactccctgg	aacttcgagg	aagtcgtgga	caagggcgct	tccgctcagt	ctttcatcga	3540
45	gaggatgacc	aacttcgata	aaaatctgcc	caacgagaag	gtgctgccca	agcactccct	3600
	gttgtacgag	tatttcacag	tgtacaacga	gctcaccaag	gtgaagtacg	tcacagaggg	3660
	aatgaggaag	cctgccttct	tgtccggaga	gcagaagaag	gccatcgtcg	acctgctctt	3720
	caagaccaac	aggaaggtga	ctgtcaagca	gctgaaggag	gactacttca	agaagatcga	3780
	gtgcttcgac	tccgtcgaga	tctctggtgt	cgaggacagg	ttcaacgcct	cccttgggac	3840
	ttaccacgat	ctgctcaaga	ttattaaaga	caaggacttc	ctggacaacq	aggagaacga	3900
50	ggacatcctt	gaggacatco	tgctcaccct	gaccttottc	gaagacaggg	aaatgatcga	3960
	agagaggete	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agetgaagag	4020
	acqcaqatat	accooctooo	gaaggetete	ccgcaaattg	atcaacoooa	tcagggacaa	4080
	gcagtcaggg	aagactatac	tcgacttcct	gaagtccgac	ggattcocca	acaggaactt	4140
	catocaocto	attcacgacg	actecttoac	cttcaaggag	gacatecaga	aggetcaggt	4200
	gtctggacag	ggtgactect	tocatoaoca	cattoctaac	ttaaccaact	ctccccctat	4260
55	taagaagggg	atttacaga	ccataaaat	cattacaca	ctcataaaaa	tgatgggacg	4320
	ccacaageca	gagaacat.co	ttattgagat	ageteacaaa	aaccaaacta	cccagaaagg	4380

	gcagaagaat	tcccgcgaga	ggatgaagcg	cattgaggag	ggcataaaag	agcttggctc	4440
	tcagatcctc	aaggagcacc	ccgtcgagaa	cactcagctg	cagaacgaga	agctgtacct	4500
	gtactacctc	caaaacggaa	gggacatgta	cgtggaccag	gagctggaca	tcaacaggtt	4560
	gtccgactac	gacgtcgacc	acatcgtgcc	tcagtccttc	ctgaaggatg	actccatcga	4620
5	caataaagtg	ctgacacgct	ccgataaaaa	tagaggcaag	tccgacaacg	tcccctccga	4680
	ggaggtcgtg	aagaagatga	aaaactactg	gagacagctc	ttgaacgcca	agctcatcac	4740
	ccagcgtaag	ttcgacaacc	tgactaaggc	tgagagagga	ggattgtccg	agctcgataa	4800
	ggccggattc	atcaagagac	agctcgtcga	aacccgccaa	attaccaagc	acgtggccca	4860
	aattctggat	tcccgcatga	acaccaagta	cgatgaaaat	gacaagctga	tccgcgaggt	4920
10	caaggtgatc	accttgaagt	ccaagctggt	ctccgacttc	cgcaaggact	tccagttcta	4980
	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
	tggaaccgcc	ctcatcaaaa	aatatcctaa	gctggagtct	gagttcgtct	acggcgacta	5100
	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
15	gtgggacaaa	gggagggatt	tcgctactgt	gaggaaggtg	ctctccatgc	ctcaggtgaa	5340
	catcgtcaag	aagaccgaag	ttcagaccgg	aggattctcc	aaggagtcca	tcctccccaa	5400
	gagaaactcc	gacaagctga	tcgctagaaa	gaaagactgg	gaccctaaga	agtacggagg	5460
	cttcgattct	cctaccgtgg	cctactctgt	gctggtcgtg	gccaaggtgg	agaagggcaa	5520
	gtccaagaag	ctgaaatccg	tcaaggagct	cctcgggatt	accatcatgg	agaggagttc	5580
20	cttcgagaag	aaccctatcg	acttcctgga	ggccaaggga	tataaagagg	tgaagaagga	5640
	cctcatcatc	aagctgccca	agtactccct	cttcgagttg	gagaacggaa	ggaagaggat	5700
	gctggcttct	gccggagagt	tgcagaaggg	aaatgagctc	gcccttccct	ccaagtacgt	5760
	gaacttcctg	tacctcgcct	ctcactatga	aaagttgaag	ggctctcctg	aggacaacga	5820
	gcagaagcag	ctcttcgtgg	agcagcacaa	gcactacctg	gacgaaatta	tcgagcagat	5880
25	ctctgagttc	tccaagcgcg	tgatattggc	cgacgccaac	ctcgacaagg	tgctgtccgc	5940
	ctacaacaag	cacagggata	agcccattcg	cgagcaggct	gaaaacatta	tccacctgtt	6000
	taccctcaca	aacttgggag	cccctgctgc	cttcaagtac	ttcgacacca	ccattgacag	6060
	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	ctcatccacc	aatccatcac	6120
	cggcctctat	gaaacaagga	ttgacttgtc	ccagctggga	ggcgactcta	gagccgatcc	6180
~~	caagaagaag	agaaaggtgt	aggttaacct	agacttgtcc	atcttctgga	ttggccaact	6240
30	taattaatgt	atgaaataaa	aggatgcaca	catagtgaca	tgctaatcac	tataatgtgg	6300
	gcatcaaagt	tgtgtgttat	gtgtaattac	tagttatctg	aataaaagag	aaagagatca	6360
	tccatatttc	ttatcctaaa	tgaatgtcac	gtgtctttat	aattctttga	tgaaccagat	6420
	gcatttcatt	aaccaaatcc	atatacatat	aaatattaat	catatataat	taatatcaat	6480
	tgggttagca	aaacaaatct	agtctaggtg	tgttttgc			6518
35							
	<210> 403						

<212> DNA <213> Artificial

<211> 6518

40

<220> <223> Artificial Sequence

<400> 403

45

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
5	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	actcaaagtc	atattttcg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020

cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg
aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg
cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa
acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct
agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg
aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc
tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt
ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca

	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	octcaaacca	caaaaaaaaaaaa	caacgcgttt	gttacacgct	caatcccaco	1140
	agagtagaga	agagtaagat	+	asstaaaas	+	+	1200
	cyaytayaye	acaytaacct		yaacyyyyca	LaalCayaaa		1200
	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
5	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
0	aggattooga	acqaqtqacc	ttetteattt	ctcgcaaagg	taacacctc	tactettate	1380
	tattacotta		tetetetet	ttogoatage	atttattaa		1440
	tettegatte	gatetatgee	tgtetettat	ttacgatgat	gtttettegg	ττατgτττττ	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
	gtttttagg	attetttag	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	aatatattaa	aggtgaatgt	++++++	atastaasta	+ + + + + + + + + + + + + + + + + + + +	atattataaa	1620
10	yglylyllyg	ayyuyaattu	LLLLLLLyay	gicalagate		ylyllalaaa	1020
10	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	τggττgτττ	attatgaatc	1980
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtettg	tagatatgta	accgtcgata	1800
	a++++++a+	agatttatta	acatottato	aaggettaatg	++++actata	tatocoacca	1860
	t at at an at a	gggcccgccc			t t t t - t -	-t-t	1000
	tatetggate	cagcaaaggc	gatttttaa	tteettgtga	aacttttgta	atatgaagtt	1920
15	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
15	tttaacttta	tgatagttta	atttatatot	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattgtag	tttaantaat	ccatoracaa	aaantantna	ataggggtcg	acatagggac	2100
	teesteest		tactggacaa	aaaytactca		acacagggac	2100
	taacteegtt	ggatgggeeg	teateacega	cgagtacaag	gtgeeeteea	agaagttcaa	2160
	ggtgttggga	aacaccgaca	ggcacagcat	aaagaagaat	ttgatcggtg	ccctcctctt	2220
	cgactccgga	gagaccgctg	aggctaccag	gctcaagagg	accgctagaa	ggcgctacac	2280
20	cagaaggaag	aacagaatot	actacctore	agagatette	tocaaccage	taaccaaaat	2340
20		thetter	geeaceegea	ggagatette	-tona and an	cygecaagge	20400
	ggacgactee	ttetteeace	geettgagga	ateatteetg	grggaggagg	ataaaaagca	2400
	cgagagacac	ccaatcttcg	ggaacatcgt	cgacgaggtg	gcctaccatg	aaaagtaccc	2460
	taccatctac	cacctgagga	agaagctggt	cgactctacc	gacaaggetg	acttgcgctt	2520
	gatttacctg	acteteacte	acatgataaa	attecacaa	cacttectea	ttgagggaga	2580
	gatecouceg	gaaaaataaa	acatgacaaa	getetegegga	agataatta		2640
25	Celgaaceea	gacaacteeg	acycyyacaa	gelelleale	cayeregile	ayaccuacaa	2040
20	ccagcttttc	gaggagaacc	caatcaacgc	cagtggagtt	gacgccaagg	ctatcctctc	2700
	tgctcgtctg	tcaaagtcca	ggaggcttga	gaacttgatt	gcccagctgc	ctggcgaaaa	2760
	gaagaacgga	ctottcogaa	acttgatcgc	tctctcccta	ggattgactc	ccaacttcaa	2820
	atcoaactto	aacat cacca	aggaggetaa	attaceatta	totaaaaaa	cotacoacoa	2880
	treaters	gaeeeegeeg	aggaegeeaa	geegeageeg	eccualgaca	testesses	2000
	tgacetegae	aacttgetgg	cccagatagg	cgaccaatac	geegatetet	teetegeege	2940
30	taagaacttg	tccgacgcaa	tcctgctgtc	cgacatcctg	agagtcaaca	ctgagattac	3000
	caaagctcct	ctgtctgctt	ccatgattaa	gcgctacgac	gagcaccacc	aagatctgac	3060
	cctoctcaao	accetaataa	gacagcaget	geeegagaag	tacaaqqaqa	tettttega	3120
	agagtagaag	according	gacageagee	tanagang	aaataaaaaa	aagaattata	2100
	ccaytecaag	aacyyccacy	Coggalacal	Lyacyyayyc	geeleeagy	aayaytteta	3180
	caagttcatc	aagcccatcc	ttgagaagat	ggacggtacc	gaggagctgt	tggtgaagtt	3240
	gaacagagag	gacctgttga	ggaagcagag	aaccttcgac	aacggaagca	tccctcacca	3300
35	aatccaccto	ggagagetee	acoccatctt	gaggaggag	gaggatttct	atcccttcct	3360
		agagagagaga	ttananaat	attapaatta	agaattaatt	actacatoca	3420
	yaayyacaac	cycyayaaya	LUgagaagal	CLUGACCLLC	agaalleell	accacyccyy	3420
	gccactcgcc	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctg	aagagaccat	3480
	tactccctgg	aacttcgagg	aagtcgtgga	caagggcgct	tccgctcagt	ctttcatcga	3540
	gaggatgacc	aacttcoata	aaaatctocc	caacgagaag	gtgctgccca	agcactccct	3600
	attatagaaa	tatttaaaaa	tatagaagaa	actorecard	ataeateaa	taaaaaaaa	3660
40	guuguaugag	Latteacay	iyiacaacya	ycccaccaay	guyaaguaug	ccacayayyy	5000
	aatgaggaag	cctgccttct	tgtccggaga	gcagaagaag	gccatcgtcg	acctgctctt	3720
	caagaccaac	aggaaggtga	ctgtcaagca	gctgaaggag	gactacttca	agaagatcga	3780
	gtgcttcgac	tccgtcgaga	tctctaatat	cgaggacagg	ttcaacgcct	cccttoggac	3840
	ttaggaaggat	ataataaaaa	+++++++++++++++++++++++++++++++++++++++	appagaatta	ataasasaa	20000333900	3000
	LLACCACGAL	cigcicaaga	LLALLAAAGA	Caaggactic	clygacaacy	aggagaacga	3900
	ggacatcctt	gaggacatcg	tgctcaccct	gaccttgttc	gaagacaggg	aaatgatcga	3960
45	agagaggctc	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agctgaagag	4020
	acocagatat	acconctor	gaaggetete	ccocaaatto	atcaacooga	tcagggacaa	4080
	acactacaca		taggettet	assataaasa	agettaggge	agaggaagtt	1110
	geagreaggg	aayactatac	Legaelleel	gaagteegae	ggallegeea	acaggaacti	4140
	catgcagete	attcacgacg	actccttgac	cttcaaggag	gacatccaga	aggeteaggt	4200
	gtctggacag	ggtgactcct	tgcatgagca	cattgctaac	ttggccggct	ctcccgctat	4260
	taagaagggg	attttgcaga	ccgtgaaggt	cottoacoao	ctcotoaago	tgatggacg	4320
50	0020220000	anagagat co	++ ++ ++ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	agatagagag	2200222042		1300
	ccacaayeed	yayaacateg	clallyaydt	gyccogogag	aaccaaacca	cocayaaayg	4300
	gcagaagaat	tcccgcgaga	ggatgaagcg	cattgaggag	ggcataaaag	agcttggctc	4440
	tcagatcctc	aaggagcacc	ccgtcgagaa	cactcagctg	cagaacgaga	agctgtacct	4500
	gtactacctc	caaaacooaa	gggacatota	cotogaccao	gagetogaca	tcaacaggtt	4560
	atcoacted	acat age a	acategtaga	tractorte	ctopagoato	actocatoca	4620
	geetare	gacyccyacc	acategegee	Lagitute	tagaayyaty	taret	4020
55	caataaagtg	ctgacacgct	ccgataaaaa	tagaggcaag	tccgacaacg	LCCCCLCCga	4680
	ggaggtcgtg	aagaagatga	aaaactactg	gagacagctc	ttgaacgcca	agctcatcac	4740
	ccagcgtaag	ttcgacaacc	tgactaaggc	tgagagagga	ggattqtccq	agctcgataa	4800
		-					

	ggccggattc	atcaagagac	agctcgtcga	aacccgccaa	attaccaagc	acgtggccca	4860
	aattctggat	tcccgcatga	acaccaagta	cgatgaaaat	gacaagctga	tccgcgaggt	4920
	caaggtgatc	accttgaagt	ccaagctggt	ctccgacttc	cgcaaggact	tccagttcta	4980
_	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
5	tggaaccgcc	ctcatcaaaa	aatatcctaa	gctggagtct	gagttcgtct	acggcgacta	5100
	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
	gtgggacaaa	gggagggatt	tcgctactgt	gaggaaggtg	ctctccatgc	ctcaggtgaa	5340
10	catcgtcaag	aagaccgaag	ttcagaccgg	aggattctcc	aaggagtcca	tcctccccaa	5400
	gagaaactcc	gacaagctga	tcgctagaaa	gaaagactgg	gaccctaaga	agtacggagg	5460
	cttcgattct	cctaccgtgg	cctactctgt	gctggtcgtg	gccaaggtgg	agaagggcaa	5520
	gtccaagaag	ctgaaatccg	tcaaggagct	cctcgggatt	accatcatgg	agaggagttc	5580
	cttcgagaag	aaccctatcg	acttcctgga	ggccaaggga	tataaagagg	tgaagaagga	5640
15	cctcatcatc	aagctgccca	agtactccct	cttcgagttg	gagaacggaa	ggaagaggat	5700
	gctggcttct	gccggagagt	tgcagaaggg	aaatgagctc	gcccttccct	ccaagtacgt	5760
	gaacttcctg	tacctcgcct	ctcactatga	aaagttgaag	ggctctcctg	aggacaacga	5820
	gcagaagcag	ctcttcgtgg	agcagcacaa	gcactacctg	gacgaaatta	tcgagcagat	5880
	ctctgagttc	tccaagcgcg	tgatattggc	cgacgccaac	ctcgacaagg	tgctgtccgc	5940
~~	ctacaacaag	cacagggata	agcccattcg	cgagcaggct	gaaaacatta	tccacctgtt	6000
20	taccctcaca	aacttgggag	cccctgctgc	cttcaagtac	ttcgacacca	ccattgacag	6060
	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	ctcatccacc	aatccatcac	6120
	cggcctctat	gaaacaagga	ttgacttgtc	ccagctggga	ggcgactcta	gagccgatcc	6180
	caagaagaag	agaaaggtgt	aggttaacct	agacttgtcc	atcttctgga	ttggccaact	6240
	taattaatgt	atgaaataaa	aggatgcaca	catagtgaca	tgctaatcac	tataatgtgg	6300
25	gcatcaaagt	tgtgtgttat	gtgtaattac	tagttatctg	aataaaagag	aaagagatca	6360
	tccatatttc	ttatcctaaa	tgaatgtcac	gtgtctttat	aattctttga	tgaaccagat	6420
	gcatttcatt	aaccaaatcc	atatacatat	aaatattaat	catatataat	taatatcaat	6480
	tgggttagca	aaacaaatct	agtctaggtg	tgttttgc			6518

- 30 <210> 404
  - <211> 6550 <212> DNA
    - <213> Artificial
- 35 <220> <223> Artificial Sequence

<400> 404

## 40

- 45
- 50

	ccgggttaag	agaattgtaa	gtgtgctttt	atatatttaa	aattaatata	ttttgaaatg	60
	ttaaaatata	aaagaaaatt	caatgtaaat	taaaaataaa	taaatgttta	ataaagataa	120
	attttaaaac	ataaaagaaa	atgtctaaca	agaggattaa	gatcctgtgc	tcttaaattt	180
	ttaggtgttg	aaatcttagc	catacaaaat	atattttatt	aaaaccaagc	atgaaaaaag	240
5	tcactaaaga	gctatataac	tcatgcagct	agaaatgaag	tgaagggaat	ccagtttgtt	300
	ctcagtcgaa	agagtgtcta	tctttgttct	tttctgcaac	cgagttaagc	aaaatgggaa	360
	tgcgaggtat	cttcctttcg	ttaggggagc	accagatgca	tagttagtcc	cacattgatg	420
	aatataacaa	gagcttcaca	gaatatatag	cccaggccac	agtaaaagct	tgtcccttgt	480
	acttgtacgt	agttttagag	ctagaaatag	caagttaaaa	taaggctagt	ccgttatcaa	540
10	cttgaaaaag	tggcaccgag	tcggtgcttt	ttttgcggc	cgcaattgga	tcgggtttac	600
	ttattttgtg	ggtatctata	cttttattag	atttttaatc	aggctcctga	tttctttta	660
	tttcgattga	attcctgaac	ttgtattatt	cagtagatcg	aataaattat	aaaaagataa	720
	aatcataaaa	taatattta	tcctatcaat	catattaaag	caatgaatat	gtaaaattaa	780
	tcttatcttt	attttaaaaa	atcatatagg	tttagtattt	ttttaaaaat	aaagatagga	840
15	ttagttttac	tattcactgc	ttattacttt	taaaaaatc	ataaaggttt	agtattttt	900
10	taaaataaat	ataggaatag	ttttactatt	cactgcttta	atagaaaaat	agtttaaaat	960
	ttaagatagt	tttaatccca	gcatttgcca	cgtttgaacg	tgagccgaaa	cgatgtcgtt	1020
	acattatctt	aacctagctg	aaacgatgtc	gtcataatat	cgccaaatgc	caactggact	1080
	acgtcgaacc	cacaaatccc	acaaagcgcg	tgaaatcaaa	tcgctcaaac	cacaaaaaag	1140
	aacaacgcgt	ttgttacacg	ctcaatccca	cgcgagtaga	gcacagtaac	cttcaaataa	1200
20	gcgaatgggg	cataatcaga	aatccgaaat	aaacctaggg	gcattatcgg	aaatgaaaag	1260
	tagctcactc	aatataaaaa	tctaggaacc	ctagttttcg	ttatcactct	gtgctccctc	1320
	gctctatttc	tcagtctctg	tgtttgcggc	tgaggattcc	gaacgagtga	ccttcttcgt	1380
	ttctcgcaaa	ggtaacagcc	tctgctcttg	tctcttcgat	tcgatctatg	cctgtctctt	1440

	atttacgatg	atgtttcttc	ggttatgttt	ttttatttat	gctttatgct	gttgatgttc	1500
	ggttgtttgt	ttcgctttgt	ttttgtggtt	cagttttta	ggattcttt	ggtttttgaa	1560
	tcgattaatc	ggaagagatt	ttcgagttat	ttggtgtgtt	ggaggtgaat	ctttttttg	1620
	aggtcataga	tctgttgtat	ttgtgttata	aacatgcgac	tttgtatgat	tttttacgag	1680
5	gttatgatgt	tctggttgtt	ttattatgaa	tctgttgaga	cagaaccatg	atttttgttg	1740
0	atgttcgttt	acactattaa	aggtttgttt	taacaggatt	aaaagttttt	taagcatgtt	1800
	gaaggagtet	tgtagatatg	taaccgtcga	tagtttttt	atagatttat	tcacatgtta	1860
	tcaaqcttaa	tcttttacta	tgtatgcgac	catatctqqa	tccagcaaag	gcgattttt	1920
	aattccttqt	gaaacttttg	taatatgaag	ttgaaatttt	gttattggta	aactataaat	1980
	gtgtgaagtt	ggagtatacc	tttaccttct	tatttggctt	tgtgatagtt	taatttatat	2040
10	gtattttgag	ttctgacttg	tatttctttg	aattgattct	agtttaagta	atccatggac	2100
	aaaaagtact	caatagggct	cgacataggg	actaactccg	ttggatgggc	cotcatcacc	2160
	gacgagtaca	aggtgccctc	caagaagttc	aaggtgttgg	gaaacaccga	caggcacagc	2220
	ataaagaaga	atttgatcgg	taccetecte	ttcgactccg	gagagaccoc	tgaggetacc	2280
	aggetcaaga	ggaccgctag	aaggcgctac	accagaagga	agaacagaat	ctoctaccto	2340
	caggagatet	tctccaacga	gatggccaag	gtggacgact	ccttcttcca	ccaccttaaa	2400
15	gaatcattcc	tootooagaa	ggataaaaag	cacgagagag	acccaatctt	coggaacatc	2460
	gtcgacgagg	togcctacca	tgaaaagtac	cctaccatct	accacctgag	gaagaagctg	2520
	gtcgactcta	ccgacaaggc	tgacttgcgc	ttgatttacc	taactctcac	tcacatgata	2580
	aagttccgcg	gacacttect	cattgaggga	gacctgaacc	cagacaactc	cgacgtggac	2640
	aagetettea	tccagctcgt	tcagacctac	aaccagettt	tcgaggagaa	cccaatcaac	2700
20	accagtogag	ttgacgccaa	ggctatcctc	tctactcatc	totcaaaotc	caggaggett	2760
20	gagaacttga	ttgcccagct	gcctggcgaa	aagaagaacg	gactottcog	aaacttgatc	2820
	actetetece	toggattgac	tcccaacttc	aagtccaact	tcgacctcgc	cgaggacgct	2880
	aagttgcagt	totctaaaga	cacctacgac	gatgacctcg	acaacttoct	ggcccagata	2940
	ggcgaccaat	acoccoatct	cttcctcgcc	gctaagaact	totccoacoc	aatcctgctg	3000
	tccgacatcc	tgagagtcaa	cactgagatt	accaaagete	ctctatctac	ttccatgatt	3060
25	aagcgctacg	acgaggagga	ccaagatctg	accetoctea	aggecetget	gagacagcag	3120
	ctoccoaga	agtacaagga	gatettttc	gaccagtcca	agaacggcta	coccogatac	3180
	attgacggag	gcgcctccca	ggaagagttc	tacaaqttca	tcaagcccat	ccttgagaag	3240
	atggacggta	ccgaggagct	gttggtgaag	ttgaacagag	aggacctgtt	gaggaagcag	3300
	agaaccttcg	acaacqqaaq	catccctcac	caaatccacc	toggagaget	ccacqccatc	3360
20	ttgaggaggg	aggaggattt	ctatcccttc	ctgaaggaca	accocoagaa	gattgagaag	3420
30	atcttgacct	tcagaattcc	ttactacqtc	gggccactcg	ccagaggaaa	ctctaggttc	3480
	gcctggatga	cccqcaaatc	tgaagagacc	attactccct	qqaacttcqa	qqaaqtcqtq	3540
	gacaagggggg	cttccqctca	gtctttcatc	gagaggatga	ccaacttcqa	taaaaatctq	3600
	cccaacgaga	aggtgctgcc	caagcactcc	ctgttgtacg	agtatttcac	agtgtacaac	3660
	gageteacea	aggtgaagta	cgtcacagag	ggaatgagga	agcctgcctt	cttgtccgga	3720
35	gagcagaaga	aggccatcgt	cgacctgctc	ttcaagacca	acaggaaggt	gactgtcaag	3780
	cagetgaagg	aggactactt	caagaagatc	gagtgcttcg	actccgtcga	gatetetggt	3840
	gtcgaggaca	ggttcaacgc	ctcccttggg	acttaccacg	atctgctcaa	gattattaaa	3900
	gacaaggact	tcctggacaa	cgaggagaac	gaggacatcc	ttgaggacat	cgtgctcacc	3960
	ctgaccttgt	tcgaagacag	ggaaatgatc	gaagagaggc	tcaagaccta	cgcccacctc	4020
	ttcgacgaca	aggtgatgaa	acagetgaag	agacgcagat	ataccggctg	gggaaggete	4080
40	tcccgcaaat	tgatcaacgg	gatcagggac	aagcagtcag	ggaagactat	actcgacttc	4140
	ctgaagtccg	acggattcgc	caacaggaac	ttcatgcagc	tcattcacga	cgactccttg	4200
	accttcaagg	aggacatcca	gaaggetcag	gtgtctggac	agggtgactc	cttgcatgag	4260
	cacattgcta	acttggccgg	ctctcccgct	attaagaagg	gcattttgca	gaccgtgaag	4320
	gtcgttgacg	agctcgtgaa	ggtgatggga	cgccacaagc	cagagaacat	cgttattgag	4380
45	atggctcgcg	agaaccaaac	tacccagaaa	gggcagaaga	attcccgcga	gaggatgaag	4440
10	cgcattgagg	agggcataaa	agagettgge	tctcagatcc	tcaaggagca	ccccgtcgag	4500
	aacactcagc	tgcagaacga	gaagetgtae	ctgtactacc	tccaaaacgg	aagggacatg	4560
	tacgtggacc	aggagctgga	catcaacagg	ttgtccgact	acgacgtcga	ccacatcgtg	4620
	cctcagtcct	tcctgaagga	tgactccatc	gacaataaaq	tgctgacacq	ctccgataaa	4680
	aatagaggca	agtccgacaa	cgtcccctcc	gaggaggtcq	tgaagaagat	gaaaaactac	4740
50	tggagacagc	tcttgaacgc	caagctcatc	acccagcgta	agttcgacaa	cctgactaag	4800
	gctgagagag	gaggattgtc	cgagetegat	aaggccggat	tcatcaagag	acagetegte	4860
	gaaacccgcc	aaattaccaa	gcacgtggcc	caaattctgg	attcccgcat	gaacaccaag	4920
	tacgatgaaa	atgacaagct	gatccgcgag	gtcaaggtga	tcaccttgaa	gtccaagctg	4980
	gtctccgact	tccgcaagga	cttccagttc	tacaaggtga	gggagatcaa	caactaccac	5040
55	cacgcacacg	acgcctacct	caacgctgtc	gttggaaccg	ccctcatcaa	aaaatatcct	5100
55	aagctggagt	ctgagttcgt	ctacggcgac	tacaaggtgt	acgacgtgag	gaagatgatc	5160
	gctaagtctg	agcaggagat	cggcaaggcc	accgccaagt	acttcttcta	ctccaacatc	5220

	atgaacttct atcgagacca gtgaggaagg	tcaagaccga acggtgagac tgctctccat	gatcactctc tggagagatc gcctcaggtg	gccaacggtg gtgtgggaca aacatcgtca	agatcaggaa aagggaggga agaagaccga	gcgcccactg tttcgctact agttcagacc	5280 5340 5400
5	ggaggattet aagaaagact gtgctggtcg ctcctcggga	gggaccctaa tggccaaggt ttaccatcat	gaagtacgga ggagaagggc ggagaggggt	aagagaaact ggcttcgatt aagtccaaga tccttcgaga	ecgacaaget etectacegt agetgaaate agaacectat	ggcctactct cgtcaaggag cgacttcctg	5480 5520 5580 5640
10	gaggccaagg ctcttcgagt ggaaatgagc	gatataaaga tggagaacgg tcgcccttcc	ggtgaagaag aaggaagagg ctccaagtac	gacctcatca atgctggctt gtgaacttcc	tcaagctgcc ctgccggaga tgtacctcgc	caagtactcc gttgcagaag ctctcactat	5700 5760 5820 5880
	aagcactacc gccgacgcca cgcgagcagg	tggacgaaat acctcgacaa ctgaaaacat	tatcgagcag ggtgctgtcc tatccacctg	atctctgagt gcctacaaca tttaccctca	agcacaggga caaacttggg	cgtgatattg taagcccatt agcccctgct	5940 6000 6060
15	gccttcaagt ctcgacgcaa tcccagctgg	acttcgacac cactcatcca gaggcgactc	caccattgac ccaatccatc tagagccgat	aggaagagat accggcctct cccaagaaga	acacctccac atgaaacaag agagaaaggt	caaggaggtg gattgacttg gtaggttaac	6120 6180 6240
20	cacatagtga actagttatc acgtgtcttt	catgctaatc tgaataaaag ataattcttt	actataatgt agaaagagat gatgaaccag	gggcatcaaa catccatatt atgcatttca	gttgtgtgtt tcttatccta ttaaccaaat	atgtgtaatt aatgaatgtc ccatatacat	6360 6420 6480
	ataaatatta tgtgttttgc	atcatatata	attaatatca	attgggttag	caaaacaaat	ctagtctagg	6540 6550
25	<210> 405 <211> 6518 <212> DNA <213> Artificial						
30	<220> <223> Artificial S	Sequence					
	<400> 405						
35							
40							
45							
50							
55							

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
5	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	tattctagaa	aagaggaatg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
••	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800

	gttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
5	ttgattctag	tttaagtaat	ccatggacaa	aaagtactca	atagggctcg	acatagggac	2100
0	taactccgtt	ggatgggccg	tcatcaccga	cgagtacaag	gtgccctcca	agaagttcaa	2160
	ggtgttggga	aacaccgaca	ggcacagcat	aaagaagaat	ttgatcggtg	ccctcctctt	2220
	cgactccgga	gagaccoctg	aggetaccag	gctcaagagg	accgctagaa	ggcgctacac	2280
	cagaaggaag	aacagaatct	gctacctgca	ggagatette	tccaacgaga	tggccaaggt	2340
	ggacgactcc	ttcttccacc	gccttgagga	atcattcctq	atagaagaaga	ataaaaaqca	2400
10	cgagagacac	ccaatcttcg	ggaacatcot	cgacgaggtg	gcctaccatg	aaaagtaccc	2460
	taccatctac	cacctgagga	agaagetggt	coactctacc	gacaaggetg	acttgcgctt	2520
	gatttacctg	actctcactc	acatgataaa	gttccgcgga	cacttcctca	ttgagggaga	2580
	cctgaaccca	gacaactccg	acotogacaa	gctcttcatc	cagetegtte	agacctacaa	2640
	ccagetttc	gaggagaacc	caatcaacoc	cagtggagtt	gacgccaagg	ctatcctctc	2700
	tactcatcta	tcaaagtcca	ggaggettga	gaacttgatt	gcccagctgc	ctoocoaaaa	2760
15	gaagaacgga	ctattcagaa	acttgatcgc	teteteceta	ggattgactc	ccaacttcaa	2820
	gtccaacttc	gacetegeeg	aggacgetaa	attacaatta	tctaaagaca	cctacgacga	2880
	tgacctcgac	aacttoctoo	cccagatagg	coaccaatac	accatctct	tectegeege	2940
	taagaacttg		tectactate	cgacatectg	agagtcaaca	ctgagattac	3000
	caaaactcct	ctatctactt	ccatgattaa	acactacaac	gagecacaca	aagatetgac	3060
20	cctactcaaa	accetaataa	gacagcagct	gegeeaegae	tacaaqqaqa	tetttteea	3120
20	ccagt ccaag	aaccocctacc	gacageaget	taacaaaaaa	acataggaga	aagagtteta	3180
	caagttcato	aacggccacg	ttgagaagat	agacagtage	geccectagy	tagtgeeett	3240
	gaagagagag	agectatta	raaarcaraa	aacettogac	aacqqaaqqqa	toootoacoa	3300
	aatccaccto	gaecegeega	accccatctt	aacceecgae	aacggaagca	atcoattoat	3360
	gaaggagagag	cacaaaaaaa	ttgagaagat	attaacetta	agaattoott	actacatcaa	3420
25	gaaggacaac	agaggaaga	atagattaga	atagataaaa	agaaaatata	accacyccyy	3420
	tactoctogec	agaggaaact	aaataataaa	daaggggggggg	tagatagat	atttata	3540
	racceeeegg	aacttegagg	aaguugga	caagggegee	atastasas	agaaataaat	3600
	gaggatgacc	tatttaaaaa	tatagaagaa	caacyayaay	gtgetgeeea	tagaaaaaaa	3660
	gilgiacgag	actorected	tgtacaacya	getteaceaag	gryaagracy	ccacagaggg	2720
	aacyayyaay	eergeerrer	tyteegyaga	gcagaagaag	gecalcyleg	accigcicii	2700
30	caayaccaac	aggaagguga	tatatatat	gergaaggag	gactactica	agaagatega	2040
	gtgettegae	teegtegaga	tetetggtgt	cgaggacagg	ttcaacgeet	cccttgggac	3840
	ttaccacgat	ctgctcaaga	ttattaaaga	caaggacttc	ctggacaacg	aggagaacga	3900
	ggacateett	gaggacateg	tgeteaceet	gaccttgttc	gaagacaggg	aaatgatcga	3960
	agagaggete	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agetgaagag	4020
~-	acgcagatat	accggctggg	gaaggetete	ccgcaaattg	atcaacggga	tcagggacaa	4080
35	gcagtcaggg	aagactatac	tcgacttcct	gaagteegae	ggattcgcca	acaggaactt	4140
	catgcagete	attcacgacg	actccttgac	cttcaaggag	gacatccaga	aggeteaggt	4200
	gtctggacag	ggtgactcct	tgcatgagca	cattgetaac	ttggccggct	CTCCCGCTat	4260
	taagaagggc	attttgcaga	ccgtgaaggt	cgttgacgag	ctcgtgaagg	tgatgggacg	4320
	ccacaagcca	gagaacatcg	ttattgagat	ggctcgcgag	aaccaaacta	cccagaaagg	4380
40	gcagaagaat	tcccgcgaga	ggatgaagcg	cattgaggag	ggcataaaag	agettggete	4440
	tcagatcete	aaggagcacc	ccgtcgagaa	cactcagetg	cagaacgaga	agctgtacct	4500
	gtactacctc	caaaacggaa	gggacatgta	cgtggaccag	gagetggaca	tcaacaggtt	4560
	gtccgactac	gacgtcgacc	acatcgtgcc	tcagtccttc	ctgaaggatg	actccatcga	4620
	caataaagtg	ctgacacgct	ccgataaaaa	tagaggcaag	tccgacaacg	tcccctccga	4680
	ggaggtcgtg	aagaagatga	aaaactactg	gagacagete	ttgaacgcca	agctcatcac	4740
45	ccagcgtaag	ttcgacaacc	tgactaaggc	tgagagagga	ggattgtccg	agctcgataa	4800
	ggccggattc	atcaagagac	agctcgtcga	aacccgccaa	attaccaagc	acgtggccca	4860
	aattctggat	tcccgcatga	acaccaagta	cgatgaaaat	gacaagctga	tccgcgaggt	4920
	caaggtgatc	accttgaagt	ccaagctggt	ctccgacttc	cgcaaggact	tccagttcta	4980
	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
	tggaaccgcc	ctcatcaaaa	aatatcctaa	gctggagtct	gagttcgtct	acggcgacta	5100
50	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
	gtgggacaaa	gggagggatt	tcgctactgt	gaggaaggtg	ctctccatgc	ctcaggtgaa	5340
	catcgtcaag	aagaccgaag	ttcagaccgg	aggattctcc	aaggagtcca	tcctccccaa	5400
55	gagaaactcc	gacaagctga	tcgctagaaa	gaaagactgg	gaccctaaga	agtacggagg	5460
55	cttcgattct	cctaccgtgg	cctactctgt	gctggtcgtg	gccaaggtgg	agaagggcaa	5520
	gtccaagaag	ctgaaatccg	tcaaggagct	cctcgggatt	accatcatgg	agaggagttc	5580
5	cttcgagaag cctcatcatc gctggcttct gaacttcctg gcagaagcag ctctgagttc ctacaacaag taccctcaca	aaccctatcg aagctgccca gccggagagt tacctcgcct ctcttcgtgg tccaagcgcg cacagggata aacttgggag	acttcctgga agtactccct tgcagaaggg ctcactatga agcagcacaa tgatattggc agcccattcg cccctgctgc	ggccaaggga cttcgagttg aaatgagctc aaagttgaag gcactacctg cgacgccaac cgagcaggct cttcaagtac	tataaagagg gagaacggaa gcccttccct ggctctcctg gacgaaatta ctcgacaagg gaaaacatta ttcgacacca	tgaagaagga ggaagaggat ccaagtacgt aggacaacga tcgagcagat tgctgtccgc tccacctgtt ccattgacag	5640 5700 5760 5820 5880 5940 6000 6060
----	--------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------
10	gaagagatac cggcctctat caagaagaag taattaatgt gcatcaaagt tccatatttc	acctccacca gaaacaagga agaaaggtgt atgaaataaa tgtgtgttat ttatcctaaa	aggaggtgct ttgacttgtc aggttaacct aggatgcaca gtgtaattac tgaatgtcac	cgacgcaaca ccagctggga agacttgtcc catagtgaca tagttatctg gtgtctttat	ctcatccacc ggcgactcta atcttctgga tgctaatcac aataaaagag aattctttga	aatccatcac gagccgatcc ttggccaact tataatgtgg aaagagatca tgaaccagat	6120 6180 6240 6300 6360 6420
15	gcatttcatt tgggttagca	aaccaaatcc aaacaaatct	atatacatat agtctaggtg	aaatattaat tgttttgc	catatataat	taatatcaat	6480 6518
20	<210> 406 <211> 6518 <212> DNA <213> Artificial						
25	<220> <223> Artificial S <400> 406	Sequence					
30							
35							
40							

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	gtgctaagca	cgacatccag	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
16	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
20	gttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
30	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggacaa	aaagtactca	atagggctcg	acatagggac	2100
	taactccgtt	ggatgggccg	tcatcaccga	cgagtacaag	gtgccctcca	agaagttcaa	2160
35	ggtgttggga	aacaccgaca	ggcacagcat	aaagaagaat	ttgatcggtg	ccctcctctt	2220

cgactccgga	gagaccgctg	aggctaccag	gctcaagagg	accgctagaa	ggcgctacac	2280
cagaaggaag	aacagaatct	gctacctgca	ggagatcttc	tccaacgaga	tggccaaggt	2340
ggacgactcc	ttcttccacc	gccttgagga	atcattcctg	gtggaggagg	ataaaaagca	2400
cgagagacac	ccaatcttcg	ggaacatcgt	cgacgaggtg	gcctaccatg	aaaagtaccc	2460
taccatctac	cacctgagga	agaagctggt	cgactctacc	gacaaggetg	acttgcgctt	2520
gatttacctg	gctctcgctc	acatgataaa	gttccgcgga	cacttcctca	ttgagggaga	2580
cctgaaccca	gacaactccg	acgtggacaa	gctcttcatc	cagctcgttc	agacctacaa	2640
ccagcttttc	gaggagaacc	caatcaacgc	cagtggagtt	gacgccaagg	ctatcctctc	2700
tgctcgtctg	tcaaagtcca	ggaggcttga	gaacttgatt	gcccagctgc	ctggcgaaaa	2760
gaagaacgga	ctgttcggaa	acttgatcgc	tctctccctg	ggattgactc	ccaacttcaa	2820
gtccaacttc	gacctcgccg	aggacgctaa	gttgcagttg	tctaaagaca	cctacgacga	2880
tgacctcgac	aacttgctgg	cccagatagg	cgaccaatac	gccgatctct	tcctcgccgc	2940
taagaacttg	tccgacgcaa	tcctgctgtc	cgacatcctg	agagtcaaca	ctgagattac	3000
caaagctcct	ctgtctgctt	ccatgattaa	gcgctacgac	gagcaccacc	aagatctgac	3060
cctgctcaag	gccctggtga	gacagcagct	gcccgagaag	tacaaggaga	tctttttcga	3120
ccagtccaag	aacggctacg	ccggatacat	tgacggaggc	gcctcccagg	aagagttcta	3180
caagttcatc	aagcccatcc	ttgagaagat	ggacggtacc	gaggagctgt	tggtgaagtt	3240
gaacagagag	gacctgttga	ggaagcagag	aaccttcgac	aacggaagca	tccctcacca	3300
aatccacctg	ggagagctcc	acgccatctt	gaggaggcag	gaggatttct	atcccttcct	3360
gaaggacaac	cgcgagaaga	ttgagaagat	cttgaccttc	agaattcctt	actacgtcgg	3420
gccactcgcc	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctg	aagagaccat	3480
tactccctgg	aacttcgagg	aagtcgtgga	caagggcgct	tccgctcagt	ctttcatcga	3540
gaggatgacc	aacttcgata	aaaatctgcc	caacgagaag	gtgctgccca	agcactccct	3600
gttgtacgag	tatttcacag	tgtacaacga	gctcaccaag	gtgaagtacg	tcacagaggg	3660
aatgaggaag	cctgccttct	tgtccggaga	gcagaagaag	gccatcgtcg	acctgctctt	3720
caagaccaac	aggaaggtga	ctgtcaagca	gctgaaggag	gactacttca	agaagatcga	3780
gtgcttcgac	tccgtcgaga	tctctggtgt	cgaggacagg	ttcaacgcct	cccttgggac	3840
ttaccacgat	ctgctcaaga	ttattaaaga	caaggacttc	ctggacaacg	aggagaacga	3900
ggacatcctt	gaggacatcg	tgctcaccct	gaccttgttc	gaagacaggg	aaatgatcga	3960
agagaggete	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agctgaagag	4020
acgcagatat	accggctggg	gaaggetete	ccgcaaattg	atcaacggga	tcagggacaa	4080
gcagtcaggg	aagactatac	tcgacttcct	gaagtccgac	ggattcgcca	acaggaactt	4140
catgcagctc	attcacgacg	actccttgac	cttcaaggag	gacatccaga	aggctcaggt	4200
gtctggacag	ggtgactcct	tgcatgagca	cattgctaac	ttggccggct	ctcccgctat	4260
taagaagggc	attttgcaga	ccgtgaaggt	cgttgacgag	ctcgtgaagg	tgatgggacg	4320
ccacaagcca	gagaacatcg	ttattgagat	ggctcgcgag	aaccaaacta	cccagaaagg	4380
gcagaagaat	tcccgcgaga	ggatgaagcg	cattgaggag	ggcataaaag	agettggete	4440
tcagatcctc	aaggagcacc	ccgtcgagaa	cactcagctg	cagaacgaga	agctgtacct	4500
gtactacctc	caaaacggaa	gggacatgta	cgtggaccag	gagetggaca	tcaacaggtt	4560
gtccgactac	gacgtcgacc	acatcgtgcc	tcagtccttc	ctgaaggatg	actccatcga	4620
caataaagtg	ctgacacgct	ccgataaaaa	tagaggcaag	tccgacaacg	tcccctccga	4680
ggaggtcgtg	aagaagatga	aaaactactg	gagacagete	ttgaacgcca	agctcatcac	4740
ccagcgtaag	ttcgacaacc	tgactaaggc	tgagagagga	ggattgtccg	agctcgataa	4800
ggccggattc	atcaagagac	agctcgtcga	aacccgccaa	attaccaagc	acgtggccca	4860

aattetggat teeegeatga acaceaagta egatgaaaat gaeaagetga teegegaggt

caaggtgatc accttgaagt ccaagctggt ctccgacttc cgcaaggact tccagttcta

caaggtgagg gagatcaaca actaccacca cgcacacgac gcctacctca acgctgtcgt

tggaaccgcc ctcatcaaaa aatatcctaa gctggagtct gagttcgtct acggcgacta

caaggtgtac gacgtgagga agatgatcgc taagtctgag caggagatcg gcaaggccac

cgccaagtac ttcttctact ccaacatcat gaacttcttc aagaccgaga tcactctcgc

caacggtgag atcaggaagc gcccactgat cgagaccaac ggtgagactg gagagatcgt

gtgggacaaa gggagggatt tcgctactgt gaggaaggtg ctctccatgc ctcaggtgaa

catcgtcaag aagaccgaag ttcagaccgg aggattctcc aaggagtcca tcctccccaa

gagaaactcc gacaagctga tcgctagaaa gaaagactgg gaccctaaga agtacggagg cttcgattct cctaccgtgg cctactctgt gctggtcgtg gccaaggtgg agaagggcaa

gtccaagaag ctgaaatccg tcaaggagct cctcgggatt accatcatgg agaggagttc cttcgagaag aaccctatcg acttcctgga ggccaaggga tataaagagg tgaagaagga

cctcatcatc aagctgccca agtactccct cttcgagttg gagaacggaa ggaagaggat

gctggcttct gccggagagt tgcagaaggg aaatgagctc gcccttccct ccaagtacgt

gaactteetg tacetegeet etcaetatga aaagttgaag ggeteteetg aggacaaega

gcagaagcag ctcttcgtgg agcagcacaa gcactacctg gacgaaatta tcgagcagat

ctctgagttc tccaagegeg tgatattggc cgaegecaac ctcgacaagg tgctgteege

ctacaacaag cacagggata agcccattcg cgagcaggct gaaaacatta tccacctgtt

taccetcaca aacttgggag cccetgetge etteaagtae ttegacacea ccattgacag 6060 gaagagatac acctccacca aggaggtgct cgacgcaaca ctcatccacc aatccatcac 6120 6180 cggcctctat gaaacaagga ttgacttgtc ccagctggga ggcgactcta gagccgatcc caagaagaag agaaaggtgt aggttaacct agacttgtcc atcttctgga ttggccaact 6240 5 taattaatgt atgaaataaa aggatgcaca catagtgaca tgctaatcac tataatgtgg 6300 gcatcaaagt tgtgtgttat gtgtaattac tagttatctg aataaaagag aaagagatca 6360 tccatatttc ttatcctaaa tgaatgtcac gtgtctttat aattctttga tgaaccagat 6420 gcatttcatt aaccaaatcc atatacatat aaatattaat catatataat taatatcaat 6480 6518 tgggttagca aaacaaatct agtctaggtg tgttttgc 10 <210> 407 <211> 6518 <212> DNA <213> Artificial 15 <220> <223> Artificial Sequence <400> 407 20 25 30 35 40 45 50 55

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
_	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	acgtgatgca	tcatagatgg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
~~	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
30	gtttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggacaa	aaagtactca	atagggctcg	acatagggac	2100
~-	taactccgtt	ggatgggccg	tcatcaccga	cgagtacaag	gtgccctcca	agaagttcaa	2160
35	ggtgttggga	aacaccgaca	ggcacagcat	aaagaagaat	ttgatcggtg	ccctcctctt	2220
	cgactccgga	gagaccgctg	aggctaccag	gctcaagagg	accgctagaa	ggcgctacac	2280
	cagaaggaag	aacagaatct	gctacctgca	ggagatcttc	tccaacgaga	tggccaaggt	2340
	ggacgactcc	ttcttccacc	gccttgagga	atcattcctg	gtggaggagg	ataaaaagca	2400
	cgagagacac	ccaatcttcg	ggaacatcgt	cgacgaggtg	gcctaccatg	aaaagtaccc	2460
40	taccatctac	cacctgagga	agaagctggt	cgactctacc	gacaaggctg	acttgcgctt	2520
	gatttacctg	gctctcgctc	acatgataaa	gttccgcgga	cacttcctca	ttgagggaga	2580
	cctgaaccca	gacaactccg	acgtggacaa	gctcttcatc	cagctcgttc	agacctacaa	2640

	ccagettttc	gaggagaacc	caatcaacoc	cagtggagtt	gacgccaagg	ctatcctctc	2700
	tactcatcta	tcaaagtcca	ggaggettga	gaacttgatt	acccaactac	ctoocgaaaa	2760
	gaagaacgga	ctattcagaa	acttgatcgc	teteteeta	ggattgactc	ccaacttcaa	2820
	atccaacttc	acctcacca	aggaggetaa	attaceatta	totaaagaca	cctaccacca	2880
_	tasaataasa	aacttootoo	aggaegeeaa	geegeageeg	accastatat	taatagaaga	2940
5	taagaagtta	tagaagaaaa	tactactata	cgaccaatac	geegacetee	ataoasttoa	2000
	Laagaactug	cecyacycaa		cyacalcely	agagicaaca	cigagatiac	2000
	caaageteet	ergrergert	ccatgattaa	gegetaegae	gagcaccacc	aagatetgae	3060
	cctgctcaag	gccctggtga	gacagcagct	gcccgagaag	tacaaggaga	tettttega	3120
	ccagtccaag	aacggctacg	ccggatacat	tgacggaggc	gcctcccagg	aagagttcta	3180
10	caagttcatc	aagcccatcc	ttgagaagat	ggacggtacc	gaggagctgt	tggtgaagtt	3240
10	gaacagagag	gacctgttga	ggaagcagag	aaccttcgac	aacggaagca	tccctcacca	3300
	aatccacctg	ggagagctcc	acgccatctt	gaggaggcag	gaggatttct	atcccttcct	3360
	gaaggacaac	cgcgagaaga	ttgagaagat	cttgaccttc	agaattcctt	actacgtcgg	3420
	gccactcgcc	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctg	aagagaccat	3480
	tactccctgg	aacttcgagg	aagtcgtgga	caagggcgct	tccgctcagt	ctttcatcga	3540
1 5	gaggatgacc	aacttcgata	aaaatctgcc	caacgagaag	gtgctgccca	agcactccct	3600
15	gttgtacgag	tatttcacag	tgtacaacga	gctcaccaag	gtgaagtacg	tcacagaggg	3660
	aatgaggaag	cctgccttct	tgtccggaga	gcagaagaag	gccatcgtcg	acctgctctt	3720
	caagaccaac	aggaaggtga	ctgtcaagca	gctgaaggag	gactacttca	agaagatcga	3780
	gtgcttcgac	tccgtcgaga	tctctqqtqt	cgaggacagg	ttcaacgcct	cccttgggac	3840
	ttaccacgat	ctoctcaaga	ttattaaaga	caaggacttc	ctogacaaco	aggagaacga	3900
20	ggacateett	gaggacatcg	toctcaccct	gaccttottc	gaagacaggg	aaatgatcga	3960
20	agagaggete	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agetgaagag	4020
	accocacatat	acconctor	gaaggetete	ccccaaatto	atcaacqqqa	traggagaga	4080
	acgeagatat	aacactatac	tcaacttcct	gaagtocgac	accaacggga	acaggagacaa	4140
	geageeaggg	attaagaa	actacttocc	gaageeegae	ggattogeca	acaggaacee	4200
	atatagaaaa	acteacyacy	taataagaa	asttaatssa	ttagagagat	aggettaggt	4200
25	toogooggagag	gglgaeleel	rgeargagea	cattgetaac		tastagasaa	4200
	LaagaagggC	alligeaga	ccglgaaggl	cyllyacyay	clegigaagg	Lyalyyyacy	4320
	ccacaagcca	gagaacatcg	ttattgagat	ggctcgcgag	aaccaaacta	cccagaaagg	4380
	gcagaagaat	tcccgcgaga	ggatgaagcg	cattgaggag	ggcataaaag	agettggete	4440
	tcagatecte	aaggagcacc	ccgtcgagaa	cactcagetg	cagaacgaga	agetgtacet	4500
	gtactacctc	caaaacggaa	gggacatgta	cgtggaccag	gagetggaea	tcaacaggtt	4560
30	gtccgactac	gacgtcgacc	acatcgtgcc	tcagtccttc	ctgaaggatg	actccatcga	4620
	caataaagtg	ctgacacgct	ccgataaaaa	tagaggcaag	tccgacaacg	tcccctccga	4680
	ggaggtcgtg	aagaagatga	aaaactactg	gagacagctc	ttgaacgcca	agctcatcac	4740
	ccagcgtaag	ttcgacaacc	tgactaaggc	tgagagagga	ggattgtccg	agctcgataa	4800
	ggccggattc	atcaagagac	agctcgtcga	aacccgccaa	attaccaagc	acgtggccca	4860
	aattctggat	tcccgcatga	acaccaagta	cgatgaaaat	gacaagctga	tccgcgaggt	4920
35	caaggtgatc	accttgaagt	ccaagctggt	ctccgacttc	cgcaaggact	tccagttcta	4980
	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
	tggaaccgcc	ctcatcaaaa	aatatcctaa	gctggagtct	gagttcgtct	acggcgacta	5100
	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
40	gtgggacaaa	qqqaqqqatt	tcgctactgt	gaggaaggtg	ctctccatqc	ctcaggtgaa	5340
	catcotcaag	aagaccgaag	ttcagaccog	aggattetee	aaggagtcca	tcctccccaa	5400
	gagaaactcc	gacaagetga	tcoctagaaa	gaaagactog	gaccetaaga	agtacggagg	5460
	cttcgattct	cctaccotoo	cctactctot	actaatcata	gccaaggtgg	agaagggggaa	5520
	atccaagaag	ctgaaatccg	tcaaggaggt	cctcgggatt	accatcatog	agaggagttc	5580
45		aaccetateg	acttcctgga	ggccaagggaa	tataaagagg		5640
45	cctcatcatc	aagetgeega	actactccct	cttccaacttc	gagaacggagg	qqaaqaqqat	5700
	actaccattat	agecgeeca	tagaaaaaaaa	aaatgaggetg	gagaattagat	ggaagaggat	5760
	galggallat	tagetagest	ataaatataa	aaaattaaaa	gaatataata	aggagaagga	5700
	gaaduudeug		agaagaagaa	aaayuuyaag	ggullelele	tagagagaga	5020
	ycayaaycag	tage	aycaycacaa	geactacetg	yacyadatta		2000
50	CEEEEgagete	Lecaagegeg	rgatattgge	cgacgccaac	cccgacaagg	tgetgteege	5940
50	ctacaacaag	cacagggata	ageceatteg	cgagcagget	gaaaacatta	tccacctgtt	6000
	taccctcaca	aacttgggag	cccctgctgc	cttcaagtac	ttcgacacca	ccattgacag	6060
	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	ctcatccacc	aatccatcac	6120
	cggcctctat	gaaacaagga	ttgacttgtc	ccagctggga	ggcgactcta	gagccgatcc	6180
	caagaagaag	agaaaggtgt	aggttaacct	agacttgtcc	atcttctgga	ttggccaact	6240

taattaatgt atgaaataaa aggatgcaca catagtgaca tgctaatcac tataatgtgg

gcatcaaagt tgtgtgttat gtgtaattac tagttatctg aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac gtgtctttat aattctttga tgaaccagat

	gcatttcatt tgggttagca	aaccaaatcc aaacaaatct	atatacatat agtctaggtg	aaatattaat tgttttgc	catatataat	taatatcaat	6480 6518
5	<210> 408 <211> 6518 <212> DNA <213> Artificial						
10	<220> <223> Artificial S	Sequence					
	<400> 408						
15							
20							
25							
30							
35							
40							
45							
50							
55							

	an an an an andre andre an a						<u> </u>
	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	50
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
-	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	aggaaatgac	tgtggcacag	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tctttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acaqtaacct	tcaaataaqc	gaatggggca	taatcaqaaa	tccqaaataa	1200
20	acctaggggc	attatcogaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctot	actccctcac	tctatttctc	agtetetgtg	tttacaacta	1320
	aggattccga	acgagtgacc	ttcttcattt	ctcgcaaagg	taacageete	tactcttatc	1380
	tcttcgattc	gatetatoce	totctcttat	ttacgatgat	atttcttcaa	ttatotttt	1440
	ttatttatoc	tttatoctot	tgatgttcgg	ttatttattt	cactttattt	ttotoottca	1500
	atttttaga	attetttag	tttttgaatc	gattaatcoo	aagagattt	cgagttattt	1560
25	aatatattaa	aggtgaatct	ttttttaag	gtcatagate	tattattt	gtgttataaa	1620
	catgcgactt	tatatattt	tttacgaggt	tatgatgttc	taattattt	attatgaatc	1680
	tattaagaca	gaaccatgat	ttttattat	attcatttac	actattaaaq	attattta	1740
	acaqqattaa	aagttttta	agcatattaa	aggagtetta	tagatatgta	accotcoata	1800
	attttttat	agettatta	acatottato	aggettaatc	ttttactato	tatgcgacca	1860
30	tatctggatc	carcaaarr	atttttaa	ttoottoto	aacttttata	atatosaott	1920
	accegyace assett+tat	tattaataaa	gatteteetaa	ataeattaa	activect	tacattatta	1920
	tttaaattta	tactygtaaa	atttatatgt	atttaagttyg	agcacacete	tttattta	2040
	ttasttataa	tttaagttta	acctacacyc	accetagee	atagggta	aastagggaa	2040
	togaticitag	agetageaaa	tastasaaa	aaagtactca	atagggeteg	acatayyyac	2100
~-		ggalgggeeg	calcacega	cgaglacaag	glgeeeleea	agaagticaa	2100
35	ggtgttggga	aacaccgaca	ggcacagcat	aaagaagaat	LEgaleggeg	ccctcctctt	2220
	cgaeleegga	gagacegeeg	aggeraceag	geleaagagg	accyclagaa	ggegelacae	2200
	cagaaggaag	aacagaatct	getacetgea	ggagatette	tccaacgaga	tggccaaggt	2340
	ggacgactcc	TTCTTCCaCC	gccttgagga	atcattcctg	gtggaggagg	ataaaaagca	2400
	cgagagacac	ccaatcttcg	ggaacatcgt	cgacgaggtg	gcctaccatg	aaaagtaccc	2460
40	taccatctac	cacctgagga	agaagctggt	cgactctacc	gacaaggetg	acttgcgctt	2520
	gatttacctg	getetegete	acatgataaa	gttccgcgga	cactteetca	ttgagggaga	2580
	cctgaaccca	gacaactccg	acgtggacaa	gctcttcatc	cagetegtte	agacctacaa	2640
	ccagcttttc	gaggagaacc	caatcaacgc	cagtggagtt	gacgccaagg	ctatcctctc	2700
	tgctcgtctg	tcaaagtcca	ggaggcttga	gaacttgatt	gcccagctgc	ctggcgaaaa	2760
45	gaagaacgga	ctgttcggaa	acttgatcgc	tctctccctg	ggattgactc	ccaacttcaa	2820
40	gtccaacttc	gacctcgccg	aggacgctaa	gttgcagttg	tctaaagaca	cctacgacga	2880
	tgacctcgac	aacttgctgg	cccagatagg	cgaccaatac	gccgatctct	tcctcgccgc	2940
	taagaacttg	tccgacgcaa	tcctgctgtc	cgacatcctg	agagtcaaca	ctgagattac	3000
	caaagctcct	ctgtctgctt	ccatgattaa	gcgctacgac	gagcaccacc	aagatctgac	3060

	cctgctcaag	gccctggtga	gacagcagct	gcccgagaag	tacaaggaga	tcttttcga	3120
	ccagtccaag	aacggctacg	ccggatacat	tgacggaggc	gcctcccagg	aagagttcta	3180
	caagttcatc	aagcccatcc	ttgagaagat	ggacggtacc	gaggagctgt	tggtgaagtt	3240
	gaacagagag	gacctgttga	ggaagcagag	aaccttcgac	aacggaagca	tccctcacca	3300
5	aatccacctg	ggagagctcc	acgccatctt	gaggaggcag	gaggatttct	atcccttcct	3360
	gaaggacaac	cgcgagaaga	ttgagaagat	cttgaccttc	agaattcctt	actacgtcgg	3420
	gccactcgcc	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctg	aagagaccat	3480
	tactccctgg	aacttcgagg	aagtcgtgga	caagggcgct	tccgctcagt	ctttcatcga	3540
	gaggatgacc	aacttcgata	aaaatctgcc	caacgagaag	gtgctgccca	agcactccct	3600
10	gttgtacgag	tatttcacag	tgtacaacga	gctcaccaag	gtgaagtacg	tcacagaggg	3660
	aatgaggaag	cctqccttct	tatccagaga	gcagaagaag	gccatcgtcg	acctgctctt	3720
	caagaccaac	aqqaaqqtqa	ctgtcaagca	gctgaaggag	gactacttca	agaagatcga	3780
	gtgcttcgac	tccgtcgaga	tctctggtgt	cgaggacagg	ttcaacgcct	cccttgggac	3840
	ttaccacgat	ctgctcaaga	ttattaaaga	caaggacttc	ctggacaacg	aggagaacga	3900
45	ggacatcctt	gaggacatcg	tgctcaccct	gaccttgttc	qaaqacaqqq	aaatgatcga	3960
15	agagaggete	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agetgaagag	4020
	acqcaqatat	accooctooo	gaaggetete	ccocaaatto	atcaacggga	tcagggacaa	4080
	gcagtcaggg	aagactatac	tcgacttcct	gaagtccgac	ggattcgcca	acaggaactt	4140
	catgcagete	attcacgacg	actccttgac	cttcaaggag	gacatccaga	aggetcaggt	4200
	otctogacag	ggtgactcct	tocatoaoca	cattoctaac	ttaaccaact	ctccccctat	4260
20	taagaagggg	attttgcaga	ccotoaagot	cattgacgag	ctcgtgaagg	tgatgggacg	4320
	ccacaagcca	gagaacatcg	ttattgagat	agetcacaag	aaccaaacta	cccagaaagg	4380
	gcagaagaat	teccocoaoa	ggatgaagcg	cattgaggag	ggcataaaag	agettggete	4440
	tcagatecte	aaggaggagg	ccatcaagaa	cactcagetg	cagaacgaga	agetgtacet	4500
	gtactacctc	caaaacooaa	gggacatgta	catagaccag	gagetggaga	tcaacaggtt	4560
25	gtccgactac	gacgtcgacc	acatcotocc	tcagtccttc	ctgaaggatg	actccatcga	4620
20	caataaagtg	ctgacacget	ccgataaaaa	tagaggcaag		teccetecga	4680
	ggaggtcgtg	aagaagatga	aaaactactg	gagagagete	ttgaacgcca	agetcateac	4740
	ccagcgtaag	ttcgacaacc	tgactaagge		ggattgtccg	agetegataa	4800
	gaccagatta	atcaagagag	agetegtega	aacccgccaa	attaccaage	acatageeca	4860
	aattetooat	tcccccatca	acaccaacta	coatoaaaat	gacaagetga	tcccccacat	4920
30	caaggtgatg	accttgaagt	ccaactoot	ctccgacttc	cacaaqqact	tccaqttcta	4920
	caaqqtqaqq	gagatgaaga	actaccacca	cacacacaac	acctacctca	acactatcat	5040
	tagaaccacc	ctcatcaaaa	aatatootaa	actagaatat	gagttcgtct	acqqcqacta	5100
	caaggaacegee	gacgtgagga	agatgatgat	taatctcac	caggagatca	acggegaeea	5160
	caccaadtac	ttattataat	ccaacatcat	gaagttette	aagaccgaga	tcactctccc	5220
35	caacootooo	atcaggaage	accactat	craceccaac	adyaccyaya	gagagat cot	5280
	ataaaaaaa	accaggaage	tcactactat	gagaecaac	ctctccatcc	ctcaggtgatcgt	5340
	catcatcaaa	aagaccgaag	ttcagaccgg	aggaaggeg	aaggagtege	tcctccccaa	5400
	categicaag	aagaccgaag	tagatagaaaa	aggattettet	aaggagtteea	actaggaag	5460
	gagaaactee	gacaayeeya	cotactatat	gaaagaccyg	gaccectaaga	ageacggagg	5520
	atagaagaag	ataaaataaa	tagagagag	getggtegtg	accatostor	agaagggcaa	5580
40	gtttaagaag	aggestates	acttactace	agaaaagaaa	tataaagag		5640
	actastasta	aaccectateg	acticcigga	gyccaagyga	cacaaagagg	cyaayaayya	5700
	acterent	aageegeeea	tagaaaaaaaa	apatrageta	gagaattaaat	ggaagaggat	5760
	gelggellel	geeggagagt	cycayaayyy	aaaugagete	gecetteeet	ccaagtacgt	5760
	gaactteetg		Cleacialga	aaaguugaag	ggeteteetg	aggacaacga	5020
45	geagaageag		agcagcacaa	geactacety	gacgaaatta	togageagat	5000
	cleigagile	Lecaagegeg	lgalallggc	cgacgccaac	clegacaagg		5940
	ctacaacaag	cacagggata	ageceatteg	cgagcagget	gaaaacatta	tecacetgtt	6000
	taccctcaca	aacttgggag	eccetgetge	CEECaageac	ttegacacea	ccattgacag	6060
	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	CTCatCCaCC	aatccatcac	6120
50	cggcctctat	gaaacaagga	ttgacttgtC	ccagctggga	ggcgactcta	gageegatee	6180
50	caagaagaag	agaaaggtgt	aggttaacct	agacttgtcc	atcttctgga	ttggccaact	6240
	taattaatgt	atgaaataaa	aggatgcaca	catagtgaca	tgctaatcac	tataatgtgg	6300
	gcatcaaagt	tgtgtgttat	gtgtaattac	tagttatctg	aataaaagag	aaagagatca	6360
	tccatatttc	ttatcctaaa	tgaatgtcac	gtgtctttat	aattetttga	tgaaccagat	6420
	gcatttcatt	aaccaaatcc	atatacatat	aaatattaat	catatataat	taatatcaat	6480
55	tgggttagca	aaacaaatct	agtctaggtg	tgttttgc			6518

<210> 409 <211> 6518

		EP 3 19
	<212> DNA <213> Artificial	
5	<220> <223> Artificial Sequence	
	<400> 409	
10		
15		
20		
25		
30		
35		
40		
45		
40		
50		

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	qqaaqaaaaa	aaacaaacaa	aaaataqqtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccoataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttogat	ctttctctta	ccctottat	attgagaget	gaaacttgag	agagatacac	300
	taatcttocc	ttattatta	attractaar	ttacaggact	caccocatot	catgradatet	360
	aattaaaat	ttaataaaa	agaatataa	acttattaaa	ttattaatat	ttataagtag	420
	atagagagag	agaaagatta	acatogocia	attactat	ttttaccacge	agaaatagga	420
	acycacaaca	acaaayeeeg	attataaat	tananata	rangageta	agaaatagta	540
10	ayllaaaala	aggetagtee	gulalcaact	lyaaaaayly	geacegagee	gglgellll	540
10		caallygalc	ggglllacll			clialiagai	600
	ttttaatcag	geteetgatt	tetttatt	tegattgaat	teetgaaett	gtattattca	550
	gtagategaa	taaattataa	aaagataaaa	tCataaaata	atatttate	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatettat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attacttta	840
15	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attetttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	aatatattaa	aggtgaatct	ttttttgag	gtcatagatc	tattatattt	otottataaa	1620
	catgcgactt	totatoattt	tttacgaggt	tatgatgttc	taattattt	attatgaatc	1680
	tottoagaca	gaaccatgat	ttttgttgat	ottcotttac	actattaaaq	attattta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtettg	tagatatgta	accotcoata	1800
	attttttat	agattatta	acatottate	aagettaate	ttttactato	tatgcgacca	1860
30	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttota	atatgaagtt	1920
	gaaattttgt	tattootaaa	ctataaatot	ataaattaa	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatot	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatogacaa	aaagtactca	atagggctcg	acatagggac	2100
	taactccctt	agatagacca	tcatcaccoa	coactacaac	atacceteca	agaagttgaa	2160
35	aatattagaa		gggaggggat	aaaaaaaat	ttataata	agaageeeaa	2220
	ggtgttgggga	aacaccyaca	aggetagetage	aaayaayaac	accortacea	agaataaa	2220
	cyacteeyya	gagacegeeg	agyccaccay	geccaagagg	taasaaaaaa	tagaaaaat	2200
	cayaayyaay	aacayaacce	getacetyca	ggagatette	rtanagaga	tygecaayyt	2340
	ggacgactee	LLCLLCCACC	geellgagga	alcalleelg	grggaggagg	alaaaagca	2400
	cgagagacac	ccaatcttcg	ggaacatcgt	cgacgaggtg	gectaccatg	aaaagtaccc	2460
40	taccatctac	cacctgagga	agaagetggt	cgactctacc	gacaaggetg	acttgcgctt	2520
	gatttacctg	gctctcgctc	acatgataaa	gttccgcgga	cacttcctca	ttgagggaga	2580
	cctgaaccca	gacaactccg	acgtggacaa	gctcttcatc	cagetegtte	agacctacaa	2640
	ccagcttttc	gaggagaacc	caatcaacgc	cagtggagtt	gacgccaagg	ctatcctctc	2700
	tgctcgtctg	tcaaagtcca	ggaggcttga	gaacttgatt	gcccagctgc	ctggcgaaaa	2760
45	gaagaacgga	ctgttcggaa	acttgatcgc	tctctccctg	ggattgactc	ccaacttcaa	2820
	gtccaacttc	gacctcgccg	aggacgctaa	gttgcagttg	tctaaagaca	cctacgacga	2880
	tgacctcgac	aacttgctgg	cccagatagg	cgaccaatac	gccgatctct	tcctcgccgc	2940
	taagaacttg	tccgacgcaa	tcctgctgtc	cgacatcctg	agagtcaaca	ctgagattac	3000
	caaagctcct	ctgtctgctt	ccatgattaa	gcgctacgac	gagcaccacc	aagatctgac	3060
	cctgctcaag	gccctggtga	gacagcagct	gcccgagaag	tacaaggaga	tctttttcga	3120
50	ccagtccaag	aacggctacg	ccggatacat	tgacggaggc	gcctcccagg	aagagttcta	3180
	caagttcatc	aagcccatcc	ttgagaagat	ggacggtacc	gaggagctgt	tggtgaagtt	3240
	gaacagagag	gacctgttga	ggaagcagag	aaccttcgac	aacggaagca	tccctcacca	3300
	aatccacctg	ggagagctcc	acgccatctt	gaggaggcag	gaggatttct	atcccttcct	3360
	gaaggacaac	cgcgagaaga	ttgagaagat	cttgaccttc	agaattcctt	actacgtcgg	3420
55	gccactcgcc	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctq	aagagaccat	3480

	tactccctgg	aacttcgagg	aagtcgtgga	caagggcgct	tccgctcagt	ctttcatcga	3540
	gaggatgacc	aacttcgata	aaaatctgcc	caacgagaag	gtgctgccca	agcactccct	3600
	attatacaaa	tatttcacag	totacaacoa	gctcaccaag	gtgaagtacg	tcacagaggg	3660
	aatgaggaag	cctgccttct	totccogaga	gcagaagaag	accatcatca	acctoctctt	3720
5	caagaccaac	aggaaggtga	ctotcaaoca	getgaaggag	gactacttca	agaagatcga	3780
	gtgcttcgac	tccgtcgaga	tetetaatat	cgaggacagg	ttcaacgcct	cccttoggac	3840
	ttaccacgat	ctoctcaaga	ttattaaaga	caaggacttc	ctogacaaco	aggagaacga	3900
	ggagateett	gaggacatcg	tactcaccet	gaccttgttc	gaagacaggg	aaatgatcga	3960
	agagaggete	aagacctacg	cccacctctt	cgacgacaag	guaguoaggg	agetgaagag	4020
10	acqcaqatat	acconctor	gaaggetete	ccccaaatto	atcaaccocca	tcaggaagag	4080
10	acgeagatat	aacactatac	tcaacttcct	gaagt cogag	accaacggga	acaggagactt	4000
	catgcaggg	attraccacc	actectteac	cttcaaccac	ggactcgcca	agget caggt	4200
	atctagacaa	acteacyacy	tacataaaca	cattoctaac	ttaaccaact	ctccccctat	4260
	taagaaggggggggggg	atttagaga	contragget	cattgecaac	ataataaaaa	taatagaaca	4320
	caagaaggge	accelgeaga	ttattaagat	agatagagag	aagaaaata	agaagaaaga	4320
15	ccacaageca	tagaagaaga	caltagagat	ggetegegag	aaccaaacca	agattagata	4300
	tagaataata	aagaagaaga	ggatgaageg	callyayyay	gycacaaaag	agetetagete	4440
	ctagatecte	aayyaycacc	aggagagagagag	catteragety	cayaacyaya	tapagagatt	4560
	glaciaceic	caaaacyyaa	gggacatgta	tagetagtag	gagerggaea		4500
	gleegaetae	gacglegace	acategigee	teagreette	tagaaggatg	actocatoga	4620
20	caataaagtg	etgacacget	ccgataaaaa	tagaggeaag	teegacaaeg	teeeeteega	4000
20	ggaggtegtg	aagaagatga	aaaactactg	gagacagete	ttgaacgeea	ageteateae	4/40
	ccagcgtaag	ttcgacaacc	tgactaagge	tgagagagga	ggattgtccg	agctcgataa	4800
	ggccggattc	atcaagagac	agctcgtcga	aaccegeeaa	attaccaage	acgtggccca	4860
	aattetggat	tcccgcatga	acaccaagta	cgatgaaaat	gacaagctga	tccgcgaggt	4920
	caaggtgatc	accttgaagt	ccaagctggt	CTCCGaCTTC	cgcaaggact	tccagttcta	4980
25	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
	tggaaccgcc	ctcatcaaaa	aatateetaa	gctggagtct	gagttcgtct	acggcgacta	5100
	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
30	gtgggacaaa	gggagggatt	tcgctactgt	gaggaaggtg	ctctccatgc	ctcaggtgaa	5340
50	catcgtcaag	aagaccgaag	ttcagaccgg	aggattctcc	aaggagtcca	tcctccccaa	5400
	gagaaactcc	gacaagctga	tcgctagaaa	gaaagactgg	gaccctaaga	agtacggagg	5460
	cttcgattct	cctaccgtgg	cctactctgt	gctggtcgtg	gccaaggtgg	agaagggcaa	5520
	gtccaagaag	ctgaaatccg	tcaaggagct	cctcgggatt	accatcatgg	agaggagttc	5580
	cttcgagaag	aaccctatcg	acttcctgga	ggccaaggga	tataaagagg	tgaagaagga	5640
35	cctcatcatc	aagctgccca	agtactccct	cttcgagttg	gagaacggaa	ggaagaggat	5700
	gctggcttct	gccggagagt	tgcagaaggg	aaatgagctc	gcccttccct	ccaagtacgt	5760
	gaacttcctg	tacctcgcct	ctcactatga	aaagttgaag	ggctctcctg	aggacaacga	5820
	gcagaagcag	ctcttcgtgg	agcagcacaa	gcactacctg	gacgaaatta	tcgagcagat	5880
	ctctgagttc	tccaagcgcg	tgatattggc	cgacgccaac	ctcgacaagg	tgctgtccgc	5940
40	ctacaacaag	cacagggata	agcccattcg	cgagcaggct	gaaaacatta	tccacctgtt	6000
	taccctcaca	aacttgggag	cccctgctgc	cttcaagtac	ttcgacacca	ccattgacag	6060
	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	ctcatccacc	aatccatcac	6120
	cggcctctat	gaaacaagga	ttgacttgtc	ccagctggga	ggcgactcta	gagccgatcc	6180
	caagaagaag	agaaaggtgt	aggttaacct	agacttgtcc	atcttctgga	ttggccaact	6240
	taattaatgt	atgaaataaa	aggatgcaca	catagtgaca	tgctaatcac	tataatgtgg	6300
45	gcatcaaagt	tgtgtgttat	gtgtaattac	tagttatctg	aataaaagag	aaagagatca	6360
	tccatatttc	ttatcctaaa	tgaatgtcac	gtgtctttat	aattctttga	tgaaccagat	6420
	gcatttcatt	aaccaaatcc	atatacatat	aaatattaat	catatataat	taatatcaat	6480
	tgggttagca	aaacaaatct	agtctaggtg	tgttttgc			6518

50 <210> 410 <211> 6550 <212> DNA <213> Artificial

### 55 <220>

<223> Artificial Sequence

<400> 410

	ccgggttaag ttaaaatata	agaattgtaa aaagaaaatt	gtgtgctttt caatgtaaat	atatatttaa taaaaataaa	aattaatata taaatgttta	ttttgaaatg ataaagataa	60 120
5							
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							

attttaaaac ataaaagaaa atgtctaaca agaggattaa gatcctgtgc tcttaaattt ttaggtgttg aaatcttagc catacaaaat atattttatt aaaaccaagc atgaaaaaag tcactaaaga gctatataac tcatgcagct agaaatgaag tgaagggaat ccagtttgtt

	tcactaaaga	gctatataac	tcatgcagct	agaaatgaag	tgaagggaat	ccagtttgtt	300
	ctcagtcgaa	agagtgtcta	tctttgttct	tttctgcaac	cgagttaagc	aaaatgggaa	360
5	tgcgaggtat	cttcctttcg	ttaggggagc	accagatgca	tagttagtcc	cacattgatg	420
0	aatataacaa	gagetteaca	gaatatatag	cccaqqccac	agtaaaagct	togaactgac	480
	acacgacatg	agttttagag	ctagaaatag	caaqttaaaa	taaggetagt	ccqttatcaa	540
	cttgaaaaag	togcaccoag	tcqqtqcttt	ttttqcqqc	cqcaattqqa	tcgggtttac	600
	ttattttata	ggtatctata	cttttattag	attttaatc	aggeteetga	tttctttta	660
	tttcgattga	attectgaac	ttgtattatt	cagtagatcg	aataaattat	aaaaagataa	720
10	aatcataaaa	taatattta	tcctatcaat	catattaaag	caatgaatat	otaaaattaa	780
	tcttatcttt	attttaaaaa	atcatatagg	tttagtattt	ttttaaaaat	aaagatagga	840
	ttagttttag	tattcactoc	ttattacttt	taaaaaaatc	ataaaggttt	agtattttt	900
	taaaataaat	ataggaatag	ttttactatt	cactoctta	atagaaaaat	agtttaaaat	960
	ttaagatagt	tttaatccca	gcatttgcca	cotttoaaco	tgagccgaaa	cgatgtcgtt	1020
	acattatett	aacctagetg		otcataatat	cgccaaatgc		1080
15	acotegaace	cacaaat.ccc	acaaagcgcg	tgaaatcaaa	tcoctcaaac	cacaaaaaaa	1140
	aacaacgcgddee	ttattacaca	ctcaatccca	cacaaataaa	gracagtaac	cttcaaataa	1200
	accastaca	cataatcaca	aatcccaaat	aaacctagg	gcattatcoo	aaatgaaaag	1260
	tagetcactc	aatataaaaa	tctaggaacc	ctagttttcg	ttatcactct	atactccctc	1320
	actetattta	taatatata	tatttacaaa	taggetteg	gaacgagtga	acttattat	1380
20	ttataaaaa	agtaagaag	tataatatta	tatattaat	togatotato	catatatat	1440
20	atttaggatg	atatttatta	aget at get t	tetetegat	costtate	attastatta	1500
	actiacyacy	atguttette	ggllalglll	apattttt	gettatget	gilgalgile	1560
	tagattaata	agaagaatt	ttagagttat		ggattettt	ggttttgaa	1620
	cegatiaate	ggaagagatt	ttogagilal		ggaggugaat		1620
	aggicalaga		ttgtgttata	tatattata		ottttacgag	1740
25	gttatgatgt		ttattatgaa	tergetgaga	cagaaccatg		1000
20	atgttcgttt	acactattaa	aggtttgttt	taacaggatt	aaaagttttt	taagcatgtt	1800
	gaaggagtet	tgtagatatg	taaccgtcga		gtgggtttgt	tcacatgtta	1860
	tcaagcttaa	tetttaeta	tgtatgcgac	catatctgga	tccagcaaag	gcgattttt	1920
	aatteettgt	gaaacttttg	taatatgaag	ttgaaatttt	gttattggta	aactataaat	1980
	gtgtgaagtt	ggagtatacc	tttaccttct	tatttggctt	tgtgatagtt	taatttatat	2040
30	gtatttgag	ttctgacttg	tatttcttg	aattgattct	agtttaagta	atccatggac	2100
	aaaaagtact	caatagggct	cgacataggg	actaactccg	ttggatgggc	cgtcatcacc	2160
	gacgagtaca	aggtgccctc	caagaagttc	aaggtgttgg	gaaacaccga	caggcacagc	2220
	ataaagaaga	atttgatcgg	tgccctcctc	ttcgactccg	gagagaccgc	tgaggctacc	2280
	aggeteaaga	ggaccgctag	aaggcgctac	accagaagga	agaacagaat	ctgctacctg	2340
	caggagatct	tctccaacga	gatggccaag	gtggacgact	ccttcttcca	ccgccttgag	2400
35	gaatcattcc	tggtggagga	ggataaaaag	cacgagagac	acccaatctt	cgggaacatc	2460
	gtcgacgagg	tggcctacca	tgaaaagtac	cctaccatct	accacctgag	gaagaagctg	2520
	gtcgactcta	ccgacaaggc	tgacttgcgc	ttgatttacc	tggctctcgc	tcacatgata	2580
	aagttccgcg	gacacttcct	cattgaggga	gacctgaacc	cagacaactc	cgacgtggac	2640
	aagctcttca	tccagctcgt	tcagacctac	aaccagcttt	tcgaggagaa	cccaatcaac	2700
40	gccagtggag	ttgacgccaa	ggctatcctc	tctgctcgtc	tgtcaaagtc	caggaggctt	2760
40	gagaacttga	ttgcccagct	gcctggcgaa	aagaagaacg	gactgttcgg	aaacttgatc	2820
	gctctctccc	tgggattgac	tcccaacttc	aagtccaact	tcgacctcgc	cgaggacgct	2880
	aagttgcagt	tgtctaaaga	cacctacgac	gatgacctcg	acaacttgct	ggcccagata	2940
	ggcgaccaat	acgccgatct	cttcctcgcc	gctaagaact	tgtccgacgc	aatcctgctg	3000
	tccgacatcc	tgagagtcaa	cactgagatt	accaaagctc	ctctgtctgc	ttccatgatt	3060
45	aagcgctacg	acgagcacca	ccaagatctg	accctgctca	aggccctggt	gagacagcag	3120
	ctgcccgaga	agtacaagga	gatcttttc	gaccagtcca	agaacggcta	cgccggatac	3180
	attgacggag	gcgcctccca	ggaagagttc	tacaagttca	tcaagcccat	ccttgagaag	3240
	atggacggta	ccgaggagct	gttggtgaag	ttgaacagag	aggacctgtt	gaggaagcag	3300
	agaaccttcg	acaacggaag	catccctcac	caaatccacc	tgggagagct	ccacgccatc	3360
	ttgaggaggc	aggaggattt	ctatcccttc	ctgaaggaca	accgcgagaa	gattgagaag	3420
50	atcttgacct	tcagaattcc	ttactacgtc	gggccactcg	ccagaggaaa	ctctaggttc	3480
	gcctggatga	cccgcaaatc	tgaagagacc	attactccct	ggaacttcga	ggaagtcgtg	3540
	gacaagggcg	cttccgctca	gtctttcatc	gagaggatga	ccaacttcga	taaaaatctg	3600
	cccaacgaga	aggtgctgcc	caagcactcc	ctgttgtacg	agtatttcac	agtgtacaac	3660
	gagetcacca	aggtgaagta	cgtcacagag	ggaatgagga	agcctgcctt	cttgtccgga	3720
	gagcagaaga	aggccatcgt	cgacctgctc	ttcaagacca	acaggaaggt	gactgtcaag	3780
00	cagctgaagq	aggactactt	caagaagatc	gagtgcttcq	actccgtcga	gatctctggt	3840
	gtcgaggaca	ggttcaacgc	ctcccttggg	acttaccacg	atctgctcaa	gattattaaa	3900

	gacaaggact	tcctggacaa	cgaggagaac	gaggacatcc	ttgaggacat	cgtgctcacc	3960
	ctgaccttgt	tcgaagacag	ggaaatgatc	gaagagaggc	tcaagaccta	cgcccacctc	4020
	ttcgacgaca	aggtgatgaa	acagctgaag	agacgcagat	ataccggctg	gggaaggctc	4080
F	tcccgcaaat	tgatcaacgg	gatcagggac	aagcagtcag	ggaagactat	actcgacttc	4140
5	ctgaagtccg	acggattcgc	caacaggaac	ttcatgcagc	tcattcacga	cgactccttg	4200
	accttcaagg	aggacatcca	gaaggctcag	gtgtctggac	agggtgactc	cttgcatgag	4260
	cacattgcta	acttggccgg	ctctcccgct	attaagaagg	gcattttgca	gaccgtgaag	4320
	gtcgttgacg	agctcgtgaa	ggtgatggga	cgccacaagc	cagagaacat	cgttattgag	4380
	atggctcgcg	agaaccaaac	tacccagaaa	gggcagaaga	attcccgcga	gaggatgaag	4440
10	cgcattgagg	agggcataaa	agagcttggc	tctcagatcc	tcaaggagca	ccccgtcgag	4500
	aacactcagc	tgcagaacga	gaagctgtac	ctgtactacc	tccaaaacgg	aagggacatg	4560
	tacgtggacc	aggagctgga	catcaacagg	ttgtccgact	acgacgtcga	ccacatcgtg	4620
	cctcagtcct	tcctgaagga	tgactccatc	gacaataaag	tgctgacacg	ctccgataaa	4680
	aatagaggca	agtccgacaa	cgtcccctcc	gaggaggtcg	tgaagaagat	gaaaaactac	4740
15	tggagacagc	tcttgaacgc	caagctcatc	acccagcgta	agttcgacaa	cctgactaag	4800
	gctgagagag	gaggattgtc	cgagctcgat	aaggccggat	tcatcaagag	acagctcgtc	4860
	gaaacccgcc	aaattaccaa	gcacgtggcc	caaattctgg	attcccgcat	gaacaccaag	4920
	tacgatgaaa	atgacaagct	gatccgcgag	gtcaaggtga	tcaccttgaa	gtccaagctg	4980
	gtctccgact	tccgcaagga	cttccagttc	tacaaggtga	gggagatcaa	caactaccac	5040
20	cacgcacacg	acgcctacct	caacgctgtc	gttggaaccg	ccctcatcaa	aaaatatcct	5100
20	aagctggagt	ctgagttcgt	ctacggcgac	tacaaggtgt	acgacgtgag	gaagatgatc	5160
	gctaagtctg	agcaggagat	cggcaaggcc	accgccaagt	acttcttcta	ctccaacatc	5220
	atgaacttct	tcaagaccga	gatcactctc	gccaacggtg	agatcaggaa	gcgcccactg	5280
	atcgagacca	acggtgagac	tggagagatc	gtgtgggaca	aagggaggga	tttcgctact	5340
	gtgaggaagg	tgctctccat	gcctcaggtg	aacatcgtca	agaagaccga	agttcagacc	5400
25	ggaggattct	ccaaggagtc	catcctcccc	aagagaaact	ccgacaagct	gatcgctaga	5460
	aagaaagact	gggaccctaa	gaagtacgga	ggcttcgatt	ctcctaccgt	ggcctactct	5520
	gtgctggtcg	tggccaaggt	ggagaagggc	aagtccaaga	agctgaaatc	cgtcaaggag	5580
	ctcctcggga	ttaccatcat	ggagaggagt	tccttcgaga	agaaccctat	cgacttcctg	5640
	gaggccaagg	gatataaaga	ggtgaagaag	gacctcatca	tcaagctgcc	caagtactcc	5700
30	ctcttcgagt	tggagaacgg	aaggaagagg	atgctggctt	ctgccggaga	gttgcagaag	5760
	ggaaatgagc	tcgcccttcc	ctccaagtac	gtgaacttcc	tgtacctcgc	ctctcactat	5820
	gaaaagttga	agggctctcc	tgaggacaac	gagcagaagc	agctcttcgt	ggagcagcac	5880
	aagcactacc	tggacgaaat	tatcgagcag	atctctgagt	tctccaagcg	cgtgatattg	5940
	gccgacgcca	acctcgacaa	ggtgctgtcc	gcctacaaca	agcacaggga	taagcccatt	6000
25	cgcgagcagg	ctgaaaacat	tatccacctg	tttaccctca	caaacttggg	agcccctgct	6060
30	gccttcaagt	acttcgacac	caccattgac	aggaagagat	acacctccac	caaggaggtg	6120
	ctcgacgcaa	cactcatcca	ccaatccatc	accggcctct	atgaaacaag	gattgacttg	6180
	tcccagctgg	gaggcgactc	tagagccgat	cccaagaaga	agagaaaggt	gtaggttaac	6240
	ctagacttgt	ccatcttctg	gattggccaa	cttaattaat	gtatgaaata	aaaggatgca	6300
	cacatagtga	catgctaatc	actataatgt	gggcatcaaa	gttgtgtgtt	atgtgtaatt	6360
40	actagttatc	tgaataaaag	agaaagagat	catccatatt	tcttatccta	aatgaatgtc	6420
	acgtgtcttt	ataattettt	gatgaaccag	atgcatttca	ttaaccaaat	ccatatacat	6480
	ataaatatta	atcatatata	attaatatca	attgggttag	caaaacaaat	ctagtctagg	6540
	tgtgttttgc						6550

- 45 <210> 411 <211> 6518 <212> DNA <213> Artificial
- 50 <220> <223> Artificial Sequence

<400> 411

5	ccgggtgtga cctagtaata tttaataaaa catcatgaag atacttggat taatcttgcc cgttccccat atgcacaaca	tttagtataa agtaatattg ggaagaaaaa ctagaaaggc ctttctctta ttgttgtttc ttaagtccca acaaagcttg	agtgaagtaa aacaaaataa aaacaaacaa taccgataga ccctgtttat attccctaac caccgtctaa acatgatgga	tggtcaaaag atggtaaagt aaaataggtt taaactatag attgagacct ttacaggact acttattaaa acgtgactag	aaaaagtgta gtcagatata gcaatggggc ttaattaaat gaaacttgag cagcgcatgt ttattaatgt ttttagagct	aaacgaagta taaaataggc agagcagagt acattaaaaa agagatacac catgtggtct ttataactag agaaatagca	60 120 180 240 300 360 420 480
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							

	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
5	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
•	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attacttta	840
	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctoctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atotcottac	attatcttaa	cctagetgaa	acgatotcot	1020
	cataatatco	ccaaatocca	actogactac	otcoaaccca	caaatcccac	aaagcgcgtg	1080
10	aaatcaaatc	octcaaacca	caaaaaaaaaaaaa	caacgcgttt	ottacacoct	caatcccaco	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatgggggga	taatcagaaa	teegaaataa	1200
	acctaggggc	attatcogaa	atgaaaagta	getcaetcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctot	actecetere	tetattete	agtetetgtg	tttacaacta	1320
	aggattccga	acgagtgacc	ttetteattt	ctcgcaaagg		tactettate	1380
	tettegatte	gatetatocc	totctcttat	ttacgatgat	atttcttcaa	ttatatttt	1440
15	ttatttatoc	tttatactat	tgatgttcgg	ttatttattt	cactttattt	ttataattca	1500
	atttttaaa	attettta	tttttaatc	gattaatcoo	aagagatttt	coacttattt	1560
	getetetugg	aggtgaatgt	ttttttaa	gueceuacegg	tattatatt	atattataaa	1620
	catocoactt	tatatattt	tttaccacct	tatgatgatc	taattattt	attatgaatc	1680
	tattaagaca	geacgatgat	ttttattat	atteattac	actattaaad	atttattta	1740
20	acaccattaa	aagttttt	aggatattaa	aggaggetetta	tagatatata	accotcoata	1800
20	attttt	aagtttatta	ageacycega	aggagteetg	ttttadtatgta	tatgggaga	1960
	tatatagata	gggtttgttt	acatyttatt	ttaattata	agettttatta	atatgegacea	1920
	calletyyatt	tattaataa	gatterestat	ataaaattaa	additigta	tacattatta	1920
	tttaaattta	tattygtaaa	atttatatot	atttaaatt	agracattata	tttatttaaa	2040
	ttasttataa	tttagttta	acctacacyc	accordagee	ataggggta	aastagggag	2040
25	tagatterat	aastagaaaa	tastasaaa	aaaytactca	atagggeteg	acatagggac	2100
	agtattaga	ggalgggeeg	ranganagant	cyaytacaay	ttastaata	agaaguudaa	2100
	gguguuggga	aacaccyaca	ggcacagcat	aaayaayaat	aggatagaa	agaataaaa	2220
	cyacteegya	gagacegerg	aggetaceag	gereaayayy	taasaaaaaa	tagaaaaaat	2200
	cayaayyaay	ttattaaaa	gecaeecyca	ggagatette	cecaacyaya	cyyccaayyc	2340
	ggaegaetee	agaatattaa	geettgagga	accallecty	gcggaggagg	acaaaaayca	2400
30	tagatatag	ccaatcuccy	ggaacategt	cgacgaggug	geccaccatg	aaaagtaccc	2520
	gatttaggtg	catetgagga	agaagetggt	attagagaga	gacaaggeeg	ttaagagaaga	2520
	gattacceg	getetegete	acatgataaa	getettata	cacctccctca	acacatacaa	2500
	celgaaceea	gacaacteeg	acytyyacaa	gettetteate	agaaaaaaa	agacectacaa	2040
	taataatata	tassataas	caaccaacyc	cageggaget	gacgecaagg	atagagaaaa	2760
25		atattagaaa	agttgataga	tatatagata	geeeageege	ccyycyaaaa	2700
35	gaagaacyya	cigilicgyaa	accugatege	attacetta	ggallgaele	actograd	2020
	greeaactre	gacetegeeg	aggacgetaa	grigcagilg		tastasaaa	2000
	tgacetegae	aactigetgg	testestete	cyaccaatac	geegaletet		2940
	taagaacttg	teegaegeaa	teetgetgte	cgacatectg	agagtcaaca	ctgagattac	3000
	caaageteet	etgtetgett	ccatgattaa	gegetaegae	gageaceace	aagatetgae	2120
40	cctgctcaag	geeetggtga	gacagcagct	geeegagaag	tacaaggaga	tetttega	3120
	ccagtccaag	aacggctacg	coggatacat	tgacggagge	geeteedagg	aagagtteta	3180
	caagttcatc	aageeeatee	ttgagaagat	ggacggtacc	gaggagetgt	tggtgaagtt	3240
	gaacagagag	gacctgttga	ggaagcagag	aacettegae	aacggaagca	teeetcaeca	3300
	aatccacctg	ggagagetee	acgccatctt	gaggaggcag	gaggatttet	atcccttcct	3360
	gaaggacaac	cgcgagaaga	ttgagaagat	cttgaccttc	agaatteett	actacgtcgg	3420
45	gccactcgcc	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctg	aagagaccat	3480
	tactccctgg	aacttcgagg	aagtcgtgga	caagggcgct	teegeteagt	ctttcatcga	3540
	gaggatgacc	aacttcgata	aaaatctgcc	caacgagaag	gtgctgccca	agcactccct	3600
	gttgtacgag	tatttcacag	tgtacaacga	gctcaccaag	gtgaagtacg	tcacagaggg	3660
	aatgaggaag	cctgccttct	tgtccggaga	gcagaagaag	gccatcgtcg	acctgctctt	3720
50	caagaccaac	aggaaggtga	ctgtcaagca	gctgaaggag	gactacttca	agaagatcga	3780
50	gtgcttcgac	tccgtcgaga	tctctggtgt	cgaggacagg	ttcaacgcct	cccttgggac	3840
	ttaccacgat	ctgctcaaga	ttattaaaga	caaggacttc	ctggacaacg	aggagaacga	3900
	ggacatcctt	gaggacatcg	tgctcaccct	gaccttgttc	gaagacaggg	aaatgatcga	3960
	agagaggete	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agctgaagag	4020
	acgcagatat	accggctggg	gaaggetete	ccgcaaattg	atcaacggga	tcagggacaa	4080
55	gcagtcaggg	aagactatac	tcgacttcct	gaagtccgac	ggattcgcca	acaggaactt	4140
	catgcagete	attcacgacg	actccttgac	cttcaaggag	gacatccaga	aggeteaggt	4200
	gtctggacag	ggtgactcct	tgcatgagca	cattgctaac	ttggccggct	ctcccgctat	4260

	taagaagggc	attttgcaga	ccgtgaaggt	cgttgacgag	ctcgtgaagg	tgatgggacg	4320
	ccacaagcca	gagaacatcg	ttattgagat	ggctcgcgag	aaccaaacta	cccagaaagg	4380
	gcagaagaat	tcccgcgaga	ggatgaagcg	cattgaggag	ggcataaaag	agcttggctc	4440
	tcagatcctc	aaggagcacc	ccgtcgagaa	cactcagctg	cagaacgaga	agctgtacct	4500
5	gtactacctc	caaaacggaa	gggacatgta	cgtggaccag	gagctggaca	tcaacaggtt	4560
	gtccgactac	gacgtcgacc	acatcgtgcc	tcagtccttc	ctgaaggatg	actccatcga	4620
	caataaagtg	ctgacacgct	ccgataaaaa	tagaggcaag	tccgacaacg	tcccctccga	4680
	ggaggtcgtg	aagaagatga	aaaactactg	gagacagctc	ttgaacgcca	agctcatcac	4740
	ccagcgtaag	ttcgacaacc	tgactaaggc	tgagagagga	ggattgtccg	agctcgataa	4800
10	ggccggattc	atcaagagac	agctcgtcga	aacccgccaa	attaccaagc	acgtggccca	4860
	aattctggat	tcccgcatga	acaccaagta	cgatgaaaat	gacaagctga	tccgcgaggt	4920
	caaggtgatc	accttgaagt	ccaagctggt	ctccgacttc	cgcaaggact	tccagttcta	4980
	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
	tggaaccgcc	ctcatcaaaa	aatatcctaa	gctggagtct	gagttcgtct	acggcgacta	5100
15	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
15	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
	gtgggacaaa	gggagggatt	tcgctactgt	gaggaaggtg	ctctccatgc	ctcaggtgaa	5340
	catcgtcaag	aagaccgaag	ttcagaccgg	aggattctcc	aaggagtcca	tcctccccaa	5400
	gagaaactcc	gacaagctga	tcgctagaaa	gaaagactgg	gaccctaaga	agtacggagg	5460
20	cttcgattct	cctaccgtgg	cctactctgt	gctggtcgtg	gccaaggtgg	agaagggcaa	5520
	gtccaagaag	ctgaaatccg	tcaaggagct	cctcgggatt	accatcatgg	agaggagttc	5580
	cttcgagaag	aaccctatcg	acttcctgga	ggccaaggga	tataaagagg	tgaagaagga	5640
	cctcatcatc	aagctgccca	agtactccct	cttcgagttg	gagaacggaa	ggaagaggat	5700
	gctggcttct	gccggagagt	tgcagaaggg	aaatgagctc	gcccttccct	ccaagtacgt	5760
25	gaacttcctg	tacctcgcct	ctcactatga	aaagttgaag	ggctctcctg	aggacaacga	5820
	gcagaagcag	ctcttcgtgg	agcagcacaa	gcactacctg	gacgaaatta	tcgagcagat	5880
	ctctgagttc	tccaagcgcg	tgatattggc	cgacgccaac	ctcgacaagg	tgctgtccgc	5940
	ctacaacaag	cacagggata	agcccattcg	cgagcaggct	gaaaacatta	tccacctgtt	6000
	taccctcaca	aacttgggag	cccctgctgc	cttcaagtac	ttcgacacca	ccattgacag	6060
20	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	ctcatccacc	aatccatcac	6120
30	cggcctctat	gaaacaagga	ttgacttgtc	ccagctggga	ggcgactcta	gagccgatcc	6180
	caagaagaag	agaaaggtgt	aggttaacct	agacttgtcc	atcttctgga	ttggccaact	6240
	taattaatgt	atgaaataaa	aggatgcaca	catagtgaca	tgctaatcac	tataatgtgg	6300
	gcatcaaagt	tgtgtgttat	gtgtaattac	tagttatctg	aataaaagag	aaagagatca	6360
	tccatatttc	ttatcctaaa	tgaatgtcac	gtgtctttat	aattctttga	tgaaccagat	6420
35	gcatttcatt	aaccaaatcc	atatacatat	aaatattaat	catatataat	taatatcaat	6480
	tgggttagca	aaacaaatct	agtctaggtg	tgttttgc			6518

<210> 412 <211> 6518

<212> DNA <213> Artificial

<220>

<223> Artificial Sequence

45

40

<400> 412

50

5	ccgggtgtga cctagtaata tttaataaaa catcatgaag atacttggat taatcttgcc cgttccccat atgcacaaca agttaaaata	tttagtataa agtaatattg ggaagaaaaa ctagaaaggc ctttctctta ttgttgtttc ttaagtccca acaaagcttg aggctagtcc	agtgaagtaa aacaaaataa aaacaaacaa taccgataga ccctgtttat attccctaac caccgtctaa tgtgtgaggt gttatcaact	tggtcaaaag atggtaaagt aaaataggtt taaactatag attgagacct ttacaggact acttattaaa acacaattag tgaaaaagtg	aaaaagtgta gtcagatata gcaatggggc ttaattaaat gaaacttgag cagcgcatgt ttattaatgt ttttagagct gcaccgagtc	aaacgaagta taaaataggc agagcagagt acattaaaaa agagatacac catgtggtct ttataactag agaaatagca ggtgctttt	60 120 180 240 300 360 420 480 540
10	tttgcggccg ttttaatcag gtagatcgaa tattaaagca tagtatttt aaaaaatcat	caattggatc gctcctgatt taaattataa atgaatatgt ttaaaaataa aaaggtttag	gggtttactt tctttttatt aaagataaaa aaaattaatc agataggatt tatttttta	attttgtggg tcgattgaat tcataaaata ttatctttat agttttacta aaataaatat	tatctatact tcctgaactt atattttatc tttaaaaaat ttcactgctt aggaatagtt	tttattagat gtattattca ctatcaatca catataggtt attactttta ttactattca	600 660 720 780 840 900
20							
25							
30							
35							
40							
45							
50							

ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg 960 1020 tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcgt 1080 cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg aaatcaaatc gctcaaacca caaaaaagaa caacgcgttt gttacacgct caatcccacg 1140 cgagtagagc acagtaacct tcaaataagc gaatggggca taatcagaaa tccgaaataa 1200 acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct 1260 agttttcgtt atcactctgt gctccctcgc tctatttctc agtctctgtg tttgcggctg 1320 aggatteega acgagtgace ttettegttt etegeaaagg taacageete tgetettgte 1380 tottogatto gatotatgoo tgtotottat ttacgatgat gtttottogg ttatgttttt 1440 ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca 1500 1560 gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa 1620 catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc 1680 tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta 1740 acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata 1800 1860 gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca tatctggatc cagcaaaggc gattttttaa ttccttgtga aacttttgta atatgaagtt 1920 gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta 1980 tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa 2040 2100 ttgattctag tttaagtaat ccatggacaa aaagtactca atagggctcg acatagggac taactccgtt ggatgggccg tcatcaccga cgagtacaag gtgccctcca agaagttcaa 2160 ggtgttggga aacaccgaca ggcacagcat aaagaagaat ttgatcggtg ccctcctctt 2220 cgactccgga gagaccgctg aggctaccag gctcaagagg accgctagaa ggcgctacac 2280 cagaaqqaaq aacaqaatct gctacctgca ggagatcttc tccaacgaga tggccaaggt 2340 2400 ggacgactcc ttcttccacc gccttgagga atcattcctg gtggaggagg ataaaaagca 2460 cgagagacac ccaatcttcg ggaacatcgt cgacgaggtg gcctaccatg aaaagtaccc taccatctac cacctgagga agaagctggt cgactctacc gacaaggctg acttgcgctt 2520 gatttacctg gctctcgctc acatgataaa gttccgcgga cacttcctca ttgagggaga 2580 2640 cctgaaccca gacaactccg acgtggacaa gctcttcatc cagctcgttc agacctacaa ccagcttttc gaggagaacc caatcaacgc cagtggagtt gacgccaagg ctatcctctc 2700 2760 tgctcgtctg tcaaagtcca ggaggcttga gaacttgatt gcccagctgc ctggcgaaaa gaagaacgga ctgttcggaa acttgatcgc tctctccctg ggattgactc ccaacttcaa 2820 2880 gtccaacttc gacctcgccg aggacgctaa gttgcagttg tctaaagaca cctacgacga 2940 tgacctcgac aacttgctgg cccagatagg cgaccaatac gccgatctct tcctcgccgc 3000 taagaacttg teegaegeaa teetgetgte egaeateetg agagteaaca etgagattae caaageteet etgtetgett ceatgattaa gegetaegae gageaecaee aagatetgae 3060 cctgctcaag gccctggtga gacagcagct gcccgagaag tacaaggaga tctttttcga 3120 ccagtccaag aacggctacg ccggatacat tgacggaggc gcctcccagg aagagttcta 3180 caagttcatc aagcccatcc ttgagaagat ggacggtacc gaggagctgt tggtgaagtt 3240 gaacagagag gacctgttga ggaagcagag aaccttcgac aacggaagca tccctcacca 3300 aatccacctg ggagagctcc acgccatctt gaggaggcag gaggatttct atcccttcct 3360 gaaggacaac cgcgagaaga ttgagaagat cttgaccttc agaattcctt actacgtcgg 3420 gccactcgcc agaggaaact ctaggttcgc ctggatgacc cgcaaatctg aagagaccat 3480 3540 tactccctgg aacttcgagg aagtcgtgga caagggcgct tccgctcagt ctttcatcga 3600 gaggatgacc aacttcgata aaaatctgcc caacgagaag gtgctgccca agcactccct gttgtacgag tatttcacag tgtacaacga gctcaccaag gtgaagtacg tcacagaggg 3660 aatgaggaag cctgccttct tgtccggaga gcagaagaag gccatcgtcg acctgctctt 3720 caagaccaac aggaaggtga ctgtcaagca gctgaaggag gactacttca agaagatcga 3780 3840 gtgcttcgac tccgtcgaga tctctggtgt cgaggacagg ttcaacgcct cccttgggac 3900 ttaccacgat ctgctcaaga ttattaaaga caaggacttc ctggacaacg aggagaacga

ggacatcett gaggacatcg tgeteaceet gacettgtte gaagacaggg aaatgatega

agagaggete aagaeetaeg eccacetett egaegaeaag gtgatgaaae agetgaagag

acgcagatat accggctggg gaaggctctc ccgcaaattg atcaacggga tcagggacaa

gcagtcaggg aagactatac tcgacttcct gaagtccgac ggattcgcca acaggaactt

catgcagctc attcacgacg actecttgac cttcaaggag gacatecaga aggetcaggt

gtctggacag ggtgactcct tgcatgagca cattgctaac ttggccggct ctcccgctat taagaagggc attttgcaga ccgtgaaggt cgttgacgag ctcgtgaagg tgatgggacg

ccacaagcca gagaacatcg ttattgagat ggctcgcgag aaccaaacta cccagaaagg gcagaagaat tcccgcgaga ggatgaagcg cattgaggag ggcataaaag agcttggctc

tcagateete aaggageace eegtegagaa eacteagetg eagaaegaga agetgtaeet gtaetaeete eaaaaeggaa gggaeatgta egtggaeeag gagetggaea teaaeaggtt

gtccgactac gacgtcgacc acatcgtgcc tcagtccttc ctgaaggatg actccatcga

caataaagtg ctgacacgct ccgataaaaa tagaggcaag tccgacaacg tcccctccga

3960

4020

4080

4140

4200

4260

4320 4380

4440 4500

4560

4620

4680

5

10

15

20

25

30

35

40

45

50

	ggaggtcgtg	aagaagatga	aaaactactg	gagacagctc	ttgaacgcca	agctcatcac	4740
	ccagcgtaag	ttcgacaacc	tgactaaggc	tgagagagga	ggattgtccg	agctcgataa	4800
	ggccggattc	atcaagagac	agctcgtcga	aacccgccaa	attaccaagc	acgtggccca	4860
F	aattctggat	tcccgcatga	acaccaagta	cgatgaaaat	gacaagctga	tccgcgaggt	4920
5	caaggtgatc	accttgaagt	ccaagctggt	ctccgacttc	cgcaaggact	tccagttcta	4980
	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
	tggaaccgcc	ctcatcaaaa	aatatcctaa	gctggagtct	gagttcgtct	acggcgacta	5100
	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
10	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
	gtgggacaaa	gggagggatt	tcgctactgt	gaggaaggtg	ctctccatgc	ctcaggtgaa	5340
	catcgtcaag	aagaccgaag	ttcagaccgg	aggattctcc	aaggagtcca	tcctccccaa	5400
	gagaaactcc	gacaagctga	tcgctagaaa	gaaagactgg	gaccctaaga	agtacggagg	5460
	cttcgattct	cctaccgtgg	cctactctgt	gctggtcgtg	gccaaggtgg	agaagggcaa	5520
15	gtccaagaag	ctgaaatccg	tcaaggagct	cctcgggatt	accatcatgg	agaggagttc	5580
	cttcgagaag	aaccctatcg	acttcctgga	ggccaaggga	tataaagagg	tgaagaagga	5640
	cctcatcatc	aagctgccca	agtactccct	cttcgagttg	gagaacggaa	ggaagaggat	5700
	gctggcttct	gccggagagt	tgcagaaggg	aaatgagctc	gcccttccct	ccaagtacgt	5760
	gaacttcctg	tacctcgcct	ctcactatga	aaagttgaag	ggctctcctg	aggacaacga	5820
20	gcagaagcag	ctcttcgtgg	agcagcacaa	gcactacctg	gacgaaatta	tcgagcagat	5880
20	ctctgagttc	tccaagcgcg	tgatattggc	cgacgccaac	ctcgacaagg	tgctgtccgc	5940
	ctacaacaag	cacagggata	agcccattcg	cgagcaggct	gaaaacatta	tccacctgtt	6000
	taccctcaca	aacttgggag	cccctgctgc	cttcaagtac	ttcgacacca	ccattgacag	6060
	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	ctcatccacc	aatccatcac	6120
	cggcctctat	gaaacaagga	ttgacttgtc	ccagctggga	ggcgactcta	gagccgatcc	6180
25	caagaagaag	agaaaggtgt	aggttaacct	agacttgtcc	atcttctgga	ttggccaact	6240
	taattaatgt	atgaaataaa	aggatgcaca	catagtgaca	tgctaatcac	tataatgtgg	6300
	gcatcaaagt	tgtgtgttat	gtgtaattac	tagttatctg	aataaaagag	aaagagatca	6360
	tccatatttc	ttatcctaaa	tgaatgtcac	gtgtctttat	aattctttga	tgaaccagat	6420
	gcatttcatt	aaccaaatcc	atatacatat	aaatattaat	catatataat	taatatcaat	6480
30	tgggttagca	aaacaaatct	agtctaggtg	tgttttgc			6518

- <210> 413 <211> 6518 <212> DNA
- 35 <213> Artificial

<220> <223> Artificial Sequence

40 <400> 413

45

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	taatgtacgt	tgttgtgtgg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
45	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320

	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
	gtttttagg	attetttag	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
5	aatatattaa	aggtgaatct	ttttttgag	gtcatagatc	tattatattt	otottataaa	1620
5	catocoactt	totatoattt	tttacgaggt	tatgatgttc	taattattt	attatgaatc	1680
	tattaagaca	gaaccatgat	ttttattat	atteattac	actattaaag	attattta	1740
	acaqqattaa	aagttttta	aggatattaa	aggagtetta	tagatatgta	accotcoata	1800
	attttt	aagtttatta	ageacycega	aggagteetg	ttttactato	tatgogaga	1860
	tatatagata	gggtttgtte	acatyttate	ttaattata	andttttatta	atotacoatt	1920
10		tattaataa	gatterester	ctccccycya	additigta	togettette	1 9 2 0
10	gaaatttgt	tattggtaaa	ctataaatgt	grgaagrrgg	agratacett		1980
	tttggctttg	tgatagttta	atttatatgt	atttgagtt	ctgacttgta	tttcttgaa	2040
	ttgattctag	tttaagtaat	ccatggacaa	aaagtactca	atagggctcg	acatagggac	2100
	taactccgtt	ggatgggccg	tcatcaccga	cgagtacaag	gtgccctcca	agaagttcaa	2160
	ggtgttggga	aacaccgaca	ggcacagcat	aaagaagaat	ttgatcggtg	ccctcctctt	2220
15	cgactccgga	gagaccgctg	aggctaccag	gctcaagagg	accgctagaa	ggcgctacac	2280
	cagaaggaag	aacagaatct	gctacctgca	ggagatcttc	tccaacgaga	tggccaaggt	2340
	ggacgactcc	ttcttccacc	gccttgagga	atcattcctg	gtggaggagg	ataaaaagca	2400
	cgagagacac	ccaatcttcg	ggaacatcgt	cgacgaggtg	gcctaccatg	aaaagtaccc	2460
	taccatctac	cacctgagga	agaagctggt	cgactctacc	gacaaggctg	acttgcgctt	2520
	gatttacctg	gctctcgctc	acatgataaa	gttccgcgga	cacttcctca	ttgagggaga	2580
20	cctgaaccca	gacaactccg	acgtggacaa	gctcttcatc	cagctcgttc	agacctacaa	2640
	ccagetttte	gaggagaacc	caatcaacgc	cagtggagtt	gacgccaagg	ctatcctctc	2700
	tactcatcta	tcaaaqtcca	ggaggettga	gaacttgatt	gcccagctgc	ctggcgaaaa	2760
	gaagaacgga	ctattcagaa	acttgatcgc	teteteceta	ggattgactc	ccaacttcaa	2820
	gtccaacttc	gacctcgccg	aggacgetaa	attacaatta	tctaaagaca	cctacgacga	2880
	tgacctcgac	aacttoctoo	cccagatagg	coaccaatac	gccgatctct	tectegeege	2940
25	taagaacttg		tectactate	cgacatectg	agagtcaaca	ctgagattac	3000
	caaageteet	ctatctactt	ccatgattaa	gcgctacgac	gaggeedaed	aagatetgac	3060
	cctcctcaad	accetaataa	gacagcagct	gegeeaegae	tacaaqqaqa	totttttoa	3120
	ccagtccaag	aacooctaco	ccccatacat	taacaaaaaa	acctaccaga	aagagtteta	3180
	agettagt	aacggccacg	ttgagaagat	rgacggagge	geccectagy	tagtgeett	3240
	caagetteate	ageccatec	razzarazara	ggacggtacc	gaggageege	tagatagaa	3300
30	gaacagagag	gaccigliga	ggaagcagag	aacettegae	aacygaagca	teeeteacea	3300
	aatccacctg	ggagagetee	acgecatett	gaggaggeag	gaggatttet	alcoollool	3360
	gaaggacaac	cgcgagaaga	ttgagaagat	cttgaccttc	agaatteett	actacgtcgg	3420
	gecactegee	agaggaaact	ctaggttcgc	ctggatgacc	cgcaaatctg	aagagaccat	3480
	tactccctgg	aacttcgagg	aagtcgtgga	caagggcgct	teegeteagt	ctttcatcga	3540
	gaggatgacc	aacttcgata	aaaatctgcc	caacgagaag	gtgctgccca	agcactccct	3600
35	gttgtacgag	tatttcacag	tgtacaacga	gctcaccaag	gtgaagtacg	tcacagaggg	3660
	aatgaggaag	cctgccttct	tgtccggaga	gcagaagaag	gccatcgtcg	acctgctctt	3720
	caagaccaac	aggaaggtga	ctgtcaagca	gctgaaggag	gactacttca	agaagatcga	3780
	gtgcttcgac	tccgtcgaga	tctctggtgt	cgaggacagg	ttcaacgcct	cccttgggac	3840
	ttaccacgat	ctgctcaaga	ttattaaaga	caaggacttc	ctggacaacg	aggagaacga	3900
10	ggacatcctt	gaggacatcg	tgctcaccct	gaccttgttc	gaagacaggg	aaatgatcga	3960
40	agagaggctc	aagacctacg	cccacctctt	cgacgacaag	gtgatgaaac	agctgaagag	4020
	acgcagatat	accggctggg	gaaggetete	ccgcaaattg	atcaacggga	tcagggacaa	4080
	gcagtcaggg	aagactatac	tcgacttcct	gaagtccgac	ggattcgcca	acaggaactt	4140
	catgcagctc	attcacgacg	actccttgac	cttcaaggag	gacatccaga	aggctcaggt	4200
	gtctggacag	ggtgactcct	tgcatgagca	cattgctaac	ttggccggct	ctcccgctat	4260
45	taagaagggc	attttgcaga	ccgtgaaggt	cgttgacgag	ctcgtgaagg	tgatgggacg	4320
	ccacaaqcca	gagaacatcg	ttattgagat	ggctcgcgag	aaccaaacta	cccagaaagg	4380
	gcagaagaat	teccocoaoa	ggatgaagcg	cattgaggag	ggcataaaag	agettggete	4440
	tcagatecte	aaggaggaggagg	ccotcoagaa	cactcagetg	cagaacgaga	agetgtacet	4500
	gtactacctc	caaaacqqaa	gggacatgta	catagaccag	gagetogaga	tcaacaggtt	4560
	gtccgactac	gacgtcgacc	acateotoce	tcagtcotto	ctgaaggatg	actocatoca	4620
50	caataaagtg	ctgacacget	ccgataaaaa	tagagggaag	teceacaace	tacatage	4680
	agaaataata	aagaagatget	aaaactacto	gagagagata	ttgaacgcca	agetestese	4740
	agaggeegeg	ttagaagaaga	tractaccy	tagagagagaga	agattataga	ageterates	1000
	agagggetta	ataaaaaaa	agatastast	agagagagaga	attagene	agetgagag	4000
	yyccygattC	tagagat	ageregrega	aaccegeeda	accauge		4000
	aalletggat		acaccaagta	cyacgaaaat	yacaayctga		4920
55	caaygtgatC	accutgaagt	ccaagetggt	CLOOGACTTC	cycaaggact		4980
	caaggtgagg	gagatcaaca	actaccacca	cgcacacgac	gcctacctca	acgctgtcgt	5040
	tggaaccgcc	ctcatcaaaa	aatatcctaa	gctggagtct	gagttcgtct	acggcgacta	5100

	caaggtgtac	gacgtgagga	agatgatcgc	taagtctgag	caggagatcg	gcaaggccac	5160
	cgccaagtac	ttcttctact	ccaacatcat	gaacttcttc	aagaccgaga	tcactctcgc	5220
	caacggtgag	atcaggaagc	gcccactgat	cgagaccaac	ggtgagactg	gagagatcgt	5280
	gtgggacaaa	gggagggatt	tcgctactgt	gaggaaggtg	ctctccatgc	ctcaggtgaa	5340
5	catcgtcaag	aagaccgaag	ttcagaccgg	aggattctcc	aaggagtcca	tcctccccaa	5400
	gagaaactcc	gacaagctga	tcgctagaaa	gaaagactgg	gaccctaaga	agtacggagg	5460
	cttcgattct	cctaccgtgg	cctactctqt	gctggtcgtg	gccaaggtgg	agaagggcaa	5520
	gtccaagaag	ctgaaatccg	tcaaqqaqct	cctcqqqatt	accatcatqq	agaggagttc	5580
	cttcgagaag	aaccctatco	acttcctqqa	ggccaaggga	tataaagagg	tgaagaagga	5640
10	cctcatcatc	aagetgeeca	agtactccct	cttcgagttg	gagaacggaa	ggaagaggat	5700
10	actaacttct	accagagagt	tocagaagog	aaatgagete	gcccttccct	ccaagtacgt	5760
	gaactteetg	tacctcocct	ctcactatoa	aaagttgaag	gacteteeta	aggacaacga	5820
	gcagaagcag	ctcttcataa	agcagcacaa	gcactacctg	gacgaaatta	tcgagcagat	5880
	ctctgagttc	tccaagcgcg	tgatattggc	cgacgccaac	ctcgacaagg	tactatccac	5940
	ctacaacaag	cacagggata	agcccattcg	cgagcagget	gaaaacatta	tccacctott	6000
15	tacctcaca	aacttoogag	cccctactac	cttcaagtac	ttcgacacca	ccattgacag	6060
	gaagagatac	acctccacca	aggaggtgct	cgacgcaaca	ctcatccacc	aatccatcac	6120
	coocctctat	gaaacaagga	ttgacttgtc	ccagetggga	ggcgactcta	gagegatec	6180
	caagaagaag	agaaaggtgt	aggttaacct	agacttotcc	atettetoga	ttggccaact	6240
	taattaatot	atgaaataaa	aggatgcaca	catagtgaca	toctaatcac	tataatotoo	6300
20	gcatcaaagt	tatatattat	gtgtaattac	tagttatctg	aataaaagag		6360
	tccatatttc	ttatcctaaa	tgaatgtcac	atatettat	aattettea	tgaaccagat	6420
	gcatttcatt	aaccaaatcc	atatacatat	aaatattaat	catatataat	taatatcaat	6480
	tagattagca	aaacaaatct	agtetaggtg	tatttac	cacacacaac	caacaccaac	6518
	cyyyccuycu	uuuuuuuuu	ageeeaggeg	cycccyc			0010
25	10405 444						
25	<210> 414						
	<211> 466						
	<212> DNA						
	<213> Glycine m	nax					
30	<400> 414						
	ccaaattaaa	agaattotaa	atatacttt	atatattaa	aattaatata	ttttaaata	60
	ttaaaatata	agaactytaa	gegegeeeee	+22222+222	taatatata	ataaagataa	120
		aaayaaaacc	caalylaaal	caaaaataaa	caaacyttta	tattaayataa	120
35		alaaayaaa	algiciaaca	ayayyattaa	galeelgige		100
00	ttaggtgttg	aaatettage	catacaaaat	atatttatt	aaaaccaagc	atgaaaaaag	240
	tcactaaaga	gctatataac	tcatgcaget	agaaatgaag	tgaagggaat	ccagtttgtt	300
	ctcagtcgaa	agagtgtcta	tettgttet	tttctgcaac	cgagttaage	aaaatgggaa	360
	tgcgaggtat	cttcctttcg	ttaggggagc	accagatgca	tagttagtcc	cacattgatg	420
	aatataacaa	gagcttcaca	gaatatatag	cccaggccac	agtaaa		466
40							
	<210> 415						
	<211> 6599						
	<212> DNA						
	<213> Artificial						
45							
-	<220>						
	<pre>-220- &lt;222&gt; Artificial C</pre>	Sequenco					
		bequeille					
	<100× 115						
50	<u>\$400&gt; 415</u>						
50							

5	ccgggtgtga cctagtaata tttaataaaa catcatgaag atacttggat taatcttgcc cgttccccat	tttagtataa agtaatattg ggaagaaaaa ctagaaaggc ctttctctta ttgttgtttc ttaagtccca	agtgaagtaa aacaaaataa aaacaaacaa taccgataga ccctgtttat attccctaac caccgtctaa gaaactttta	tggtcaaaag atggtaaagt aaaataggtt taaactatag attgagacct ttacaggact acttattaaa	aaaaagtgta gtcagatata gcaatggggc ttaattaaat gaaacttgag cagcgcatgt ttattaatgt	aaacgaagta taaaataggc agagcagagt acattaaaaa agagatacac catgtggtct ttataactag agaaatagca	60 120 180 240 300 360 420 480
10	agttaaaata tttgcggccg ttttaatcag gtagatcgaa tattaaagca tagtatttt	aggctagtcc caattggatc gctcctgatt taaattataa atgaatatgt ttaaaaataa	gttatcaact gggtttactt tctttttatt aaagataaaa aaattaatc agataggatt	tgaaaaagtg attttgtggg tcgattgaat tcataaaata ttatctttat agttttacta	gcaccgagtc tatctatact tcctgaactt atattttatc tttaaaaaat ttcactgctt	ggtgctttt tttattagat gtattattca ctatcaatca catataggtt attactttta	480 540 600 660 720 780 840
15	-			-	-		
20							
25							
<i>30</i> 35							
40							
45							
50							
55							

aaaaaatcat aaaggtttag tatttttta aaataaatat aggaatagtt ttactattca ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcgt cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg

	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
5	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
-	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctqt	getecetege	tctatttctc	agtctctgtg	tttacaacta	1320
	aggattccga	acgagtgacc	ttcttcattt	ctcgcaaagg	taacagcete	tactcttatc	1380
	tettegatte	gatctatocc	totettat	ttacgatgat	atttetteaa	ttatotttt	1440
10	ttatttatoc	tttatgctgt	tgatgttcgg	ttatttattt	cactttattt	ttataattca	1500
	atttttaga	attetttag	tttttgaatc	gattaatcoo	aagagatttt	coagttattt	1560
	getetetugg	aggtgaatgt	ttttttaa	gaccaacegg	tattatatt	atattataaa	1620
	catocoactt	totatoattt	tttaccacct	tatgatgatc	taattattt	attatgaatg	1680
	tattaaaaaa	assaastast	ttttacgaggt	attaatttaa	agtattaaag	attacyaacc	1740
	agaggattag	gaaccatgat	agaatattaa	accordentation	tactattaaag	agatagata	1000
15	attttt	aagttttatta	ageatgitya	aggagtettg	tette	totgaca	1960
	gululugu	gggtttgtte	acalgliace	adjuitate		catgegaeea	1000
	tatetggate	cagcaaaggc	gatttttaa	tteettgtga	aactttgta		1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacett	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
20	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
25	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
20	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
50	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcqacaac	ttgctggccc	agataggcga	2940
	ccaatacocc	gatetettec	tcoccoctaa	gaacttgtcc	gacgcaatcc	tactatccaa	3000
	catcctgaga	gtcaacactg	agattaccaa	agetectetg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaad	atctgaccct	getcaaggee	ctootgagag	agcagetgee	3120
35	coacaactac	aaggagatet	ttttcgacca	otccaagaac	gactacacca	gatacattga	3180
	cggaggggggg	teccaggaag	agttctacaa	gttcatcaag	cccatccttq	agaagatgga	3240
	contaccoad	gagetgttgg	tgaagttgaa	cagagaggag	ctattaagaa	agcagagaaac	3300
	cttccacaac	gageegeegg	ctcaccaaat	ccacctoga	gagetccacq	ccatcttgag	3360
	gagggaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagatta	agaagatett	3420
	gaggeaggag	atteettact	acatcaaaca	actoccage	gagaagacteta	agttcaccta	3480
40	gatecceaga	aaatotoaaa	acgregggee	taataasaa	ttagaggaag	taatagaaaa	3540
	gacgacetta	aataaatatt	tgatgagaga	gatgaggaac	ttogataaaa	atatagaaaa	3600
	ggggggcttttt	geteageett	actaccyayay	gatgattat	ttagacatat	accegeccaa	3660
	cyagaaggug	cugeeeaage	acceccyct	gracyaycat	cicacagigi	acaacyayct	2720
	caccaaggig	adglacglea		gaggaageet	geettettgt	tassagagea	3720
	gaagaaggee	accyccyacc	LUCLCCCCCAA	gaccaacagg	aaggugaeug		3780
45	gaaggaggac	tacttcaaga	agategagtg	cttcgactcc	gtcgagatet	ctggtgtcga	3840
	ggacaggttc	aacgeeteee	ttgggactta	ccacgatetg	ctcaagatta	ttaaagacaa	3900
	ggacttcctg	gacaacgagg	agaacgagga	catecttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggeteaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
50	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
50	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
55	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620

	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagetettg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
~	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
5	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
10	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
15	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
20	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
20	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
25	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
30	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

# <210> 416

# 35 <211> 6599

<212> DNA <213> Artificial

<220>

40 <223> Artificial Sequence

<400> 416

45

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttogat	ctttctctta	ccctqtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttocc	ttattattc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cottccccat	ttaagtccca	caccotctaa	acttattaaa	ttattaatot	ttataactag	420
	atocacaaca	acaaagettg	gaccaaagac	ttcattaato	ttttagaggt	agaaatagca	480
	agttaaaata	aggetagtee	gttatcaact	tgaaaaagtg	gcaccgagte	agtactttt	540
	tttacaacca	caattogato	gootttactt	atttataga	tatctatact	tttattagat	600
10	ttttaatcag	actectgatt	totttttatt	tcoattoaat	tootgaactt	otattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatettat	tttaaaaaat	catataggtt	720
	tactatagea	ttaaaataa	agataggatt	agetttagta	ttaactaatt	attactttta	840
	aaaaataat	aaaaatttaa	+ + + + + + + + + + + + + + + + + + +	agetteatta	aggaatagtt	ttactattca	900
15	ataatttaat	aaagguutag		aaataatat	taggaacagee	atttaccacca	960
	tttaat	ayaaaaaaaa	atataattaa	adyatayttt	aatogatage	accegecacy	1020
		ageegaaaeg	alglegilae	attaccitaa	cetagetgaa	acgalgicgi	1020
	cataatateg	ccaaatgcca	actggactac	gregaaceea	caaatcccac	aaagegegeg	1080
	aaatcaaatc	geteaaacea	caaaaaagaa	caacgcgttt	gttacacgct	caateccaeg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	teegaaataa	1200
20							
25							
30							
35							
55							
40							
45							
40							
50							
55							

	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcqttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	atttcttcaa	ttatgttttt	1440
5	ttatttatgc	tttatgctgt	tgatgttcgg	ttatttattt	cactttattt	ttgtggttca	1500
5	gtttttagg	attetttag	tttttgaatc	gattaatcog	aagagatttt	coagttattt	1560
	aatatattaa	aggtgaatct	ttttttgag	gtcatagatc	tottotattt	otottataaa	1620
		tgtatgattt	tttacgaggt	tatgatgttc	taattattt	attatgaatc	1680
	tattgagaga	gaaccatgat	ttttattat	attcatttac	actattaaaq	attattta	1740
	acaqqattaa	aagttttta	aggatattaa	aggaggeetue	tagatatgta	accotcoata	1800
10	attttt	aagtttatta	ageacytega	aggagteetg	ttttaatata	tatgggaga	1860
	tatatagata	gggtttgttt	acatyttate	ttaattata	agettttatta	atatgegacea	1920
	accelygate	tattaataa	gatter	ataccattaa	additigta	togettetto	1 9 2 0
	gaaaccity	tactyglaaa	clalaalyl	glyaagllyg	agraracerr	tatetta	1980
		theoretoot	allialalgi	alligagii	cigacilgia	transasasas	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
15	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccagget	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
20	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
25	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agetectetg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
20	cgagaagtac	aaqqaqatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
30	cqqaqqcqcc	tcccaqqaaq	agttctacaa	gttcatcaag	cccatccttq	agaagatgga	3240
	cootaccoao	gagetattag	tgaagttgaa	cagagaggag	ctattaagaa	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctogga	gagetceacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatett	3420
	gaccttcaga	attecttact	acatcagacc	actcoccaga	ggaaactcta	aattcaccta	3480
35	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcotogacaa	3540
	gagacacttee	getcagtett	tcatcgagag	gatgaccaac	ttcgataaaa	atctoccaa	3600
	cgagaaggtg	ctocccaaoc	actccctott	gtacgagtat	ttcacagtgt	acaacgaget	3660
		aagtacgtca	cagagggaat	gaggaageet	acettettat	ccggagagca	3720
	gaagaaggcc	atcotcoacc	toctcttcaa	gaccaacagg	aaggtgactg	tcaagcaget	3780
	gaagaaggac	tacttcaaga	agatcgagtg	cttcgactcc	atcaagatct		3840
40	gaaggaggac	aacgeeteee	ttoogactta	ccacgatetg	ctcaagatta	ttaaagacaa	3900
	ggacaggete	gacaacgagg	agaacgagga	catectteag	gacatcotoc	tracctrac	3960
	cttattaaa	gacaaagagg	tgatcgaaga	gaggetcaag	acctacoccc	acctcttcga	4020
	caacaaaata	atgaaacag	tgaagagaga	cagatatacc	actacgeee	agetetecega	4020
	caaattgatg	aacqqqatca	ragagagacg	atcagagaaa	actatactco	acttoctosa	4140
	atacagaaa	ttogggacca	gggacaagea	gccagggaag	accacacced	acttoacatt	4200
45	geeegaegga	atagagaaga	ggaacttcat	tagaaaaaa	cacyacyact	ataagaagat	4260
	taayyayyac	acceayaayy	acception	cyyacayyyt	ttaasasaaa	tabageacat	4200
	tgecaaectg	geeggeeeee	tagasagaa	gaagggcatt	cuguagadeg	tyaayyteyt	4320
	tgacgagete	grgaaggrga	Lygyacycca	caagecagag	aacategita	tragatage	4360
	tagaaaaaaa	caaactacee	ayaaayyyca	gaagaattee	cycyagagga	tagagegeat	4440
50		acaaaayayc	tataatata	galcolcadg	yaycaccccg	ccyayaacaC	4000
	Leagetgeag	aacyagaage	Lytacetyta	GLACCTCCAA	aacygaaggg	acatgtacgt	4000
	ggaccaggag	ccggacatca	acaggttgtC	cgactacgac	gccgaccada	LCGLGCCLCA	46∠U
	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgetg	acacgeteeg	ataaaatag	4680
	aggcaagtcc	gacaacgtcc	CCTCCgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagetettg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
55	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980

	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
5	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
10	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
15	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
~~	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
20	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
25	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599
	<210> 417						
	<211> 6599						
30	<212> DNA						
	<213> Artificial						
	<220>						

<223> Artificial Sequence

<400> 417

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	gcaacgacaa	tgaagtgcag	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
10	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560

	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtettg	tagatatgta	accgtcgata	1800
5	atttttat	agatttattc	acatottatc	aagettaate	ttttactato	tatocoacca	1860
5	tatctogatc	cagcaaaggc	gatttttaa	ttccttotoa	aacttttota	atatoaaott	1920
	gaaattttgt	tattootaaa	ctataaatgt	ataaattaa	agtatacctt	taccttctta	1980
	tttaacttta	tgatagttta	atttatatot	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatoccacc	gaagaagaag	cacaaaataa	togacaaaaa	2100
	atactcaata	agaatagaaa	taggaataa	atagattaga	tagaaataa	taacaacaa	2160
10	gtactcaata	gggcccgaca	agggaccaa	attagaaaaa	agggeegeea	acaccyacya	2220
	gracaayyrg	otagataga	taatattaa	gttgggaaac	accyacayyc	atagcataaa	2220
	gaagaattig	accygryccc	ratega	ecceggagag	accyclyagy		2200
	caagaggacc	getagaagge	getacaceag	aaggaagaac	agaatetget	acctgcagga	2340
	gatettetee	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaate	2400
	atteetggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acategtega	2460
15	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggetgaet	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
20	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agctcctctg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
25	cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cggtaccgag	gagetgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	qqaaqcatcc	ctcaccaaat	ccacctqqqa	gagetecacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatett	3420
	gaccttcaga	attecttact	acategaace	actcoccaga	ggaaactcta	aattcaccta	3480
~~	gatgacccgc	aaatctgaag	agaccattac	tecetogaac	ttcgaggaag	tcotogacaa	3540
30	gagacacttee	getcagtett	tcatcgagag	gatgaccaac	ttcgataaaa	atctoccaa	3600
	cgagaaggtg	ctoccaage	actocctott	gtacgagtat	ttcacagtgt	acaacgaget	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaageet	accttettat	ccggagagca	3720
	gaagaaggeg	atcotcoacc	toctcttcaa	gaggaageee	aaggtgactg		3780
	gaagaaggee	tacttcaaga	agategagte	cttcgactcc	atcaagatct	ctaatatcaa	3840
35	gaaggaggae	aacocctccc	ttagactta	ccacgateta	ctcaagatta	ttaaagacaa	3900
00	ggacaggeee	gacaacgagg	agaacgagga	catectteag	gacatogatog	tcacctgac	3960
	cttottooaa	gacaacgagg	taatcaaaaa	gaggetcaag	acctacoccc	acctettera	4020
	caacaacata	ataaaacaac	taaaaaaaa	cagatatacc	acctacyccc	agetetega	4020
	casattgatg	acgaaacage	rgaagagacg	atgacacaca	actatactor	acttoctora	4140
	atacagaca	ttogggacca	gggacaagca	gccagggaag	accalacted	acttoregat	4200
40	geeegaegga	atagagaaga	ggaacticat	tagaaaaaa	cacyacyact	atagagagat	4200
	taayyayyac	acceayaayy	acception	cygacayyyt	ttaasasaaa	tabageacat	4200
	tgecaaectg	geeggetete	tagazagaa	gaagggcatt	cuguagadeg	tyaayyteyt	4320
	tgacgagete	grgaaggrga	Lygyacycca	caagecagag	aacategita	tragatage	4360
	togogagaac	caaactaccc	agaaagggca	gaagaattee	cgcgagagga	tgaagegeat	4440
	tgaggagggc	ataaaagagc	ttggetetea	gatecteaag	gageacceeg	tcgagaacac	4500
45	tcagetgeag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tegtgeetea	4620
	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgeteeg	ataaaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagetettg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
50	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
55	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggq	agggatttcq	ctactgtgag	5340

	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
5	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
10	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
15	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
20	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

<210> 418 <211> 6599 <212> DNA

25 <213> Artificial

<220> <223> Artificial Sequence

30 <400> 418

35

45

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
F	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	ccatgcactc	acataatcgg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
20	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
30	gtttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920

	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatogcacc	ααασαασαασ	cocaaootoa	togacaaaaa	2100
	atactcaata	agactcaaca	tagggactaa	ctccattaga	tagaccatca	traccacca	2160
_	gtacecaata	gggeeegaea	agttgaagg	attagaaaaa	acceseee	acaccataaa	2220
5	gcacaaggcg	otagataga	tastattas	gttgggaaac	accyacayyc	atagcacaaa	2220
	gaagaatttg	arcggrgccc	teetettega	ccccggagag	accgctgagg	ctaccagget	2280
	caagaggacc	getagaagge	getacaccag	aaggaagaac	agaatetget	acctgcagga	2340
	gatettetee	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
10	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
10	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
15	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatetettee	tcgccgctaa	qaacttqtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agetectetg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaaq	atctgaccct	getcaaggee	ctootgagag	agcagetgee	3120
	cgagaagtac	aaggagatet	ttttcgacca	gtccaagaac	gactacacca	gatacattga	3180
20	caaaaacaca	tcccaggagae	agttetacaa	attratraad	cccatccttq	agaagatgga	3240
20	cggtaggegee	agactattaa	tagaattaga	geccaccaag	ctattaagaa	agaagacaga	3300
	attaccyay	gageegeegg	cyaayuuyaa	cayayayyac	cigitgagga	ageagagaac	3360
	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	ggaageatee	acttactaca	ggagaaggg	gageceeacy	agaagatatt	3420
	gaggeaggag	gattectate	cetteetyaa	ggacaacege	gagaagatty	agaagatett	2420
	gacetteaga	attecttact	acgregggee	actogecaga	ggaaacteta	ggttegeetg	3480
25	gatgacccgc	aaatctgaag	agaccattac	teeetggaae	ttcgaggaag	tcgtggacaa	3540
20	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctgcccaage	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca	3720
	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
30	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
35	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccqctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagete	gtgaaggtga	toggacgcca	caaqccaqaq	aacatcotta	ttgagatggc	4380
	tcocoaoaac	caaactaccc	agaaaggggga	gaagaattcc	cacaaaaaaa	tgaagcgcat	4440
		ataaaagagg	ttggctctca	gatecteaag	gaggaggggg	tcgagaacac	4500
		aacqaqaaqc	totacctota	ctacctccaa	aacqqaaqqq	acatgtacgt	4560
40	ggaccaggag	ctogacatca	acaggetetete	cgactacgac	atcaccaca	tcatacctca	4620
	ggaccaggag	aaggatgact	ccatccacaa	taaatacta	acacacteca	ataaaataa	4680
	aggaaagtag	aaggacgacc	ccaccyacaa	antantanan	acacyceecy	actactora	4000
	aggeaagtee	gacaacytee	tastasaga	ggttgtgaag	aayacyaaaa	attactggag	4900
	acagetetty	aacyccaage	taattaaceca	geglaagile	gacaaccuga	taataassaa	4800
	gagaggagga	LIGLOOGAGO	togataagge	cggattcatc	aagagacagc	regregaaae	4000
45	ccgccaaatt	accaagcacg	tggeeeaaat	tetggattee	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagetgatee	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agetggtete	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
50	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggett	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtqqaqa	agggcaagtc	caagaagctg	aaatccqtca	aggageteet	5580
55	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	teetggagge	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaaq	ctgcccaagt	actccctctt	5700

5 10	cgagttggag tgagctcgcc gttgaagggc ctacctggac cgccaacctc gcaggctgaa caagtacttc cgcaacactc gctgggaggc ccgccacgat catcttctgg atgctaatca gaataaaga	aacggaagga cttccctca tctcctgagg gaaattatcg gacaaggtgc aacattatcc gacaccacca atccaccaat gactctagag ggcgagctgg attggccaac ctataatgtg gaaagagatc	agaggatgct agtacgtgaa acaacgagca agcagatctc tgtccgccta acctgtttac ttgacaggaa ccatcaccgg ccgatcccaa gaggccgcaa ttaattaatg ggcatcaaag atccatatt	ggcttctgcc cttcctgtac gaagcagctc tgagttctcc caacaagcac cctcacaaac gagatacacc cctctatgaa gaagaagaga gcgggcaagg tatgaaataa ttgtgtgtta cttatcctaa	ggagagttgc ctcgcctctc ttcgtggagc aagcgcgtga agggataagc ttgggagccc tccaccaagg acaaggattg aaggtgaaga taggttaacc aaggatgcac tgtgtaatta atggatgca	agaagggaaa actatgaaaa agcacaagca tattggccga ccattcgcga ctgctgcctt aggtgctcga acttgtccca gaccacggga tagacttgtc acatagtgac ctagttatct cgtgtctta	5760 5820 5940 6000 6120 6180 6240 6300 6360 6420 6480
15	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599
	<210> 419 <211> 6599 <212> DNA						
20	<213> Artificial						
	<220>						
	<223> Artificial S	Sequence					
25	<400> 419						
30							
35							
40							
45							
	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
----	------------	------------	------------	------------	------------	------------	------
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	acacaattta	gttgcctgag	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
20	gttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
30	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
35	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280

	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
5	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
•	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctac	tcotctotca	aagtccagga	ggettgagaa	2760
	cttgattgcc	cagetgeetg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctooga	ttgactccca	acttcaagtc	caacttogac	ctcgccgagg	acoctaaott	2880
10	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttactaacce	agatagggga	2940
	ccaatacocc	gatetettee	tcgccgctaa	gaacttotcc	gacgcaatco	tactatecaa	3000
	catecteaga	gtcaacactg	agattaccaa	agetecteta	tetetteea	tgattaagcg	3060
	ctaccaccac	caccaccaad	atctgaccet	actcaacacc	ctootoacac	agcagetge	3120
	craceacedag	aaggagatet	ttttccacca	geccaaggee	agatagagag	ageageegee	3180
	cgagaagtac	taggagaccc	agttatagaa	gttgatgaag	ggetacgetg	agaagataga	3240
15	cggaggegee	ceceagyaay	tgaagttgaa	guicalcaag	atattaca	agaagacgga	2240
	cygraccyag	gagergrugg	cyaagiigaa	cayayayyac	cigilgagga	ageagagaae	3300
	CEECGACAAC	ggaagcatee	CLCaCCaaat	ccacctggga	gageteeaeg	ccatcttgag	3300
	gaggcaggag	gatttetate	cetteetgaa	ggacaacege	gagaagattg	agaagatett	3420
	gaccttcaga	attecttact	acgrcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tecetggaae	ttcgaggaag	tcgtggacaa	3540
20	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctgcccaagc	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca	3720
	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
25	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
30	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacqaqaaqc	tgtacctgta	ctacctccaa	aacqqaaqqq	acatgtacgt	4560
35	qqaccaqqaq	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcqtqcctca	4620
	atcettecta	aaggatgact	ccatcgacaa	taaaqtqctq	acacoctcco	ataaaaataq	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactogag	4740
	acagetettg	aacoccaaoc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
	αασασσασσα	ttatccaage	tcgataaggc	cogattcatc	aagagagagag	tcotcoaaac	4860
	cccccaaatt	accaagcacg	togcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
40	tgaaaatgac	aagetgateg	acgagatcaa	ggtgatcacc	ttgaagtcca	agetgetete	4980
	cgacttccgc	aaggagacttcc	agttctacaa	ggegaeeaee	atcaacaact	accaccacoc	5040
	acacracrac	tacctcaaco	ageteedaa	aaccocctc	atcaasaast	atoctaact	5100
	acacyacycc	ttactctaacg	aggedtagge	aaccyccccc	atcaaaaaa	tastaataa	5160
	atatatatata	gagatogaga	aggegactacaa	caagtactta	ttataataaa	acatostoss	5220
	attattasa	aggaccyyca	atatagaaaa	caaytactte	aggaaggggg	agatastaas	5220
45	andanaar	accyayatea	agatagtata	agagagaga	aggaagegee	ataatataaa	5200
	yaccaacygt	yayactyyag	agalogtyty	yyacaaayyg	ayyyattteg		5540
	gaaggtgete		aggrgaacat	cyccaagaag	accyaagtte	ayaccggagg	5400
	attetecaag	yagtecatec	Leeceaagag	aaactccgac	aagetgateg	ccagaaagaa	546U
	agactgggac	cctaagaagt	acggaggett	cgattetet	accgtggcct	actetgtget	5520
50	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagetg	aaatccgtca	aggageteet	5580
50	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctqqaqqc	5640

caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa

tgagetegee etteceteca agtaegtgaa etteetgtae etegetete aetatgaaaa gttgaaggge teteetgagg acaacgagea gaageagete ttegtggage ageacaagea

ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga

cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgcga

gcaggetgaa aacattatec acetgtttac ceteacaaac ttgggageee etgetgeett

55

5700

5760 5820

5880

5940

6000

caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga 6120 cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca 6180 6240 gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga 6300 ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc 5 catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac 6360 atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct 6420 gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta 6480 taattetttg atgaaccaga tgcattteat taaccaaate catatacata taaatattaa 6540 tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc 6599 10 <210> 420 <211> 6599 <212> DNA <213> Artificial 15 <220> <223> Artificial Sequence <400> 420 20 25 30 35 40 45 50 55

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	aaataaaagg	cctataaaag	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
30	gtttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
35	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
40	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640

cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag
tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa
cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct
ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt
gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga
ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga
catcctgaga	gtcaacactg	agattaccaa	agctcctctg	tctgcttcca	tgattaagcg
ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc
cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga
cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga
cggtaccgag	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac
cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagctccacg	ccatcttgag
gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt
gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg
gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa
gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa
cgagaaggtg	ctgcccaagc	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct
caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca
gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct
gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga
ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa
ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac
cttgttcgaa	gacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga
cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg
caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa
gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt
caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat
tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt
tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc
tcgcgagaac	caaactaccc	agaaaggggca	gaagaattcc	cgcgagagga	tgaagcgcat

	-					-
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat
25	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt
	tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat
	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac
	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt
30	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca
00	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag
	acagctcttg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga
	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga
35	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa
40	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga
40	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct
45	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga
50	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga
55	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct

	gaataaaaga taattctttg tcatatataa	gaaagagatc atgaaccaga ttaatatcaa	atccatattt tgcatttcat ttgggttagc	cttatcctaa taaccaaatc aaaacaaatc	atgaatgtca catatacata tagtctaggt	cgtgtcttta taaatattaa gtgttttgc	6480 6540 6599
5	<210> 421 <211> 6599 <212> DNA <213> Artificial						
10	<220> <223> Artificial S	Sequence					
15	<400> 421						
20							
25							
30							
35							
40							
45							
50							
55							

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	ttcaggttgt	tgtacgacag	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
~~	gtttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
30	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
35	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
40	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
45	cttgattgcc	cagetgeetg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
45	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000

	catcctgaga	gtcaacactg	agattaccaa	agctcctctg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaaq	atctgaccct	gctcaaggcc	ctggtgagac	agcagetgee	3120
	cgagaagtac	aaggagatct	ttttcgacca	otccaagaac	gactacacca	gatacattga	3180
	cadadacacc	teccaggaag	agttctacaa	ottcatcaao	cccatccttq	agaagatgga	3240
5	contaccoad	gagetgttgg	tgaagttgaa	cagagaggag	ctattgagga	agcagagaac	3300
		ggaaggatcc	ctcaccaaat		gagetecacq		3360
	gagggaggag	gguugeueee	ccttcctcaa	ggacaaccoc	gageeeeeeg	agaagatett	3420
	gaggeaggag	attacttact	acategaa	actococace	gagaagactg	agaagacete	3480
	gatecceaga	accectace	acgregggee	taataasa	ttaaaaaaaa	tartaraaaa	3540
10	gatgatetege	aaalolyaay	agaccattac	reterggaac	ttogaggaag	ctgtggataa	3040
10	gggcgcttcc	geleaglell		gatgaccaac	ttogataaaa	accegeeeaa	3600
	cgagaaggtg	etgeecaage	actecetgtt	gracgagrat	ttcacagtgt	acaacgaget	2200
	caccaaggtg	aagtacgtca	cagagggaat	gaggaageet	geettettgt	ccggagagca	3720
	gaagaaggee	atcgtcgacc	tgetetteaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
15	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
••	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
20	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagete	gtgaaggtga	tgggacgcca	caagccagag	aacatcotta	ttgagatggc	4380
	tcocoaoaac	caaactaccc	agaaaggggca	gaagaattcc	cocoacaacaa	tgaagcgcat	4440
	tgaggagggg	ataaaagagg	ttooctctca	gatecteaag	gaggagggg	tcgagaacac	4500
25		aacqaqaaqc	totacctota	ctacctccaa	aacqqaaqqq	acatotacot	4560
	agaccagaag	ctogagatge	acaggetetete	coactacoac	atcaaccaca	tcatacctca	4620
	ggaccaggag	aaggatgact	ccatccacaa	taaatacta	acacactaca	ataaaataa	4680
	aggaaagtag	aaggacgacc	ccaccyacaa	catagtycty	acacyceccy	actactactag	4000
	aggeaagtee	gacaacytee	tastasaga	gguugugaag	aayatyaaaa	attactyyay	4740
	acagetettg	aacgccaagc	tcatcaccca	gegtaagtte	gacaacetga	taaggetga	4800
30	gagaggagga	ttgtccgagc	tegataagge	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tetggattee	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagetgatee	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agetggtete	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
25	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
30	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
40	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggageteet	5580
	coogattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctocccaaot	actccctctt	5700
	cgagttggag	aacqqaaqqa	agaggatget	aacttetace	ggagagttgc	agaagggaaaa	5760
		cttccctcca	agtacgtgaa	cttcctctac	ctcacctctc	actatoaaaa	5820
45	attaaaaaaa	tetectgagg	acaacgaggag	gaaggaggtg	ttcatagaac	agcacaagca	5880
	ctacctocac	gaaattatog	accacetoto	taaattataa	aaggggggggg	tattagagaa	5940
	agaaaaaata	gaaactateg	tatagaata	cgageeecce	aagegegegeg	aasttaaaas	6000
	cyccaacece	gacaayytyc	cycecyceca	caacaaycac	ayyyacaayc	ccattegeya	6060
	gcaggctgaa	aacattatee	acctgtttac	cetcacaaac	ttgggageee	CLGCLGCCLL	6060
50	caagtacttc	yacaccacca	ttgacaggaa	yagatacacc	Lecaceaagg	aggtgctCga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
55	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

	EF 3 131 333 DI	
_	<210> 422 <211> 6599 <212> DNA <213> Artificial	
5	<220> <223> Artificial Sequence	
10	<400> 422	
15		
20		
25		
30		
35		
40		
45		
50		
55		

	a a a a a a t a t a t	+++ +	aataaataa	taataaaaaa		~~~~~~	60
	ccggglglga	llaglalaa	agigaagiaa	Lygicaaaay	aaaaagugua	aaacyaayta	100
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
~	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	atgaagacat	gaatcattgg	ttttagagct	agaaatagca	480
	agttaaaata	aggetagtee	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
10	tttgcggccg	caattqqatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tctttttatt	tcgattgaat	tcctgaactt	otattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attacttta	840
	aaaaaatcat	aaaggtttag	tattttt	aaataaatat	aggaatagtt	ttactattca	900
15	ctoctttaat	agaaaaatag	+++====+++	aagatagttt	taatcccacc	atttaccaca	960
	tttaaaata	agaaaaaaaa	atataattaa	attatattaa	actacctage	accegecacy	1020
	cataatatag	ageegaaaeg	acyccyctac	attaccicaa	cetageegaa	acyacyccyc	1020
	catalaticy	ccaaacycca	accygactac	geegaactea	attagagat	aaayeyeyey	1140
	aaalcaaalc	geteaacea	Caaaaaayaa	caacgegttt	gilacacycl	taaceeacy	1200
20	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	teegaaataa	1200
20	acctaggggc	attateggaa	atgaaaagta	geteacteaa	tataaaaatc	taggaaccet	1260
	agttttcgtt	atcactctgt	getecetege	tetattete	agtetetgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
20	gttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
30	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaaqtaat	ccatggcacc	gaagaagaag	cocaaootoa	togacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccqttqqa	tagaccatca	tcaccgacga	2160
35	gtacaaggtg	ccctccaaga	agttcaaggt	ottoggaaaac	accoacaooc	acagcataaa	2220
	gaagaatttg	atcootoccc	tectettega	ctccggagag	accoctoago	ctaccagget	2280
	caagaggagg	actagaagge	getacaccag	aaqqaaqaaq	agaatctoct	acctgcagga	2340
	gatettetee	aacqaqatqq	ccaaggtgga	cgactccttc	ttccaccocc	ttgaggaatc	2400
	attectorto	gaggaggagg	aaaaggeggu	gagagagag	atcttcooge	acatortora	2460
	caacataaca	taccatosaa	agtageatag	catctaccac	ctgaggaga	agetgetge	2520
40	atataaaaa	accatgaat	tagaattaat	ttacctaccac	atagataga	tastasatt	2520
	agagagagag	ttaataatta	agagagagat	reaccegyee	cicycicaca	tgacaaaget	2500
	cegeggacae		agggagacet	gaaceeagae	aacteegaeg	tggacaaget	2040
	cttcatccag	ctcgttcaga	cctacaacca	gettttegag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	teetetetge	tegtetgtea	aagteeagga	ggettgagaa	2760
45	cttgattgcc	cagetgeetg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agctcctctg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
50	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
	cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cggtaccgag	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagetccacg	ccatcttgag	3360
	-						

	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
	gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
5	cgagaaggtg	ctgcccaage	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccqqaqaqca	3720
	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaqqaqqac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaaqacaa	3900
10	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttottcoaa	gacagggaaa	tgatcgaaga	gaggetcaag	acctacoccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	aactctccca	4080
	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactco	acttcctgaa	4140
	atccaacaaa	ttcgccaaca	ggaacttcat	gcagetcatt	cacgacgact	cettgacett	4200
	caaqqaqqac	atccagaagg	ctcaggtgtc		gactecttoe	atgaggagat	4260
15	tactaactta	accoactete	ccoctattaa	gaaggacatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagete	atgaaggtga	taggacacca	caagecagag	aacatcotta	ttgagatggc	4380
	tgacgageee	caaactaccc	agaaagggggggggggggg	caageeagag	cacazagaa	taaaacacat	4440
	tagagagaga	ataaaaaaaa	ttaatata	gaagaactee	gagagagga	tgaagegeac	4500
	tcactccac	accaacaac	tatacctata	ctacctccaa	aacaaaaaaa	acatotacot	4560
20	ggaggaggag	atogagatos	acagettete	cractacrac	atogaaggg	taatgeatge	4620
20	gyaccagyay	acquatacta	acayguigue	tacatacta	geogaceaca	ataaaataa	4020
	greetreerg	aaggatgatt	actaccyacaa	catagtycty	acacyceccy	acaaaaaaaa	4000
	aggeaagtee	gacaacytee	tastasaaa	gguegugaag	aayatyaaaa	actactyyay	4/40
	acagetetty	ttataaaaaa	taattaaaaa	geglaagile	gacaacetga	taataassa	4800
	gagaggagga	LIGLOOGAGO	togataaggo	cggattcatc	aagagacagc	regregaaae	4000
25	ccgccaaatt	accaagcacg	tggcccaaat	tetggattee	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagetgatee	gcgaggtcaa	ggtgatcacc	ttgaagteea	agetggtete	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaaget	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
30	gtctgagcag	gagateggea	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggett	cgattctcct	accgtggcct	actctgtgct	5520
35	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
40	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
40	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
50	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

<210> 423 <211> 6599

55 <212> DNA

<213> Artificial

<220>

# <223> Artificial Sequence

<400> 423

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			

ccgggtgtga tttagtataa agtgaagtaa tggtcaaaag aaaaagtgta aaacgaagta 60 cctagtaata agtaatattg aacaaaataa atggtaaagt gtcagatata taaaataggc 120 180 tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt 240 catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac 300 taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct 360 420 cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag atgcacaaca acaaagettg gcaagttggg ttatgaaatg ttttagaget agaaatagea 480 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 540 tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat 600 ttttaatcag gctcctgatt tctttttatt tcgattgaat tcctgaactt gtattattca 660 gtagatcgaa taaattataa aaagataaaa tcataaaata atattttatc ctatcaatca 720 780 tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaaaat catataggtt 840 tagtattttt ttaaaaataa agataggatt agttttacta ttcactgctt attactttta aaaaaatcat aaaggtttag tatttttta aaataaatat aggaatagtt ttactattca 900 ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg 960 tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcgt 1020 1080 cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg 1140 aaatcaaatc gctcaaacca caaaaaagaa caacgcgttt gttacacgct caatcccacg cgagtagagc acagtaacct tcaaataagc gaatggggca taatcagaaa tccgaaataa 1200 1260 acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct agttttcgtt atcactctgt gctccctcgc tctatttctc agtctctgtg tttgcggctg 1320 aggatteega acgagtgace ttettegttt etegeaaagg taacageete tgetettgte 1380 tettegatte gatetatgee tgtetettat ttacgatgat gtttettegg ttatgttttt 1440 ttatttatgc tttatgctgt tgatgttcgg ttgtttgttt cgctttgttt ttgtggttca 1500 gttttttagg attcttttgg tttttgaatc gattaatcgg aagagatttt cgagttattt 1560 ggtgtgttgg aggtgaatct tttttttgag gtcatagatc tgttgtattt gtgttataaa 1620 catgcgactt tgtatgattt tttacgaggt tatgatgttc tggttgtttt attatgaatc 1680 tgttgagaca gaaccatgat ttttgttgat gttcgtttac actattaaag gtttgtttta 1740 acaggattaa aagtttttta agcatgttga aggagtcttg tagatatgta accgtcgata 1800 gtttttttgt gggtttgttc acatgttatc aagcttaatc ttttactatg tatgcgacca 1860 tatctggatc cagcaaaggc gattttttaa ttccttgtga aacttttgta atatgaagtt 1920 1980 gaaattttgt tattggtaaa ctataaatgt gtgaagttgg agtatacctt taccttctta 2040 tttggctttg tgatagttta atttatatgt attttgagtt ctgacttgta tttctttgaa ttgattctag tttaagtaat ccatggcacc gaagaagaag cgcaaggtga tggacaaaaa 2100 gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga 2160 gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa 2220 2280 gaagaatttg atcggtgccc tcctcttcga ctccggagag accgctgagg ctaccaggct caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga 2340 gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc 2400 2460 attectggtg gaggaggata aaaagcacga gagacaccca atetteggga acategtega cgaggtggcc taccatgaaa agtaccctac catctaccac ctgaggaaga agctggtcga 2520 2580 ctctaccgac aaggetgact tgcgettgat ttacctgget ctcgeteaca tgataaagtt 2640 ccgcggacac ttcctcattg agggagacct gaacccagac aactccgacg tggacaagct 2700 cttcatccag ctcgttcaga cctacaacca gcttttcgag gagaacccaa tcaacgccag tggagttgac gccaaggcta tcctctctgc tcgtctgtca aagtccagga ggcttgagaa 2760 cttgattgcc cagctgcctg gcgaaaagaa gaacggactg ttcggaaact tgatcgctct 2820

ctccctggga ttgactccca acttcaagtc caacttcgac ctcgccgagg acgctaagtt

gcagttgtct aaagacacct acgacgatga cctcgacaac ttgctggccc agataggcga

ccaatacgcc gatctcttcc tcgccgctaa gaacttgtcc gacgcaatcc tgctgtccga catcctgaga gtcaacactg agattaccaa agctcctctg tctgcttcca tgattaagcg

ctacgacgag caccaccaag atctgaccct gctcaaggcc ctggtgagac agcagctgcc

cgagaagtac aaggagatct ttttcgacca gtccaagaac ggctacgccg gatacattga

cggaggcgcc tcccaggaag agttctacaa gttcatcaag cccatccttg agaagatgga

cggtaccgag gagctgttgg tgaagttgaa cagagaggac ctgttgagga agcagagaac cttcgacaac ggaagcatcc ctcaccaaat ccacctggga gagctccacg ccatcttgag

gaggcaggag gatttctatc ccttcctgaa ggacaaccgc gagaagattg agaagatctt

gaccttcaga attccttact acgtcgggcc actcgccaga ggaaactcta ggttcgcctg

gatgacccgc aaatctgaag agaccattac tccctggaac ttcgaggaag tcgtggacaa gggcgcttcc gctcagtctt tcatcgagag gatgaccaac ttcgataaaa atctgcccaa

cgagaaggtg ctgcccaagc actccctgtt gtacgagtat ttcacagtgt acaacgagct

caccaaggtg aagtacgtca cagagggaat gaggaagcct gccttcttgt ccggagagca

2880

2940

3000

3060

3120

3180

3240 3300

3360

3420 3480

3540

3600

3660 3720

5

10

15

20

25

30

35

40

45

50

	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
5	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
10	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
15	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagctcttg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
20	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
25	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
~~	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
30	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagetegee	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
35	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
40	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
45	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

<210> 424 <211> 6599 <212> DNA <213> Artificial

<220> <223> Artificial Sequence

55 <400> 424

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300

10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag atgcacaaca acaaagcttg attatgtatg atgcaagttg ttttagagct agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat ttttaatcag gctcctgatt tcttttatt tcgattgaat tcctgaactt gtattattca gtagatcgaa taaattataa aaagataaaa tcataaaata atattttatc ctatcaatca tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaaat catataqqtt tagtattttt ttaaaaataa agataggatt agttttacta ttcactgctt attactttta aaaaaatcat aaaggtttag tatttttta aaataaatat aggaatagtt ttactattca ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcgt cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg aaatcaaatc gctcaaacca caaaaaagaa caacgcgttt gttacacgct caatcccacg cgagtagagc acagtaacct tcaaataagc gaatggggca taatcagaaa tccgaaataa acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct agtitude at cast ctot act cost cast totatt tota agt ct ctota tttacaget a

5

10

15

15	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
20	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
	gttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
25	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
30	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280
00	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
35	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
10	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
40	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agctcctctg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
	cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
45	cggtaccgag	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagctccacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
	gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
50	cgagaaggtg	ctgcccaagc	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca	3720
	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
55	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
00	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga	4020

### EP 3 191 595 B1

360 420

480

540

600

660

720

780

840 900

960

1020

1080

1140

1200

1260

4080

cgacaaggtg atgaaacagc tgaagagacg cagatatacc ggctggggaa ggctctcccg

	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
5	tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
10	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagctcttg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
15	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
10	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
20	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
25	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
30	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
35	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
40	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

<210> 425 <211> 6599 <212> DNA

45 <213> Artificial

<220> <223> Artificial Sequence

50 <400> 425

ccgggtgtig ttigtataa afgaagtaa tggtaaagt gtcagataa taasaaggi gtcagataa agacagagi 120 cctagtaata agtaatatag aacaaacaa aaataggt gtcagataa taasaaggi 120 uttaataaa ggaagaaaa aacaacaa aaataggt gtcagataa taasataggi g catcatggag ctagaaagg taccgatag taasctatg ttaattaaa acattagaa 240 attactugg ttigtigtte attocctaa ttacaggact gagactag agaataga aggaacaa acaaaggtg accaaggac ggaagtaag ttitaagtag taasctaf aggacaga agaagaag aggataga ggaagaag ttitaast uttaacag ggatagte ggggttact attitaast ttitaagt aggacaga acaaggetg ggggttact attitaggact ggaacag agaataga aggacaga acaaggetg gggttact attitaggact gaacagag tuttaast uttagggee gaatggat ggggttact attitaggat ttitaagat aggacaga ggaagaa aacaaagt ggggttact attitag agtacaaag gctagte gggttact attitaggat titaatact aggacaga gggetgat ggggttact attitaggat titaatact aggacaga gggetgat gggttact attitag agtacaaag gctoctgat tettitat tegatgaat cetgaact gaataga agtacaag gctoctgat tettitat tegatgaat cetgaact gaataga agtacaag gctoctgat tettitat tegatgaat tettaa go tittaacag gctoctgat settig a agtacaag gctoctgat settig a agtacaag getgat gggtta attig acaagga agaa aacaag agaataga agaa agaa agaa agaa agaa ag								
a gitaaata aggetäytee ytateäaet täyaaägtö geecegääte gityettitt 540 tittgeggeeg eaattgate gygttaett attitgtggg tatetataet ytattagat 600 tittaateag geteetgat tettitatt tegattgaat teetgaaett gtattattea 660 20 23 30 33 40 40	5	ccgggtgtga cctagtaata tttaataaaa catcatgaag atacttggat taatcttgcc cgttccccat atgcacaaca	tttagtataa agtaatattg ggaagaaaaa ctagaaaggc ctttctctta ttgttgtttc ttaagtccca acaaagcttg	agtgaagtaa aacaaaataa taccgataga ccctgtttat attccctaac caccgtctaa accaaaggca	tggtcaaaag atggtaaagt aaaataggtt taaactatag attgagacct ttacaggact acttattaaa cgtacgtaag	aaaaagtgta gtcagatata gcaatggggc ttaattaaat gaaacttgag cagcgcatgt ttattaatgt ttttagagct	aaacgaagta taaaataggc agagcagagt acattaaaaa agagatacac catgtggtct ttataactag agaaatagca	60 120 180 240 300 360 420 480
15         20         25         30         32         40         43         50         50	10	agttaaaata tttgcggccg ttttaatcag	aggctagtcc caattggatc gctcctgatt	gttatcaact gggtttactt tctttttatt	tgaaaaagtg attttgtggg tcgattgaat	gcaccgagtc tatctatact tcctgaactt	ggtgcttitt tttattagat gtattattca	540 600 660
20         25         30         35         40         43         50         50	15							
<ul> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>29</li> <li>29</li> <li>20</li> &lt;</ul>	20							
30         35         40         45         50	25							
35         40         45         50         51	30							
40 45 50	35							
50	40							
55	45							
	50							

	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attacttta	840
	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
-	ctoctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccage	atttaccaca	960
5	tttgaacgtg	agaaaaaaaa	atatcattac	attatettaa	cctacctcaa	acceptotcot	1020
	cataatatoo	ccasatocca	actoractac	atcasecca	casatoogaa	acgacyccyc	1020
	aaataaaata	ccaaacycca	accygaccac	geegaactea	attagagat	aaayeyeyey	1140
	aaalcaaalc	geteaaacea	taaaaayaa	caacgegttt	gilacacyci	taaceeacg	1200
	cgagtagage	acaglaacci	tCaaalaayc	gaalggggca	taatCagaaa	tocgadataa	1200
10	acctaggggc	attateggaa	atgaaaagta	geteacteaa	tataaaaatc	taggaaccet	1260
10	agttttcgtt	atcactctgt	geteetege	tetattete	agtetetgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
15	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
	gttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
20	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatogcacc	gaagaagaag	cocaaootoa	togacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccattaga	toggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	ottoggaaac	accoacaooc	acagcataaa	2220
	gaagaatttg	atcootoccc	tectettega	ct.ccggagag	accoctoago	ctaccagget	2280
25	caagaggagg	actagaagge	getacaccag	aaggaagaag	agaatctoct	acctgcagga	2340
	gatettetee	aacqaqatqq	ccaaqqtqqa	caactcotto	ttccaccocc	ttgaggaatc	2400
	attected	gaggaggagg	aaaaggeggu	gacacaccca	atcttcogoa	acatogtoga	2460
	accelggeg	taggaggaca	aatagcacya	gagacaccca	ataaaaaaaa	acatogtoga	2520
	cyayyuyyuu	caccatgaaa	tagaattaat	ttaccac	ctgaggaaga	tgataaatt	2520
	ccccccccccccccccccccccccccccccccccccccc	ttagtastta	agggagagat	gaaggagag	anatagana	tgalaaayii	2540
30	cegeggacae	tteeteattg	agggagacet	gaacecagae	aacteegaeg	Lggacaaget	2040
	terestteres	clegileaga	teststates	getttegag	gagaacccaa	ccaacyccag	2700
	tggagttgac	gecaaggeta	teetetetge	tegtetgtea	aagteeagga	ggettgagaa	2760
	cttgattgcc	cagetgeetg	gcgaaaagaa	gaacggactg	ttcggaaact	tgategetet	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgetaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
35	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agctcctctg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
	cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
10	cggtaccgag	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
40	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagctccacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
	gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
45	cgagaaggtg	ctgcccaage	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
40	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcet	accttcttat	ccqqaqaqca	3720
	gaagaaggcc	atcotcoacc	toctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaggaggag	tacttcaaga	agatcgagtg	cttcgactcc	otcoagatet	ctoototcoa	3840
	gaacaggtto	aacocctccc	ttoogactta	ccacgatetg	ctcaagatta	ttaaagacaa	3900
	ggacttecte	gacaacgagg	agaacgagga	catectteag	gacatogtoc	tcaccotgac	3960
50	cttattcass	gacaggagg	taatcaaaaa	gaggetcaag	acctacecco	acctettera	4020
	cracearata	atraaaraara	taaaaaaaaa	cagatatag	aactaaaaaa	agetetege	4020 4090
	casattasta	acquarates	agaagaagaaga	atagaraga	actatactor	adtactor	4140
	atagaagaa	ttogggaage	gggacaagea	gccayyyady	accacacity	acttorest+	4740
	geeegaegga	atagagagag	gyaacted	tagageratt	cacyacyact		4200
	taataacht	account at a		cyyacayyyt	there	tagageacat	4200
55	Lyccaacttg	yccygetete		yaayggCatt	Lugcagaccg	LyaaggtCgt	4320
	Lgacgagete	ytgaaggtga	ugggacgcca	caagecagag	aacatcgtta	LEgagatgge	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	τgaagcgcat	4440

	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
5	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagctcttg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
10	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
15	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
20	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
25	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
~~	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
30	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599
35							
	- · - ·						

<210> 426 <211> 6599 <212> DNA

<213> Artificial

40

<220>

<223> Artificial Sequence

<400> 426

45

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
F	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	gcctttacgt	acgtgccttg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020

cataatatcg ccaaatgcca actggactac gtcgaaccca caaatcccac aaagcgcgtg aaatcaaatc gctcaaacca caaaaaagaa caacgcgttt gttacacgct caatcccacg cgagtagagc acagtaacct tcaaataagc gaatggggca taatcagaaa tccgaaataa acctaggggc attatcggaa atgaaaagta gctcactcaa tataaaaatc taggaaccct agtttcgtt atcactctgt gctccctcgc tctattctc agtctctgtg tttgcggctg aggattccga acgagtgacc ttcttcgttt ctcgcaaagg taacagcct tgctcttgtc tcttcgattc gatctatgce tgtctctat ttacgatgat gttcttcgg ttatgtttt ttatttatgc tttatgctgt tgatgtcgg ttgttgttt cgcttgtt ttgtggtca gttttttagg attctttgg tttttgtt tgatgttcg aggagattt cgagttatt

5

	tattagatta	astatataca	tatatat	ttaggatgat	atttattaaa	++ ++ +++++++++++++++++++++++++++++++++	1440
	ttottotatoo	tttatatat	tastattaaa	ttattatt	geeteeegg	ttatgettee	1500
	atttttacyc		thetter				1500
	gilliagg	allolligg	LLLLLGAALC	gallaalogg	aagagatttt	cgagttattt	1.500
10	ggtgtgttgg	aggrgaatet	ttttttgag	gtcatagate	tgttgtattt	gtgttataaa	1620
10	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagtttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
	gttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
15	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
10	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280
20	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
25	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
	cttgattgcc	cagetgeetg	gcgaaaagaa	gaacggactg	ttcqqaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggoga	2940
20	ccaatacocc	gatetettee	tcoccoctaa	gaacttotcc	gacgcaatcc	toctotccoa	3000
30	catcctgaga	gtcaacactg	agattaccaa	agetectetg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaaq	atctgaccct	gctcaaggcc	ctootgagag	agcagetgee	3120
	coagaagtac	aaggagatct	ttttcgacca	gtccaagaac	gactacacca	gatacattga	3180
	cadadacacc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttq	agaagatgga	3240
	cootaccoao	gagetottog	tgaagttgaa	cagagaggag	ctottoagga	agcagagaac	3300
35	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctogga	gagetceacg	ccatcttgag	3360
	gagggaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatett	3420
	gaccttcaga	attecttact	acategagee	actorcaga	ggaaacteta	agttcaccta	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag		3540
	agacacttcc	actcaatctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggette	ctacccaaac	actocctatt	guoguocuuc	ttcacagtgt	acaacgaget	3660
40	cgagaaggtg	aagtaggtg	accecciget	geacgageat	agattattat	acaacgagee	3720
	gaagaagggg	atortora	tagtattas	gaggaageee	agenteacte	taaaaaaat	3780
	gaagaaggee	tacttoaaca	agatagagta	gaccaacagg	atogagatat	ataatataa	3840
	gaaggaggac	acciccaaga	ttaggatta	agaggatata	gtcgagatta	ttaaagagaaa	3010
	ggacaggett	aacycetteet	agaaggaggagga	ccacgatery	cicaayatta	tagaataga	3960
	gyacticety	gacaacyayy	tattattat	cattettyay	gacategrad	agatattaga	4020
45	citylicyaa	gacagggaaa	tgalegaaga	gaggeteaag	acctacyccc	acclettega	4020
	cgacaaggtg	atgaaacage	tgaagagacg	cagatatacc	ggetggggaa	ggeteteeg	4080
	caaattgate	aacgggatca	gggacaagca	gccagggaag	actatacteg	actteetgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	CCTTGACCTT	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
50	tgctaacttg	geeggetete	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
50	tgacgagete	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
55	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagetettg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800

1080 1140

1200

1260 1320

	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
-	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
5	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
10	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
15	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
~~	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
20	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
25	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

- <210> 427
  - <211> 6599 <212> DNA <213> Artificial

35

<220> <223> Artificial Sequence

<400> 427

40

45

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	atagtcatcc	tagttagtgg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attacttta	840
	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380

	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
	gtttttagg	attetttag	tttttgaatc	gattaatcog	aagagatttt	cgagttattt	1560
	aatatattaa	aggtgaatct	ttttttgag	otcatagatc	tottotattt	otottataaa	1620
F	catocoactt	totatoattt	tttacgaggt	tatgatgttc	taattattt	attatgaatc	1680
5	tattaagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaaq	otttottta	1740
	acaggattaa	aagtttttta	agcatgttga	aggagtettg	tagatatgta	accotcoata	1800
	atttttat	agettatta	acatottato	aggageeeeg	ttttactato	tatocoacca	1860
	tatatagata	gggcccgccc	acatyttate atttttat	ttattata	aacttttatta	atatosaatt	1920
	calcuygatt casettttat	tattaataaa	gattetettaa	atassattaa	accelligea	tagettetta	1920
10	tetaaattta	tactyglaaa	otttototot	gtgaagttyg	aycacacccc	tttattta	2040
		tyacagilla	allialaly	alligagii	cigacilgia	tanagaaaaa	2040
	ctgatterag	cicaagiaai	toggeace	gaagaagaag	taraagguga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	teetettega	ctccggagag	accgctgagg	ctaccagget	2280
15	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
20	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatetettee	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
25	catcctgaga	gtcaacactg	agattaccaa	agetectetg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaaq	atctgaccct	gctcaaggcc	ctggtgagac	agcagetgee	3120
	cgagaagtac	aaggagatct	ttttcgacca	otccaagaac	gactacacca	gatacattga	3180
	cadadacacc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cootaccoao	gagetottog	tgaagttgaa	cagagaggag	ctottoagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctooga	gagetecacg	ccatcttgag	3360
30	gagggaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatett	3420
	gacetteaga	attecttact	acategagee	actogocaga	ggaaacteta	agttcaccta	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag		3540
	gaagacacttcc	actcaatctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggette	ctoccaago	actocctott	gtacgagtat	ttcacagtgt	acaacgaget	3660
35	caccaacto	aagtacgtca	cagagggaat	geacgageat	accttattat	ccacagagee	3720
00	gaagaagggg	atcatcacc	tactetteaa	gaggaageee	aagatgactg	tcaagcagct	3780
	gaagaaggee	tacttoaaca	agatagagta	gaccaacagg	atogagatat	ataatataa	3840
	gaaggaggac	cacciccaaga	ttagagagty	ccccgactec	gtegagatet	ttaaagaaaa	3000
	ggacagguuc	aacycetteet	anagagagaga	ccacgaterg	cicaagatta	tanaatana	3900
	ggaetteetg	gacaacgagg	agaacgagga	cateettgag	gacategege	teacectgae	3960
40	cttgttcgaa	gacagggaaa	tgategaaga	gaggeteaag	acctacgeee	acctettega	4020
	cyacaaggtg	acyaaacage	ugaagagadg	cagatatadd	ygerggggaa	ygeteteedg	4080
	caaattgatc	aacgggatca	gggacaagca	gccagggaag	actatactcg	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	CCTTGACCTT	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
45	tgacgagete	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
50	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagctcttg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
55	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
55	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160

	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
5	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
10	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
4 5	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
15	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
20	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

²⁵ <210> 428 <211> 6599 <212> DNA

<212> DNA <213> Artificial

30 <220>

<223> Artificial Sequence

<400> 428

35

40

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
_	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	atgtagtacc	acactaactg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
10	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740

gittittigi ggittigito acatgitato agottato tittactagi tatgogac gaaattigi tatggiaa cittaaatgi dicagitgi gaitacoti tactoto titggittoi gaitagita attataatgi gaaattig tatagiaa cotaaatgi dicagigo gaagtag cocaagita to gaacaat ggotogac tagggaca ciccigi gaigocoja acacata gaagaatti gatggita catggaca dicagiga dicagiga cacaata gaagaatti gatggitae tocotoga agotagaa agaattiga cacaga gaacaatig getagaaggi gotaacaag agaataca ciccigi gaigacaa attocigi gaigagata aaagacag gaacacaa attocigga acacata cagagigac tacaaga gotaacaag gaacacaa attocigag acacata cagagigac tacaaga agatacaa taggagaa agaattig acogaaga cagagaac tocotaiga agaacaaca attocigag acacata cagagigac tacacaga agatacaa ciccigaga agaatga cagagaac tocotaaga agatacaa dicacaaga agataga cocggaca tocotaiga agagaaca gaacacaa attocigag gaacaa cocgagaca tocotaaga cocaacaa gatacaag gaacacaa tacaaga cocgagaa cocaagaa actaacaa gatacaa tiga cocgagaa tocotaaga cocaaaa agactiga cicciga agacaga cocgagaa tocotaa aca cacaga gaacatac dibatiga caacacaa attogacaga gaacatac tigacoga agadaga cocaacaaga gatacata cagacaga agactiga catacaga gatacata togacaga gaacatac tigacaga gaagtigti aagaacat togacaga gaacatac tigacaga agacatag catacagag gacacaca actagaga agactiga cicciga agaacaa gaacataga gacaacaa agataa agacaaga cacacagag gatata totaaga gaacaa gaacaaga gacaacaa cacacaga gaacata tocaaaa agacaa gaacaa gaacaacaa agaacaa gaacaacaa gaacaacaa gatataaca agacaaga cictagaa agaacaa catagagag attoctaa cocacaga gaacaacaa gaacaacaa gaacaaca gaacaacaa gaacaacaa agaacaacaa agaacaa cacacaga gaacaaca cacacagag gaacata cocacaaga agaacaa cacacaga gaacaaca gaacaagaga attoctaa cocacaga agaacaa cacacaga gaacaaca gaacaagag agaacaa cocacaaga agaacaa cocacaga gaacaaca gaacaagag agaacaa cocacaaga agaacaa cocacaga gaacaaca cacacagag gaacaacaa agaacaga cacaccaa agaagaaca cacaagaga attoctaa cocacaga agaacaaga cacacaa agaacaa gaagaagag cocacaaga agaacaaga cacacacaa gaagaaga gaagaagag cocacaaga agaacaaga cacacacaa gaagaaga gaagaagag cacacaaa agaacaaga cacacacaa gaagaaga gaagaagag cacacaaa agaacaaga cacacacaa gaagaaga gaa	aca	gattaa a	agttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
iatcigate capaage gattitta tictigag actitigt attigage     gaattigt tatiggaa citaagga gygagga citaiggagaa agtaccaa aggagaga gagatti citaiggagaa agtaccaa citaigaaga agtaccaa citaigaa aaccaa citaigaa agtaccaa citaigaa aaccaa citaigaa agtaccaa citaigaa aaccaa citaigaa agtaccaa gactifaa citaigaa agtaccaa gattigaa citaigaa agtaccaa gactifaa citaigaa agtaccaa gattigaa citaigaa citaigaa agtaccaa gactifaa citaigaa gaaaa citaigaa citaigaa agtaccaa gattigaa citai citaigaa gaaaaa agtaccaa citaigaa gattifaa citaigaa gaaaaa agtaccaa citaigaa gaaaaaa agtaccaa citaigaa gaaaaaa agtacaaa citaigaa citaigaa citaigaa citaigaa citaigaa citaigaa citaigaa agtaccaa gagagaa citaigaa agtaccaa citaigaa gaaaaaa agtaccaa gagagaa citaigaa agtaccaa gagagaa citaigaa agtacaaa agtacaaa agtacaaa agtacaaa agtacaaa agtaa agtacaaa agtacaaa agtacaaa agtacaaaa agtacaaaa agtacaaa citaigaa agtacaaa agtacaaa agtacaaa agtacaaa agtacaaa agtacaaa agtacaaa agtacaaa agtacaaa agtacaaaa agtacaaaa agtacaaa agtacaaaa agtacaaaa agtacaaaa agtacaaaa agtacaaaa agtacaaaa agtaca	gtt	ttttgt g	ggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
gaatiitiy taigytää ottaaatyi ytyääytöy ayttaoit taoitto tiyöttöjä yääyttää ottaaatyi aittäyää giaciaatyi geotosaa ayttäääytö täyöttöjä työyöse giaciaatyi geotosaa ayttäääytö giaciaajyi geotosaa ayttäääytö gaagaatu gaagatty atoyysoe toototoga oreogaaga agaagaga gaacatty atoyysoe toototoga oreogaaga agaagaga gaacatty atoyysoe toototoga oreogaaga agaagaga gaacatty atoysoe oreogaaga attottyy gaagaysa aaagacag gaacatty atoysoe oreogaaga attottyy gaagaysa aaagacag gaacatty atoosysoe oreogaaga gaacatty atoosysoe gaattytee oreogaagatyg oreaagysa attottyy gaagaysa tuototo oreogaaga gaacatty atoosysoe gaattytee oreogaagatyg oreogaaga gaacatty atoosysoe oreogaaca titotoatig aggagaat taoosoa oreogaa totaacage oreogaagatag oreogaagatag gaacaca attoosysoe oreogaaca titotoatig aggagaat taoosoa oreotoa oreogaa gaaytytee oreogaagatag oreogaaga gaaogysoe titotaaca totaacage oreogaagatag oreogaaga gaaogysoe titotoosaa goaytytee oreogaagatag oreogaaga gaaogysoe titotoosaa oreogaa gaaytytee oreogaagatag oreogaagatag oreogaaa titotoo oreotaacagoo gatottoo toosootaa gaattytee gaagaaca oregaagaga oreocaaga attigaca gaaytage cocacaaga attigaca agacaca totaagoco gaagaagaa attootaa aquagaga gootoo yaaa gaacaga gaagtaga agagatat titoosaa oreocaga gaaatty orgaagaga oreocaaga agattytaa agaagac agaagag orgeacega gaacatta agagagata taattag cogaagagag gaattotae cocacagaa gaacacta gaagate gaagaagag attottae cotoosaa gaadaca toosoo yaagaaga orgeagagag cocacacaa atoo toosoa gaagaaga titaatag gaagaagag attottae ortoosaa gaacacce gaagaaga ortoosaa atoo oreo oreo aaattogaa gaacatta agaagate gaagaagag attottae acoo ortoo a gaacace ticaagaag gaacattag aattoo ortoo oreo agaagaaga titaaaa atoo gaagaagaga taottaaga agaagaaga titaaaa atoo gaagaagaga taottaaga agaagaga cacacaaga agaagate gaagaagaga taottaaga agaagaaga acacttag agaate gaagaagaga taottaaga agaagaaga agaagaga cacactaga gaagaagaga taottaaga agaagaaga agaagaaga gaagaagaga taottaaga agaagaaga cacacaaga gaagaagaga taottaaga agaagaaga cacacaaga gaagaagaga taaatogaa taotoagag gaagaagaga taottoaa	tat	tggatc c	cagcaaaggc	gatttttaa	ttccttqtqa	aacttttgta	atatgaagtt	1920
<ul> <li>⁵ Étégottég tgaágíta attatatór attugégé égocaggiga tgacaga</li> <li>⁵ Étégottég tgaágíta cosgagoca gagagaga cigocaggiga tgacaga</li> <li>⁶ giacsaggig (cocagaga attosagg) digggaaa</li> <li>⁷ cacagaggac gotagagga gocacacag aggagagaa cacgacaga acagata aggagata cacgacaga agtotacaga agtotacaga aggagagaa cacgacagag cacagtag agatotacaga agtotacaga aggagagaa cacgacagag agatotacaga agtotacaga agatota acagaaga agatota acagaaga agatota acagaaga agatota acagaaga agatota acagaaga agatotaca cattacagat cacgaga agatota cacatogaa agatota catotagat tacacgaa titotatagg gogacaca titotagag agatota agagataga cagataga agatgga cocgatggag tacacaga agatota agatggata tacacgaa gatotacaga tacatgaa agatota agagagata tactogaa agtocaca cattagga agatgga cagatgga gogatgga totacagag ggatga cagataga agatogaa atacga ggatgata cagagaga agatgga cagatagag agatgga tgacaacag gocaagaga gagataga agatgga cacacgag ggataga tacacgag ggataga agatgga cagataga ggatga ggatga tagagaga agattgac agagaga cacacaga gatagaga gagataga agataga ggataga ggagatag dagataga gaattgaca tagagagat cacacaga ggatagaga gagatga ggataga agatgga cacacaga gatagaga gagataga agataga gagagaa agatgga gagataga gaataga gagagaa agataga gagataga gagatga dagagaga gatagaa gatagaga gagataga gaataga gagataga gaatagaga gagataga gaataga gaataga gaataga gaataga gagataga gaataga gaataga gaataga gaataga gaagaga gaatagaa gaaadaa agaagata agagaga gaataga gaataga gaataga gaataga gaagagaa agaagaa gaaadaa agaagaa gaaadaa agaagaa da agagagaa da agaagaa da agaadaa da agaagaa da agaadaa da agaadaa da agaadaa da agaadaa da agaagaa da agaadaa agaadaa agaadaa agaadaa agaadaa agaadaa a adaadaa agaadaa a agaadaa a</li></ul>	gaa	tttat t	attootaaa	ctataaatot	gtgaagttgg	agtatacctt	taccttctta	1980
⁵ ttgättetag tttagtaat catggacae gaagaagaag cgolaggta tggacaa gtactoata gggetegaca tagggacta checgtigga tggeogac acacata gaagaattig atogtigee tectettega checgingga acacatage acagaggae getazaage gaacacae acticgga acacatage attectigtig gaggaggat aaagacag gaacae aaattega acetigga cacagaggae getazaage ggacaeca atettegga acacatage craaggigee taccatgaa aggaggaet gaaccaea acticgga acacatage craaggigee taccatgaa aggaggaet gaaccaea acticgga acacatage craaggigee taccatgaa aggaggaet gaaccaea acticgga aggagaaga ceceggacae ttotettig aggaggaet gaaccage acaceage actocaea gg cratettee acgedgat tecetteg titacegee tiggaacag ceceggacae tecetteg aggagaaca gaacgaege acaceas actic gaagtigee gecaagget actotette tacaceae actocaga ggettege ettoateega closed actocaeae agaetgaet tecettega agteege ctocatagee gatettee tecettega gaacaaae tigetgee agaatage cateogaga da atgagaate agattee gaeted agattee gaggaggee teceaggaa attgacee gecaaggee tiggaacae tigetgee gagagaagaa agaggate tittegaca gecaagee tiggagaa agaagga geastifie taagaaga cacacaag attgacee gecaggee tiggaacae tiggigga acacae gagagagge dacatega gattetaea geteetig gagaaccae tegatagge catacaeg gaaggate tittegaca gecaagee tiggagaa agaagga gagagagag attitate cotteetig gagaacee gaagatig gaagaga gagagagaa attega gacagtig gaagatega gagataga gagagagag attette cotteetig gaaacae cigtagga agaaga gagagaagge tecteaga gaagatega tecteetigga agaagag gaggacgee teceagga gagagatega agagaga gagadae tiggaaa tag gagagagga attette cotteetiga gaacaette ggtaacae gagedagga attette cotteetiga gaacaette ggaagate acacae gagagagge attette cotteetiga gaacaette tegataaa gagagagge tactetaa agaggaga caceacae tecgataaa gagagagge tactetaa agaggagata cacaeagge gaattega gagagagge attette cotteetiaa gaacagg cagatte tacaegga gagagagge tactetaa agaggagata gagagaga cacetagge tacaegge gagagagge tacteaga gagaggaga cacetagga tacaegge gagagagge tacteaga gagaggaga cacetagga gagattega gagagagge tacteaga gagaggaga cacetagga gagadae gagagagge tacteaga gagaggaga cacetagga gagadae gagagaggag tacteaga gagaggaga caceggaga caceaaga	ttt	acttta t	gatagttta	atttatatot	attttgagtt	ctgacttgta	tttctttgaa	2040
⁴ ⁴ ⁵ ⁵ qiqqotqaa taqqqactaa taqqqactaa ticqqtqqa tiqqqqagga taqqtqqaq qiacaaqqq coccaaqa ayttaaqqt qiaqaattiq acqqiqqoc toctticqa caaqqqqace gotaqaqqe gotaacacaa aqqqaqaa aqqattqqa qattattoc aacqqaqtq cocaaqqaq qaqatacta daqqqaqta caaqqaqaa aqqattaqa attoctqqt gaqqqqac taccattaa attoctqqt gaqqqqat caaqqqaq qaqatqqtq tacaaqqaa aqaacataa ticacqqa attoctqqt gaqqqqat caaqqqaq qaqatqqtq tacaaqqaa aqaacataa ticacqqa qaqqtqqt taccatqaa aqacataa attoctqqt gaqqqaqat aqaqqaqa aqatqqt cocaaqaqqqt taccatqaa aqacacaa ticacqaq aqqtqqt tacaaqaa qaqqqqtat tacaaqqaa qaaqaa qaatatqt tacaqqaa aqatqt aqaqqaqat attoctqqt gaqqqqt acaacataa cocqqqaaatta tacqqaqt qacaacaa attocqqaq qqttqqa citqattqo caaqtqct tacatqaaq gaaaqatq gocaaqqt acataaqaa qaacqqtt taqqaaq qaqatqqt taaqqaqa caataqqe qacatqtq qaqaaqaa qaacqqat ttoqqaaat tqatoqt cocaataqce qattatce taqaaqaa qaacqqat ttoqqaaat tqatoqt caataqqe qacaatqa qattaacaa qactqqcaa ttoqaaqaa qacaqat qaaqaqaa qacaaa qactaqaa caaacaaa tattaqaa caacaqqaq qacaacaa qattaqaaa qacaacaa taqaaqat qaqaqata qaaqaqa qaaqatqa qaaqatqa qaatqaa qaaqaa qaqaqaa qaaaqaa qaaaqaa qaaqaqaa qaaaaaa qaaaaa qaacqaa taqaaaa qaacqaa taqaaaa qaacqaa taqaaaa qaacqaa qaaaaaa qaaaaa qaacqaa taqaaaa qaaqaqaa qaaaaaa qaacqaa taqaaaa qaacqaa qaaaaaa qaacqaaa taqaaaa qaacqaaa taqaaaa qaacqaaa qaaaaaa qaacqaaa caaaaaaa qaacqaaa taqaaaa qaacqaaa qaaaaaa qaacqaaa qaaaaaaa qaacqaaa caacaqaa qaaaaaaa qaacqaaaaaaa qaaaaaaa qaacqaaaaaaaaaa	tte	ttotag t	ttaagtaat	ccatogcacc	ααααααααααα	cocaaootoa	togacaaaaa	2100
⁴	ata	tcaata σ	ragetegaca	tagggactaa	ctccattaga	tgggccgtca	tcaccgacga	2160
gaagaatti a atogtigee teettiga eteegagaa atogtige atoctoga agagagae actogte acagaagae getaacaea agagagae agatetee acagaagage getaacaea agagagaea agatetee acagaagage getaacaea agacaecea atotteegag acategte eqeagaea atoctae aacagaea getaeceae atotteega tegagaa actogte eqeagaeae teetaacae agagetgae gaacaecea atotteega tegaaaa agtaeceaea actoseae tegataaa agtaeceaea agateaeaea agateeaeae getaacaeae atotaeeae eteaeaeaea eteaeaeae gettitega gagaaceea teaeagae ecegagaeae teetaeeae gettitega gagaaceea teaeagae gaeceagae atottee egegetaa teaeagae gaegeaaee tegataaag gaeceaaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeae	ata	aaggtg g	rectecaaga	agttcaaggt	attaggaaac	accoacaooc	acagcataaa	2220
¹⁰ gatotteg getagaage getacacaa aggaagaa gaacteget titegagaa attectegti gagaagage getacacaa agtaceaca attecege titegaga attectegti gagaagat aaaageaga gagaacaca atteceget titegaga cegeggacae titeetatig aggaggacet gaeceaga aateegae getacaa citeateegaa agetgtea tegetigat titeetategae gaeceaa taateegae cegeggacae titeetatig aggagaaca gaeceagae aateegae gegetigga attectegtig eegaegae tegetigat titeetategae gaeceaa teaaegee ceteateegae getageta tectere getategae gagaegae gegetigga cetegategae gedagdet teetere getategae gaeceaa teaaegee ceteateegae getatetee eegaetae ageegae gaecea ceteegaegae getagetae ageegae getategae gegetig cetegaegae gateetee eegaetae ageegaetae teaaegee ceaateegae gaecaecaa gateegee eegaetae teaaegee eegaetae eegaetae cegaagetae aaggaagte tittegaeca gecaagae gecaateet gaagaeta cegaagege teaacaaega agteegae gecaatee gaagaege cetegaeaga gaettee etaaeagae gecaetee gecaagae gecaetee gagegeagae aagtegate etaaeagae gaecaeae ecaeceaga ggaatee ageaget gaggeagaega gaettee etaaeagae gaecaeae teeseagae gegaetee gaeagae cetegaeaga atteetae ageggaat gagagae etaeceaga ggaatee ageagea gaggeettee getaedte cegaeggaa gaecaeae teeseagaa gaeggeet eegae gaggaagge atteetae ageggaat gagaecae teesagaag tegiggae cacaaggig agateetae cagaeggaa gaecaeae teesagaaa teesgae gaagaagge ataeteaag agaegae etaeceaga gaegeet geteesae gaagagge ataeteaaga agaegae etaeceaga gaegeete etaeee gaagagge ataeteaaga agaegae etaeceaga gaegeete etaeeee gaagagge ataeteaaga agaegaega etaeceagae gaagaege gaagaagge ataeteaaga agaegaega etaeceagae gaagaete etaeeee gaagagge ataeceae etagaegae etaeceagae gaagaegee getaeeee etaeeee gaagagge ataeceae agaegaegae etaeceetga gaacaeee etaeeee gaagagge ataeceae agaegaegae etaeceetgae gaacaeee etaeeee gaagagge ataeceae agaegaegae etaeceetgae gaacaeeee etaeeeee gaagagge ataeceae agaegaegae etaeceetgae gaagaeeee	gee	aattta a	tcaataccc	tootottooa	ctccccaaaa	accoctoaco	ctaccaccet	2280
<ul> <li>¹⁰ Graggigue acquargigu cyacteett theorege theorege</li> <li>¹¹ attectee aacgagigg coacgigug cyacteett theorege theorege</li> <li>¹⁵ attectee aacgagigug coacteett theorege</li> <li>¹⁵ tiggagiga theorege</li> <li>¹⁵ tiggagiga theorege</li> <li>¹⁶ correst theorege</li> <li>¹⁶ correst theorege</li> <li>¹⁷ correst theorege</li> <li>¹⁷ correst theorege</li> <li>¹⁸ correst theorege</li> <li>¹⁸ correst theorege</li> <li>¹⁸ correst theorege</li> <li>¹⁹ correst theorege</li> <li>¹⁰ correst theorege</li> <li>¹¹ correst theorege</li> <li>¹¹ correst theorege</li> <li>¹¹ correst theorege</li> <li>¹² correst theorege</li> <li>¹² correst theorege</li> <li>¹³ correst theorege</li> <li>¹⁴ correst theorege</li> <li>¹⁴ correst theorege</li> <li>¹⁵ corre</li></ul>	gad	acced a	rctagaagge	actacaccac	aaggaagaag	accyccyagy	acctacaggee	2340
⁴¹ attectiqti gagagagi gatus taasqaaga gagacacca titeteega actegi ergagitgee taecatgaa ajtaectae etteteega actegi ertaecega aagetgat tiggettgat titeeteega erteateega etteteega etteteega titegitget aagetegit erteateega etteteega etteteega etteteega aattege aattege erteateega etteteega etteteega etteteega aagtegit erteateega ettetteega etteteega etteteega aagtegit erteateega ettettee tiggegaagae geagtigtet aasgeaeet aggegaagae ettetega gaaeeea tigategit erteateega gateateete tiggegaagae gegeateete tigtetgee eraatagee gateettee tiggegaagae ettegegaga gegeate eraagaega etteteetee tiggegaagae ettegegaga gegeateete eraagaega gategitg tigategee ettegegaga gegeateete eraagaega gategitg tigategee ettegegaga gegeateete eraagaega gategitg tigategee geeateeteeteeteetee eraagaega gategitg tigategee geeateeteeteeteeteeteeteeteeteeteeteeteet	cat	ttataa a	accagaagge	gecaecaecag	aaggaagaac	ttagaaccagaa	ttaagaaato	2400
actorygeractorygeractorygeractorygeractorygercropagtaggertacctydetacctydetacctydetacctyde15cropagtaggertacctydecropagacatacctyde16tagagtygertacatydecacctorygerggaaacgaatacctyde17cttcatccagctogttcagcactorygerggaaacgaatagagtger18cttcatcagccactorygerggaaacgaagaacgaadtaccgre20catcorygagtagagtgerctogtorygergaaagaagaacgaadgerctogtoryger21catcorygaggtoatcacagaacgaagctoctorygergaagaagaagaacgaadger22catcorygaggtoatcacagtoacaaggtotaccagggtoaccacatagagtger23catcorygaggtoacacacagtoacacagtoacacacggacgaadgergaagaagaa24catcorygaggacctorygaggtoacacacgtoacacacgaagaagaagaa25gaggagagggattcottaccottorygaggtoacacacgtoacacacgaagaagaagaa26gaggagagggattcottaccottorygaagtoacacacgtoagaagaagtoacacac27gaggagaggaggattcottacacactorygaagtotacacagtoacacacgtoacacac28gaggagaggaggattcottacacactorygaagtotacacacgtoacacac29gaacacgaggattcottacacactorygaagtotacacacgtoagagaac20gaacacgaggattcottacaccactorygaagtotacacac20gaacaggagattcottaca <td>940 9++</td> <td>staata a</td> <td>acyayacyy</td> <td>aaaaggegga</td> <td>cgactectte</td> <td>atattagga</td> <td>agatagtage</td> <td>2400</td>	940 9++	staata a	acyayacyy	aaaaggegga	cgactectte	atattagga	agatagtage	2400
clqaqqdqdc       adqcdctac       tacctactac       clqaqdad       tqcatactac       tqcatactac       tcqcatactac       tcqcatactac       tcqcatactac       tqcatactac       qqcatctac       tcqcatacac       qqcattcac       tcqcatacac       qqcattcac       tcqctactag       ccacacgac       aaqccagac       aaqccagac       aaqccagac       gqcattgac       tcacaccac       qctttagac       cacaccac       qctttagac       cacaccac       aqcttagac       qcacacgac       qqcattgac       tcacaccag       qctgatagac       cacaccac       aqcttagac       qcacacgac       qqcattgac       qcacacgac       qcacacgac       qqcattgac       qcacacgac       qcacacgac       qcacacgac       qcacacgac       qcacacacg       qcacacacg       qcacacacg       qcacacacg       qcacacacg       qcacacacg       qcacacacg       qcacacacgac       qcacacacac       qcacacacacac       qcacacacacacacacacacacacacaccacacacacac	200	stygty y atagaa t	aggaggata	aaaaycacya	gagacaccca	ataaaaaaaa	acategicga	2520
Createry and a standard and the standard and a standard and and a standard and a standar	cya	jiggee i Saagsa s	accatgaaa	tgaggttgat	ttaccac	ataaataaaa	tgataaget	2520
15       cttoctoctoct       gdygdacact       gdygdagact       gdygdacact       gdygdagact		accyac a		Lycycligat		cicycicaca	tyacaaayut	2580
¹⁵ Criticateog cicquitaga betatados getricigas gagatedas titadoges titagatges gecagedas tectedes getregas gagetinga getregas gecagedas tectedes conserves and tected tecter tegeogas gageting ciccatacas and tectedes conserves and tectedes geogas and tectedes gagetings and tectedes gagetings generated tectedes gagetings and tectedes geogas getregas gagetings generated tectedes gagetings gage		Jyacac L		agggagacci	gaacccagac	aacteegaeg	Lggacaaget	2040
¹⁵ tigatigac gecaaggeta teetetee tegetetee aagaeggaeg tiggaagat tigategee etceetigga tigategeete actives tegetetee agaeggaeg tiggaagae agetagg geagtigtet aagaeaeet acgaeggae categeaaa ccaataegee gatetettee tegeogetaa gaaetigtee gaegaatee tigetegtee etaegaegga caecaeag attigaeet geteaaggee diggagaatee tigetegee gagaagtae aaggagatet tittegaeaa geteaaggee diggagaagae eggagaggee teecaggaa gatteaaa geteaeaggee diggagaagae gagaggagg gatteate digaeggee geteaaggee gaaagaetig gagaeggag gatteate eteeteaag gagaeedga gagetgete tittegaeaa geteaeaggee gaaagaetig gagaeggag gatteatea eteeteaggae digaagaeggee diggagaagae gagaeggag gatteatea eteeteaggae gagaagaete gagaeeegga gagetgete teateagaa gaeaggaege gagaagtee aaggagaee eteeteaggae gagaagaee diggaga gagaagtig atteeteaa agegegee acteeeggaa gagaagtig atteeteaa agegegee acteeeggae gagaaetea getegeg gagaagtee geteagteet teategagag gagaacee teggaagaete gegegee gaagaaggee ategtegee geteetea gaeggaag tegegeag gaagaaggee ategtegee geteetea gaegaaggae teeggaag gaagaaggee ategtegee tigeteteaa gaecaacagg aagggaget eeggeag gaagaaggee ategtegee tigeteteaa gaecaacagg aagggagee teaceagga gaagaaggee ategtegee tigeteteaa gaecaacagg aagggagee teaceaggaa gaagaaggee ategtegee tigeteteaa gaecaacagg aagggagee teaceag gaacagggaga taeteeaaga agaeggaag gageeaa de eedee ggaeaggte aacgeeaa gagaagaag gaggaeae de eedee ggaeaggte aacgeeaa gagaagaag gaggaeae de eedee ggaeaggte aacgegaaa tigeogaaa gaggaeae gaegaegga acteeteg gaeaggaggae ateeagaag tigaegagaa gaeggeagga actaedge gaeagaggee ateeagaag tigaagaaga gaaggaate caeageag tigaaacagge digaacaaca gaagaggae gaagatee gaeagaggee ateeagaag tigaegaea gaagaeag gaegaeee eetee gaeaaggege ataeaagae tiggeeaaa agaegeag gaagaeee eetee tigaaaaggee daaacaee caeagaeag tiggeeaaa aageaggag gaagaeeeeg tegaaaa taggeaggee tagaagaage tiggeeeaa aaageea gaeageeg gaagaeeeeg tegaagae tagaegaggee tagaacaee tegaagae eggaagaee degaagaege tegaagae tagaegaggee tagaeaaage tiggeeeaaa aaageea gaegeegg aaaactee gaeagaggee tageeeaaa aaggeeee egaaactee eegaaaeee eegaaaeee eegaaeeeee	CUI	atccag c	ccgttcaga	cctacaacca	gettttegag	gagaacccaa	tcaacgccag	2700
ctcgatggc cagtgccg gcgaaaga gaacgacg ttcgcaaat tgateget ctcctgggg ttgatcca attcaatc caattcga ctcgccgag acgtage caatacgc gatcttc tcgccgag acatgtc gacgaaat tgateget caatacgac gatcttc tcgccgaa gaactgtc gacgaaat tgateget caacagacga cacacaag attgacca gacacage ctggtgaac agcagetg cgagaggtc taccagag attgacca gtcaaggc ctggagag agcagetg cggaagggc tcccaggag agttcaa ggtacatac ccgtggg gatact cggaggggc tcccaggag agttcaa ggtacatag ccatctgg gagaat cggaaggta aggagatc tttgacaga ccacatgg gagattga agaagag cggaacgag ggtttag tgaagtga ccacacagg gagattg agaagag cggaacgag gattcata acgtgggc accacaag ggaacatc cggaagggg attcata ccacaggg ggaactca ccactggg gactcag attctaa agtogggc accacacag ggaaatt tcggaga gactcag attctaa acgtgggc accacaag ggaaactca ggaagat gactcag attctaa accctgg gac attgagag agaacta ggccgtcc gcaatct taatgaga gacgaag ttgacgaa tcggaaggg attctaa accctgg gac ttgagag attgaca ggacggt cgcaacag atcctaag agacatac cccctgg ag gagagagg attctaa agtogag gatgaccaa ttgaaaa atcggag gaagaaggc atctcaaa agaggag ttgacaaca ttgaaaa atcggcc ggaaggtg ctgccaaca cacctgt tgacgat ttacaagg gaagaaggc atcgtogac tgtctaaa agcaacag aggagadc tcactgg gaagaggg tagaacgag agacgag acatctgg gacatgg cacctog gaagaggg atacaaa aggagag ctacacag gagaagat cgtagaa gaagaaggc atcgtogaa tgatgaag cacactgg gacatagg acatactg ggacaggt agaacagg agacagag acatatac gcgggga cactactg ggacaggt agaagaag cgaacag tcagaggag acatactc gcgagat tcacctg caattgg agaaggag tcgcaacag ggacaca gcagatac cacaggg agtccaca ggacaggg ttgacaacag tgagaag caacatac gaaggag actacacg gaaggag tgacagagg tgagaaca caccacag gaagatc ccacagg gaactact ggacaagg tgagaaca caagttc cgaagagg actacactg gaaggc caattgg caacagag ttgacacaa gaaggag acacagg gactacat ggacagggg tgagaacaca tagggac aacatacc ggaggg actacacg gaagga tgacgaggg tgacgaa aggagg tgacacaa gcaggg acacacag acacagta acaggag ccaatggg tgacacaa ggaacgac aaggaga caacacag gagaaga ccgcaaagg tgacgaaa tgagaag tgagacaa cagtagg aagaagg acacacac aggag gagagggg tcgcaacagag ttggccaa aaggtgt gaaggag acaggag gaccaggg ggatggac tacacaaag ggacgacag acacacag gaagaagg caacaccg gaa	τgg	jttgac g	JCCAAGGCTA	tectetetge	tegtetgtea	aagtccagga	ggcttgagaa	2760
cccccgggg ttgactccca acttcagt caacttcgac ctcgcggg acgctag gcagttgtc aagacacct aggcgtag ccccagcag acgcgg ccatctgag gtcacccag acttgacct gcctaagac ttgctgcca agtagg cgagagtac aggagatc ttttcgacca gccaagac gctaggcg gtacact ggggggcgc tcccaggag gttctaca gtcaagac ctgtgagaa agcagtg cgggaagtac aggagatc ttttcgacca gtcaagac ctgtgagaa agcagg gagcattag gagcatc ttttgacat gtcaagac ctgtgagaa agcagg gagcatcag ggagcgtc tcccaggaa gttctaca gtcaagac ggaagatt gagcactag gagcatc ctcacaaa ccactgga ggacacag catctg gagcactcag attoctac agtggggc actogcag ggaaactc ggtggg gagcattcag attoctac acgtgggc actogcag ggaactca ggacctcag attoctac agtggggc actogcag ggaaactc tggtgga gagcattca gtagcag agtctct catcgaag ggaacct ttggagaa acggga gagcattca gtagcag agtcct actcagaag ggaac ttggagaa tcgtgga gagcattcag attoctac acgtgggc actogcag ggaactta ggtggc gaggaggt cgcccaag actocctgt gtacggaa ttggagaa tcgtggaa gaggaggc atcgtcgac tgtcttaa agacaag agggagat ctgggag gaagaagg agtagtag agacatta ccccggaa ggagact gcaggag gaggaggc tactcaaga agacggga catcatctgg gactctg ccaggag gaggaggc atctcaaga agacggag catcattg gacaacg ggaagatg gagagggg agacagg agacgag aggagaga aggggaga actatta ggaacaggt ggacagga aggagag gagcagg actacttg ggaactg ctaagcag gagagggg agacggaa tcgtcgaa ggaacag gagagag actatactg actcctg ggacagga accagggaa ggagaca ggaacaa ggagagag actatactg actcct gtccgacgga ttcgccaac ggaacaa gagaggg actatactc gagagg tggagaga caacgggaa tggagaga ggagaca ggagaata cggagaga actatactg actcct gtccgacgga ttcgccaac ggaacaca gagagatt cgaagag gactcatg caacgc tggagaggg ataaagag tgtggga acaacaa ggagagat tggagag tggacaga ccaacgag gtggagaa acaacaa ggagagat gaggaga tggagagga caacggaga tggagaga tgaaggag actatactg actctg gacaactg ggaggaca caagggaga tgagagag gagaatac cggaagaga actatactg actca ggacaggag atggagaga tgtggaa agagagag actatactg actactg gacaactg ggaggac acaggagag tggagaga acaata ggaaggggg ctgaagag ggacaa agagggg actatact gaaggg tgggggga ttggcaaca agaggaga actatactg acaaggag tggagaga gaggggga ttggcaaca agaggaga ggagada acaagga actact gacaacgg gagagagag tggcaaca agaggaga acaata ggaa	CUI	attgee e	agetgeetg	gcgaaaagaa	gaacggactg	ttcggaaact	tgategetet	2820
gcagttgtct aaagacacct acgacgaga cetegacaa ttgegee agatage ccaatacge gatettete tgegetaa agatetgte gacgaate tgetgee gcagaagta caaggagate tttgacca agetette gacgaate gacgaca ctacgacgag decaccaa attgace gacattgte gacgaate gacgaca cgagaagta caaggagate tttgacca gtcaagage cggtacgeg gatacat cggaggegee teccaggaa atttacaa gtcaatage ggtacgeg gatage gggtacgag gacgtgtg gagtteaa cagagagae ctgtgaga ageagag cttcgacaa ggaagate ctaceaga ggacaaceg ggagate ageaga gacgtaga gattetate acgeggag attectate ggagagate gagaateta gagegegg gattetate cetteetaa gageacaace ttegagaag tggage gagegetag attectate acgeggga categega ggagetage gg gggegette getagtet taatagag ggacacaa ttegagaga teggga gagagagge aagtagea cagaggaa tgacgaga gaggetaage ggagagge attectaa ageagat gagaagae teggaga gaagaagge ategegae tgetetaa gacacaag agggade teggga gaagaagge ategegae tgetetaa gacgagat gaggaaget gedggag gaagaggge tacteaga agategag tgegagaa teagaga gaagaggge tacteaga agategag gacatet geteggae gaagaggge tacteaga agategag gacacae gedettet ggacaggte aagacgaga gacagaga acteetag gacategga gaagagge ategegaa tgategaa gacgagag acteetag gacatage ggacaggte aagacgaga gageagaa gacgagag acteetag gacaggag gacagagga tagaacag gaagaagag cateetag gacaggag getecae ggacaggta tagaacag ggacacae geagagag actactag gacggaga cate ggacaggt ategegaa ggacaga gageatac ggeggaa actace gacaaggga ategegaa ggacacaa geagagat ceagagag actace gteegaega atecagag gteagagage caagagga actace gteegaega atecagag gteagagage caagagga actace gacaggaga atecagag gteagagage teagagag actace gacagggag atecaeae ggaagaace caageaga actace gacaaggag atecaeae ggacaga caagage caagagag actace gacaaggag atecaeae ggacacae agaggadt tegagaga tggacaece gaaagge tegeeae caaggte caagagga actacega aagatga gagagagag atecaee caagggaa tgacgaag acatage gacaaggt atecaee ggaaggae taaagge caagage ceaeagg gagagagag ategeeae caagggae taaagge caagagga actacega gagagagag ategeeae caagggae taaagge caaggee caagagga actacega gagagagg ategeeae caacee ggeeaeage caaggeeae ceaeaga gagagagga taaagage taaaggee taaaggeeae caaggaga aagagaag gacaagg	Cto	erggga t	tgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
<ul> <li>ccatatagee gatetette tegeogeta gaattee tgeogetae tegeogeatee tgeogeatee</li> <li>catactaga gtacacatg agattacaa agottette tgeotgtee</li> <li>catactaga gtacacatg agttacaa agottette tgeotgtee</li> <li>cagaagata aaggagate ttttagaca gtecacaga cgetaegeeg gataatte</li> <li>cggaaggee tecagaga gattetaa gattacaa geteatage cgetaegeeg gatagate</li> <li>gageaggag gattetate cetteetaa ggacacaeg gagaagtta gaagate</li> <li>gageaggag gattetate cetteetaa ggacacaeg gagaagtta gaagate</li> <li>gageaggag gattetate cetteetaa ggacacaeg ggaaagtta gaagate</li> <li>gageaggag cateetaa agteetaag gacacaeg ggaaactea ggeetaegeg gataacte</li> <li>gageagagag gattetate cetteetaa ggacacae teggagaate</li> <li>gageaggage tegeeaa atteetaag gacacaeg ggaaactaa teegagga</li> <li>gageagagge tegeeaa atteagag gateecae tegagaet tegaggee</li> <li>gageagagge ateetteaa agategate dagaegee geetaette eggagaet</li> <li>gaagaggge tegeeaa agatgage dagaeggg gaagaggag atatteaag agatgagg cacacagg gagaggag atacteaga gagagagg cacacagg gagaggag agatgagg gagaagggg agaaggagg atacteaga gagacgagg cacacagg gagaggag agaegggg agaegggg cacacagg gagaggag atacteaga gagagagg cacacagg gagaggag agaeggag agaegagg cacacagg gagaggag cacacagg gagaggag cacacagg gagaggag cacacagg gagaggag atacteaga gagacgagg cacacagg gagaggag gaacaggg gaacacgg gaacacae ggaacagag gagacagg gacteee ggaacaeee cetettea gaagaag cacacagg gagaggag cacacaggg gaagaggag tacteagag gagacgag cacacagg gagaceee cetetag gaacagag gagacagag gagacaggag cacacagg gagaggag cacacaggg gaacacaee ggaaggaga teaceagagg cacacaeeeeeeeeeeeeeeeeeeeeeeee</li></ul>	gca	ctgtct a	aagacacct	acgacgatga	cctcgacaac	ttgetggeee	agataggcga	2940
20       catectgaga gtcaacacag afctgacet gtcaagac gtcgtcettg ttgettea tgataag ctacgagag caccaag atctgacet gtcaagac ggctacgeg gatacatt cggaggege teccaggaag afttacaca gtcaagac ggctacgeg gatacatt cggaggegg agttettg tgagattga cagagagge ctgtgggag agagaga gagetaga atcgtaga gagette ctaccaaat caccetgg gagagattg agagat gacgtacag attectata catgtoggee atcgecag ggaagattg agagat ggegettee gtcagtettg tgaggtga accaega ggaagattg agagat gagetteag attectata catgtoggee atcgecaga ggaagattg agagat ggegettee gtcagtett taatagag gatgacaac ttegataaa atctgee cgaaagtg ctgecaac atceetgt tgagagtag ggegettee gtcagtet taatagag gatgacaac tegagaga gaggagge tacttaaga agaegaga gaggagge tacttacaga agaegaga gaagaagge atcgecaga ctgecttea gaccaacag agggadet ecageag gaagaagge tacttaaga agaegaga gaagaagge tacttaaga agaegaga gaagaagge tacttaaga gatgagat caccaetgt gtcagaga gaagaagge tacttaaga agaagagg cacaetteg gtcagaga teageag ggacagtte aacgeetee ttggaatta cacgagag aggtgace teaceet ggacaggt gacagggaa tgatagaga gaggecaag actatge teaceet ggacaggt gacagggaa gaagagag cacatetg gtcaggag ctacettg gtcgaaggg atcgaggaa ggacagag gagetetee gecagaggag atcatge gtcgaaggg atcacgaag ggacagag gaagagag cacatetg gtcagaga ggacaggt agagagge tactgagag ggacagag gactacteg gtcgggaa gtagagagg atcacgaag ggacagag gagetee gagagagg cacatet gtcgaagg atcgagaag tgagagea gagatacg gectgggaa gattee gtcgaagg atcgagaag tgagagea gagaget teaceet gtcgaagge atcagaagg ccagtte tgagagagg catatace gaaggagge atcagaagg ctagatac ggacatet cacgagag gaagte gagagagge atcagaag tggacagaa gagatetee gecgagagg atcatege gaaggagge tgaagge tgaagge tggacagag gaacaggg acatetge tgaagage cgaagge tggacagae tgaagagag gaacaggg acatetge gaaggagge atcagaag tggecaaca acagcag gaagatte gaagge gaaggagge atcagaag tggacagae gaagatee gecgagagg acatetge gaaggagge atcagaag tggecaaca ggaagtee gaagae tggacagge atcagaag tggecaaca acaccaac ggaagge tggagge tgaagee gaaggagge atcagaag tggecaaca ggaagatee gecgagagg acatetge gaaggagge atcageage cacacgaa gagaagge agaagge tgaacee gaaagtee gaagaege caca	CCa	cacgcc g	fatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
ctacgaagga caccaccaag atctgacct gctcaaggc ctggtgaga agacgagg cgagaagta caccaccaag agtctatac gtccaaggc ctggtgaga agacgagg cggtaccgag gagctgttg tgaagtgaa agtctacaa cttcgacac ggagcatcc cccacaaa ccaccggg agactcaag gaacgag gagcacga attcttat acgtcgggc atcgccag gaaagtg agaagtg gagcaccg aatctgag agaccatca tcccggaa gtcctggaag tggtgcc ggaggaggt ctgccaaga atcctag ggacaacca tccggaag tggtggc gggggctcc gctcatctt tactgagag gatgaccaac tccggaag gagagggg attctaca cagagggaa tggtggac atcgcagag tggtggc ggggggttc gccaaga tcctcagaa ggacaacta tccggaaag tcgggaag gaagaaggc atcgtcaaga tcctcaga gacaacca tccggaag tccggaag gaagaaggc atcgcaaga caccacg gaggaact tccggaag gaagaaggc atcgcaaga qacagta tccacgga ggaagtc cacagg gaagaaggc atcgtcaag tggtcgcac tgcttcaa gaccaacg gagggagtt ccagcag ggaagggga tacttaaga agtacgga caccacagg aggtgactg tcaagag gaagaaggc atcgtcaag tggtaggaa catcgtgg ctcggatc tcggtgga gaagaaggc atcgtcaag ggaacgag gagggaagag caccatcgg cacacatgg ggacaggt agacaggaa tgatagaa gggacaga caccatgg gagggaag catcttag ggacaggt agacaggga ggacagag cagattac ggcgggga ggctcac caatgga agaaggga tggacaga ggacagaa gaccagg gactctc caaatgat aacgggaa tgaagaga gaggtcaag actactg caccag gtcgaaggg atcgcaaca ggaactcat gaggcaag actacgc cactctto caaatgat acggagta tggacacac gagaactat cacgagag gactca ggacagga ttcccaaca ggaactcat gaaggac tctgaag actctgg gtcgaaggg atcaagg ccagttt tggacagg caactcttg atgagac tgacaagg atcgaagag ttgaacaga gaaggga gaagaac caaccaag gaacacgt ctgaaga tgacaagg ctgacaca gaaaggac gaaatacc gcggagga tgaagcc ggacagga ctgacaca acaggag gaaggac gaaatac gagacacce tcgaaga tgacaacgt ggacaca caaccac acaggag gaagaac caaccaag aacatgta gaaggagg tcgaacaca ccacgaca acaggag gaagaac caaccaag gaaggag acactac gaaggagg ctgacaca acagtc ccctcaaga gaagatc cgcaaca tcggc gaaggagg ctgaacaca ccacgaca caaccaag gaaggagg acactaca tcaggag gaaggagag caaccacac caccaaga gadggaa gaagagaa tgaagag gaagagag caacacac caccaca ggaaggag gaagacac tcggaaa acactactg gaaggagag ctgaacaca cacacaca ggagaga tcgaacc tcgcaa gaaggagag caacacac cacacaag ggagacaca tccgaaa acacgac ggacaggag ct	cat	stgaga g	ftcaacactg	agattaccaa	ageteetetg	tctgcttcca	tgattaagcg	3060
cgagagtac aaggagatat tittagaca gtacagaga ggatacgee ggatacgee gatacatt eggaggee eggaaggag agtacata gtacataa gtacatag eggataceet eggaggagga agtacata ggaagagga etgtagaaggag etgtagaggag agtacata etacacagga gagatacae etacacaga ggaaacae teggagagt aggagaggag agtacacae etacacaga ggaaacae teggaggag etgee actoo eggagaggee actoo eggagagee actoo eggageee actoo eggagageee actoo eggageeee eggaeeeeeeeeeeeeeeeeeeeeeee	cta	jacgag c	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
cggaggcgcc tcccaggag agtttacaa gttcacaag ccatcttg agaagtag cggtaccgag gggcgtgtg tgaagtgaa caggagac ccatcttg agaagtag ggagcaggag gatttcatc cctccaaa ccccggag ggagctcacg ccatctg gaggcaggag gatttcatc cctcctaa ggaacaccg ggaagattg agaagtag ggacaccgc aatctgag agaccatc tccctggaa ttcgaggaa gggcgcttc gccagt tcatcaag agaccatac tccctggaa ttcgaggaa ggagagaggg caccaaggtg agtgccaa cagagggaa agaggagc tcatcaagag ggagagggc tactcaaga agatcgagg agaggagc tcggagag ggacaccgg aagagggag tagtcgac cagaaggaa gaggagac tcggagag ggagagggag tactcaaga agatcgagg agaggagc tcggagag ggagagggg tactcaaga agatcgagg actacttag gacacggg agagggga tagtaggg caccaaggg agagggg caccatcg ggacaggga gagagggg agacggga ggacaggg agacacgt ctgggac ggacagggag tactcaaga agatcgag caccttgg gcacagt tcgggaa ggacacggg agacggga agacggga cacctctg ggacatc ctgggact ctggttgaa gacagggaa tgatgagag cacctgg gccaact ctgg ggacaggga tactcaag agacaggg caccatct ggactact ggacacgg acttactc gggact ctggagaa ggacatggga tagtagaag gaggccaag gcagggag actactcg ctgagaac ctgttggaa gacagggaa tgatgagag caccttg gacacgg ggactccc caaattgat aacgggta ggaacacg ggacacgg gacacgg actactcg actctcg gtcagaga ttgccgaaga ggagacacc ggagggg cacacgag agaggagg cacacggg ggacaccg tcgagaac tgaggaggc tacacagagg ttggaggca caaactacc agaaggga cacacgag gacaccg tgaggc tgaggaggg ataaagag ttggccaca acagcaga gacaccg tgaggac tgaggaggg ataaagag ttggccaca agaggga gacaccg tgaggg cacaca tcgtcga ggacacggg accacac ggaaggg cacaca tcgtcga tgaggaggg ataactacc gaaaggg aactaccta gacggagg acacggag acatcgg acacggag agacacce tcggaaa tgaggagac tcgcagaa caactacc agaaggga cacaccag ggacaccc tcgagaac tgaggagga ttgtccgaa caactacc agaaggga cacaccaag ggacacce tcgagaac tgaggagga cacacgag agaggacac tcgtcaac tgagagagg atgacacce cacacagg gacacce tcgagaac tgaggagga cacaccag ggaggaccaca tcgtcaa tgaggagga acatcacc agagggag acaccce tcgagaac gaaggagg atgacacce cacaccaa gaggagga acatcacce acagtagg tgaggagg atgaccaa acaggga gacac	cga	aagtac a	aggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
ctyczacac gaąctcy ty tyaąttya cagagagac tyttaga agcagag cttogacac ggagatc ctocacaa cac cagagaggac tytagag agcagt gagcatcag attottat acytoggc attocoga ggaactca ggaagatt gagcatcag attottat acytoggc attocoga ggaagatt gggagctc gotagtot toatagag gatacaac tootggaa toggag gggagct cgotagtot toatagag gatacaac tootggaa toggaag gagagagg agtotac cagaggaa tototacaa attocaga ggagaggt agtacga attoctaa acytogga toggaag toggag gagagaggt acytogac tactocaga attocogaa gggagagot toatacag gaagaaggt acytogac togtogac tactocag ggagagt toatacag ggacaggt agtacga agtacgag agtacgag aggagagot toatacag ggacaggt aacgocac tyggacta cacgaggaa totagtog ggacaggt aacgogaa tyagagag catcotag gacatact ctygtet ggacaggt agacaggaa tyatogaa gaggagag catcotag gacatage gaatagag agaagagg agaagagg catcotag gacatago toataca ggacaggt aggacagga tagaagag cagataac ggotggga ggottoo caattyat aacggata tyaagaac ggaagaa gaggagag catataco caagaggga atcagaga tgaagaga gacagga actaaccg actotto caattyat aacggata ggaacaga tagacgag acatact gtocgacgga togcagaa tyagagac agataac ggotggga gottoo caattyat aacggata ggaacaga tugacgaga daatac ggotggga gactact gtocgacga atccagaag tugagagca caagcaga acatacta attaga gacaggag atccagaag tugagagca caagcag acatacto attacto caagaggga atcagaag tugacagaa gaagagga gacacagg acatacto tgcaactg gtaaggag tygaagaca caagcaga acatota tugagag tugagagg agataca acaggta agaaggag gaagatto tgacgagga atcagaag tugacaca agaggag agaacacga acatota tagagagg agataca acaggag tagaagag gagaacacag acatota tagagagg agataca acaggag tagaagag gagaacacag acatota tagagagga tugacaca acaggag agaacagg gagaacacg togaaac tagaggagg tugacaca acaggag ggaagat caaggag acatota gacacgtot gaagata ccatgaca acagtac caagaca gaccacgag agataca acaggag agaacagg ggacacac togaaac tagaadga aacatacc ggaaggac ggacacac tugagag gacaggag tugacaca acaggag ggataca aactotag gacaccta aagagag acatota gaaggagga tugtocaa acaggag ggataca accoca gaagagagg tugacaca acaggag ggataca accoca aacaga gagacaggag tugacaca acaggag ggataca accoca aaaaat toagaca aggaga tugtocaa ggacacac ggagaacac caacaca gaaggagag tug	cgo	jgcgcc t	cccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
<ul> <li>cttcgacaac ggaagcatec etcacaaat ccacetggg ggottecag ccatettg gaggcaggag gattetate cettectga ggacacege gagaagattg agaagate gacetteag atteettae acgteggge acteetgaag ggaaactea tecagagag tegtgega gggegettee geteagtet teategag ggagacattae tecaeggaa tegtggaa gggegettee geteagtet teategag gatgaceae tecaeggag aggaagetg ecggaagge acteetga gacacaagg gagagge acteetgaa gacaetag ggacagge acteetgaa gacaetag ggacagge acteetgag aggacaget geteagae tegtggae gaaggagge acteetgag aggacagga gagggaget teaaeggag ggacaegge acteetgag gacaecagg acateace gacaecage ccaeaatagae acteagee aceetted gaceaacagg caaggagget tegecaaca ggacaecag gacaecagg acateagee aceettee acaeaatagae tegecaaca gaagggaca tecagagag acteace gacaecage tegaagae tegecaaca gaaggagaactt tegaagag tegecaeca aaggaggae tegecaaca gacaecagg acaecagg tagaggag acteace agaagge acaecagg acaeggag acaetagee tegaaaacag tegecaaca aagggaaattee egecaaaa acaggagg acaetaege tegaaaaa tegecaga gacaecag gacaeceg tegaaaaa actaetgg gacaecagg aaggaggag tegecaaa acagged ecaecaca gegaagtee cacaecag etcagaaaa actaetgg gacaecaeg aaggaggag tegecaaa ggegaeae ecaecae gegaaaaa actaetgg gacaecaeg tegaaaaaa accaecae gegaaacae ecaecae aceaecae aceaecae ecaegaaa aceaecae ecaecae ecaeaeca aceaecae ecaecae aceaecae aceaecae aceaecae ecaecae ecaecae aceaecae ecaecae ecaecae ecaeaeae aceaecae ecaecae ecaeaeaeae</li></ul>	cgo	accgag g	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
<ul> <li>²⁵ gaggcaggag gatttetate cetteetgaa ggacaacege gagaagattg agaagate gacetee gacetteetate acgtegggee actegeeaga ggaagatte agagate ggggegettee geteagtet teategagag gatgacaeae tteegataaa atetgeed gggegettee geteagtet teategagag gatgacaeae tteegataaa atetgeed gaagaagagg etgeeeaga acteetee gagagaggee teegataae cagagggaa eateetee ggacaeae tteegataaa atetgeed ggacaggte acgteegae etgeetee ggacaeae ttegataaa atetgeed ggacaggte acgteegaeae ttegataaa atetgeed ggacaggte acgteegaeae ttegataaa atetgeed ggacaggte acgteegaeae ttegataaa atetgeed ggacaggte acgteegaeae ttegataga gadeetee gaeaegaeae atetteegaeae atetgeegaeae ategteegaeae ategteegaeae ategteegaeae ategteegaeae ategteegaeae ategteegaeae ategteegaeaee gaeaeggaea agategage caceettee gaeaeggeae aceetetee ggacaeggea gaeaeggaaa tgategaae gaeaggagaa actaetee ggeeggaeae aceeteee ggaeaeggea gageegaeae gteeggeaeae geeggeaeae geeggeaeae geeggeaeae aceeteee aagggaeae ategegaeae ggaeaeeae gaeaggaaa actaetee aceedgeeae aceetee ggeegeaee ateegaeae ggaeaeeae geeggaeae ateegaeae ggaeaeeae geeggeaeae aceeteee aaggaeae ateegaagag etgeaeeae gaaggeae ateegaeae ggaaaggee gaaaceee ttegageae ategegeae aggaeaeeae gaaggeae ategegeaee aggaageeae gaaggeeae ategegeae aggaeaeeae gaaggeeae ategegaeae aceetee gaaggeeae ategegeaee agaaggeea gaagaeeee ggaeaeeee ttegaeaeeee ggaeaeeee ttegaeaeeeeeeeeee</li></ul>	ctt	jacaac g	gaagcatcc	ctcaccaaat	ccacctggga	gagetecacg	ccatcttgag	3360
gaccttcaga attecttaet acgteggee actegecaga ggaaacteta ggtegee gatgaccege aateegaag agaccattae teestgaae ttegagaag teggag ggegettee geteagtett teategagag gatgaceae ttegataaa ateegee egagaaggtg etgeeeaage acteeetgtt gtaegagtat tteeaeagtg acaacgag gaaggaggee ategtegee etgetettea gaegadeet geegageet eteggagag gaaggaggee taetteaga agateggeg ettegaeeae ggegetteetg ggacaggte aaegegeg ggaeggga etgetegag ettegeegag ettegtega gaeagggea ategtegagga ettegeegag geeteteg ggaetegg ateggeae tegetette ggaetegg ateggeae ggaeggga etgetegg geeteteg ettegtega gaeagggae ggaeggga ettegeegag ettegtega gaeagggae tegetegagae etgegggae etcee ggaetegg ateggeaea ggaeggae etgegggae etcee ggaetegg ateggeaea ggaeggae etgegggae etcee ettegtega gaeagggae ggaeagge etgegggaa geetegg ettegtega gaeagggae ggaeagee ggeeteag aceteege ettegtega gaeagggae ggaeagee ggeeteag aceteege acetete eaastgate aeegggate ggaeagee geetegggaa aceteege acetee eaaggaggee atecegagg etgagagae gaegaegte teggaeagge geetegggag tegegagee atecegaagg etgagegee aaecegag aaeategte ttegaeag ggaeggee ateaaagage ttegeetea gaaggeag gaeaceeg tegagage tegegagag etgaaggee tgaeaggee gaagatte eggeaggag tegagege tegegagae etgaaggae ttgeetea gaeageag geeceeeg tegagae tegegagag etgaeagee tegetea gaeaggag gaeaceeeg tegagae ggaecaggag etgaaegtee caeagegag gaeaceeeg tegagae tegegagag etgaeacee aeaggtee etaeceea aaeggagge etgaeagee tegegagag etgaeacee ecceggag ggteggaa gaeaceeeg tegagae eggeaggegg tegeeaaa teeggae eggaeaea taeaggeg aceeeeg tegagae eggeagggga tegeeaaa teetegae ggegeteae aaeagge etgeeaaa tegeeaaat aceaageeg tegeeaaa teeggag aagagaea ecce gaeaggeeg tegeeaaa teeggagea ggteggag aaeatee eggeaggegg aggeeagee tegeaaage eggaeaeae tegegaeae ecaaeaeae eggeaggege tegeteae gegageae ggtagaea eccaaeae aceae ecgeeaaat aceaageeg tegeeaaa ggtgaeae tegegaeae ecaaeaeae ecgeeaaat aceaageeg tegeeaaa ggtgaeae ecaaeaeae aceaeae ecgeeaaat aceaagee tegeeaaa ggtgaeae ecaaeaeae aceaeae ecgeeaaat aceaagee ggeeaaage eggaeaeae ecaaeaeae aceaeae ecgeeaaat aceageea ggeeaeae ggtgaeaee tegeaaaaa acteeae ggagg	gaq	caggag g	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
gatgaccegc aaattgaag agaccattac teeetgaac ttegatgaag tegtgacga gggegettee geteagtet teategaag gatgaceae ttegatgaaa attegee gaagaggtg etgeecaage acteetgt gtaegagta ttegataaa attegee gaagaggtg aagtaegtee cagagggaat gaggaagee geettettg eeggaag gaaggaggae taetteaga agategagtg ettegaetee gtegagtet etggtgte ggacaggtte aaegeetee ttgggaetta eeaggateg geetgagate teageag gaaggaggae taetteaga agategagg eategagae eaegatee etggtgte ggaetteetg gaeaaeggg ggaeaggage gaeeggaag geetgagaat ttaaagae ggaetteetg gaeaaeggg ggaeaggage eateettgag geetggggaa geetteetg ettgttegaa gaegggaa tgategaaga gaggeeag acetaettga gteegaegg atgaeaeggg eggaeaggae gteagggaa acetaeteg ettgttegaa gaegggae tgategaeag gggeetaa eeetaee gteegaegga tteegeeae ggaeateae ggaeaggga acetaete eaegaegg tegegaegg atgeeaea gggaeaegg gteagggaa acetaeteg etaaettg eeeggeetee eeggaeaetee gaeaegggag acetaete eaegaegge gteegaegga tteegeeaea ggaaeteat geageeeat etgeageee ettgagee tegeagagee gteggeetee eeggaeggee eagaeggee execute gteegagaee eggaeggee eagaaggee gaagaattee eggaaggee ttggaegee tegeggagge ataaagge tegeetea gaegeeae eeggaaggee tegagagge tegegagaee eagaaggee tgaeedeag gaeeee eeggaaggee eggaagaee tegegagaee eagaaggee tgaeeee gaegeeee eeggaaggee eeggaagaee eggeeaggae etggeeee eegeeee eegeeee eegeeeeeeeeee	gao	ctcaga a	atteettaet	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
gggggtttc gdtagttt tatotggag gatgacaa ttogataaa atotgoo cgagaaggtg dtgccaag actocotgtt gtaogagta ttoaagta acaacgag gaagaaggc atogtogac tgotottaa gacaacag aaggtgact coggaga gaagagggc atogtogac tgotottaa gacaacag aaggtgact coggaga gaaggaggac taottoaaga agatogagg cutogacto gtogagat dtaaaaa ggacaggtte aacgootoc ttgggacta coacgate ttogagta ttaaagac ggacaggtte aacgootoc ttgggacag catcottga gacatogtge to coacaaggg gacagggaa tgatogaga catcottga gacatogtge to coacaaggt gacagggaa tgatogaga gacacggga actactot ga gototoo caaatgate acgogatea ggacagge cagatatac ggotgggaa gotoco gtogacaggt ttogccaaca ggaactcat gcaggaga catatos actottga gtocgacgga ttogccaaca ggaactca gcagggaa actatos actottga gtocgacgga ttogccaaca ggaactca gcagotat caogacgat cottgac caaggaggac atccagaag coggtata agaagggg gactotto gtocgacgga ttogccaca ggaactca gaagaggt tagaagac tgatagatg gcaggtot cogotatta gaagaggt ttogcaact gtagagag tgacaggtg dtagagtga tggacagca aacaccaga actatotg atgaagac tgatagagg caaactacc agaaaggca gacaccag gacacce totgac caaggaggg ataaaagag ttggctoca gacacaag gacacceg togaagac tgacaggag caacactacc agaaaggca gacaccaa aacgaagg acatgta tgacagagc gagatgac coccocaa aacgacaga acatgta ttggatag ggacaggag cggoctaca acaggtgc cgactaca acaggagg acatgta tgacgagge daaggaag tggccaaca taaagtoct aacagcacg togacaa ggacaggag tggccaacg toctoccaa gotagaact cocaaca caagtac ggacaggag tggccaacg toctoccaa gotagagta aagagaaga cocce ataaaat ggaaggagga ttgcogac toctoccaa ggtaagtte gacaacctg caagtac gacaacteg aaggatgac coctocagaa ggtaccac acaccaa cocaagtac acagctotg aaggatgac coctocagag ggtactace cocaagaa cocaactace gcaattaga aagtgatc gcagatac gggatcace ttgaaca caagtac gaagaggag ttgcogac ggaagtac ggtaggaa dacacce acacacac coccaaat accaacac gggagtaa ggtagaaa accacce gacaatceg aggatgac ggaagtaca ggtacacce daaaaaa actactgg acagctocg aaggatce cgcaagtaca ggtacacce acacaca accacaca cocaataaaat accaacac tgccaaat totggatac gaagagagg gagtggca ggcacacg caagtacte toctacaaaaaa accacaca gagagagag gagtggaa gacggaa aggcacce caagtace ccaacaaga gagtgaa ggcacaaa ggtacggaa aggagaatg	gat	асссдс а	aatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
<ul> <li>cgagaaggtg ctgcccaage actecetgtt gtacgagtat ttecacagtgt acaacagag</li> <li>caccaaggtg agtacgtea cagagggat gaggaageet geettettg ccggagag</li> <li>gaagaaggee ategtegaee tgeetteaa ageetaagg aaggtgaetg teaacagag</li> <li>ggacaggte aacgeeteee ttgggaetta ceacgateg geetteeg</li> <li>ggacaggtg atgaacagg agaacgagg cateettag geetteeg</li> <li>cgacaaggtg atgaacage tgaagagag gaggeegag acetateeg</li> <li>cgacaaggtg atgaacage tgaagagag geetteeg</li> <li>cgacaaggtg atgaacage tgaagagaeg geagggag acetateeg</li> <li>gtecgaegg ttegceaca ggaacteat geageteet</li> <li>tgacgagete geeggetee cegetataa gaagggegt ttegeagaeg</li> <li>tgacgagete geeggetee cegetataa gaagggeat ttegeagaeg</li> <li>tgacgagete ggaaggag ttggeegee aacaeteeg acteegg</li> <li>tgacgagete gaagagge tggaegge gaagaatee ggegggga gaaggagg</li> <li>tgacgagete gaagagge tggeegee aacaetee agaaggge gaaggagg acaetegag</li> <li>tgacgagete gaaggage tggeegee aacaetee agaaggge gaaggagg acaetegag acaetegag</li> <li>tgacgagete gaaggage tggeegee aacaetege gagaace</li> <li>tgacgagete gacaacge tggeegee aacaetege acaetege</li> <li>tgacgagge etgaacae caggetgge gaagatee geegagaa acategee</li> <li>tgacgagete gacaacge tggeegea aacaeggagg geetgaga aacaetegta ateaegg</li> <li>ggacaagge etgaacae caggetge gaagatee geegagaaa acaetegg</li> <li>aggeaggege ttgtccgae teateacea ggetgggag aaggaggagga acaaeteg</li> <li>aggeaggege teateage geggeteaa aacggagg geetgaga aacaetege</li> <li>aggeaggege teateagee geggeteaa aacaegge geggaaggaggaggee aacaetege</li> <li>aggeaggege tggacaege ceceeaa aacggagg gacaegee teateaceaa geggaeggee teateaceaa geggaegee aacaetege</li> <li>aggeaggee teateeaagee teateacea gegaaggee aacaetegee acaetege</li> <li>aggeaggee teaceaage tegegeeeaa teetegaa acaetegee aacaetege</li> <li< td=""><td>ggg</td><td>gettee g</td><td>gctcagtctt</td><td>tcatcgagag</td><td>gatgaccaac</td><td>ttcgataaaa</td><td>atctgcccaa</td><td>3600</td></li<></ul>	ggg	gettee g	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
<ul> <li>caccaaggtg aagtacgtca cagagggaat gaggaagcct geettettig eeggagag gaagaaggee ategtegaee tigetetteaa gaecaagg aaggtgaette etageag gaaggaggee taetteaaga agategagtg ettegaetee gtegagatet etagagae ggaetteetg gaeaagggga agaecgagga eateettigag gaeateggee teaeeetgag gaeggeetaag aggeeteaag acetaegeee aeettettig geegaeggee tegegggae gaeateggee geegagaeggee eateettig geegaeggee tegegggae geegaeggee geegaggee geegaggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegaeggeegee</li></ul>	cga	aaggtg c	ctgcccaagc	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
gaagaaggee ategtegaee tgetetteaa gaecaacagg aaggtgaetg teaageag gaaggaggae taetteaaga agategagtg ettegaetee gtegagate teaagaeg ggaetteetg gaeaacgaeg agaacgagga cateettgag gaeateggee teaeetag ettgttegaa gaeagggaaa tgategaaga gaggeteaag acetaegee acetette gteegaegga atgaaacage tgaagagaeg cagatataee ggetgggaa ggeteetee gteegaegga ttegeeaaca gggaeatea geaggeag actateeteg attegee etgetaaettg geeggetee eegeagaage gaaggeete tagaeage tgaegaggee atecaagagg etcaaggaag actateeteg atgaeage gteegaegga ttegeeaaca ggaaetteat geaggeete tagaeage tgeegaegga ttegeeaaca ggaaetteat gaaggeet ttegeeageg tgeegaegee geeggetee eegeagaagee gaaggeete tagaeage tgeegaegee geeggeetee eegeagaggee gaaggeete tagaeage tgaegagee geeggeetee eegeagagee gaaggeete tagaegee tgaegaggee ataaaagee tggeegee gaaggee gaaggeete ttegeeggegg acategee tgaegaggee ataaaaggee tggeegee agaaggee gaagaatee egegaggee gaaggee tgaeggagge etagaegee tegeeaea acaggtege gaegaeee eegeagaee teagetgeeg aacgagagee tgaeeeea acaggetgee gaegaeee eegeagaae teagetgeeg acaacgtee eegeagaae eegeagaee eegeagaae teagetgeeg acaacgtee eeteegae geeseee eegeagaae gaaggagggg etggeeaea acaggtege egeateee eegeagaae eegeagaee teagetegeag eegeaeee eegeagaee eegeagaee eegeagaeee eegeagaeee gaegaggagga tegeeaeae acaggtege egeateee aacageee eegeagaeee eegeagaeee teageeeage eegeaeee eegeagaeee eegeagaeeeeeeee	cad	aaggtg a	agtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca	3720
gaaggaggac tactcaaga agatcgagtg cttcgactcc gtcgagatct ctggtgtc ggacaggttc aacgcctcc ttggggacta ccacgatcg ctcaagatta ttaagac ggacttcctg gacaacgagg agacgagga catcettgag gacatcgtg tcaccet ctgttcgaa gacagggaa tgatcgaagg gaggctcaag acctacgcc acctctc caaattgatc aacgggata gggacaagga cagataacc ggctggggaa ggctccc gtcgacgga ttogccaaca gggacaagga gcagggga actatactcg acttcctg gtcgacgga atcaagagg ctcaggtgt tggacaggg gactcatt cacgacgac catgacg tggacgggga atcagagg ctcaggtgt tggacaggg gactcatt cacgacgac catgacg tgctaacttg gccggctcc ccgctattaa gaagggcat ttgcagacg tgaaggtc tggaggggc ataaaggc tggacggca caagccagg aacatcgtt ttgaagtg tcggagggg ataagaggc tggacgca caagccagg gacaccg tggagg tcggagggg ataagaggc tggcccaca acagccagg aacatcgta ttggag ggaccaggag ctggacatca acaggtgt cggacaccg tcgagagg tcggagggg ataagaggc tggcccaa aacggagg aacatcgta ttggag ggaccaggag ctggacatca acaggtgt cggcacca aacggagg acatgtac ggaccaggag ctggacatca acaggttgc cgactacga ggcacccg tcgagaac tcagctgca aacggagac tggacatca acaggtgg acacggag acatgtac ggaccaggag ctggacatca acaggttgc cgactacga ggcaccca tcgtgcct gaggagggg atagacgac ccatcgaca taaggtct acaggctcg ataaaat gtccttccg aacgtacc cctccgagg ggtggaa aagatgaaa actactgg acagctctg aacgacgc tcatcacca ggtaagttc gacacctg ctaggac cggcaaatt accaagcacg tggccaaat tctggatcc cgcatgaaca ccaagtac tgaaatga aacgagagc tggccaaat tctggatcc ctacaaaaat accagcacg aggactca ggtgacacca tcgtgca ggagtctgag ttgtcctacg gcgagtcaa ggtgacacc accacca cgactccg aaggatcc gcgagtcaa ggtgaccc ttaaaaaat accacacg ggagatcg aggccacaa tctggata gtaaggaca tccaccac ggagtctgag ttgtctacg gcgactaca ggtgaggag atcaaaaa atcctag ggagtctgag ttgtctacg gcgactaca ggtgagga aggagggc cactgatc tgacaaaaa accaggca aggcacccc cacgagag aggaggg tgacgcc gcactccg aacggaga aggccacaa cgtgagaa aggaggag tgacgct gacaacgg gaactgga aggccacaa cgtgagaa aggaggag aggaggagg sacacgagga aggagggg aggaggagggaggga aggaggagg	gaa	aaggcc a	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
ggacaggttc aacgcctcc ttgggactta ccacgatctg ctcaagatta ttaaagac ggacttcctg gacaacgagg agaacgagga catccttgag gacatcgtge tcaccctg cttgttcgaa gacaggaaa tgatcgaaga gaggctcaag acctacgcc accttc caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctg gtccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgac caaggaggac atccagaagg ctcaggtgte tggacaggg gactccttge atgagag tggcagggac atccagaagg ctcaggtgte tggacaggg gactccttge atgagag tggcaggag atgacaggg gacatcat gaagggadt ttggagagg tggcagggac atacagagg ctcaggtgte tggacaggag acatcgtta ttgagagg tggcaggage ataaaggge tggacagca gaagacatce cgcgagagga tgaagge tgaggaggge ataaaggge tggcaccag gaagccagg aacatcgtta ttgagatg tgaggaggge ataaaggee tggcacca agacgagate cggagagga acatgtae ggaccagggg ctggacaca acaggttge cgactacg gaggaccccg tcgagaag tcagetgeag acggaage tgtacctga ctacetcaa gacggagga acatgtae ggaccagggg ctggacaca acaggttge cgactacge gtcgaccaa tcgtgee gacgagggg tggacace caccgaca aaagtgeg gacgaccee tcgagaag ggacgaggg ctggacate acaggttge cgactacge gtcgaccaa tcgtgee gacgaggg ttgtccgae tcatcacca gcgtaggt gacacctg taaaaat ggacaagtee gacaacgtee cctccgaga ggtcgtgaag aagatgaaa acatgtge acagetettg aacgccage tcgataage cggatae caaggee tcgtcaa ccgccaaatt accaagcaeg tggccaaat tcggatee cgactacga caagtgee tgaaatgae aagetgate gcgagtcaa ggtgatcae agaggaga taacacag tgaaatgae aagetgate gcgagtcaa ggtgatcae agaggaga taacaca ccgccaaatt accaagacag tggccaaat tcggatgg atcaacaaat accacae ggagtctgag ttegtctaeg gcgactaca ggtgatcae ttgaagaag tgatege tgaaaatge aagetgate gcgagtcaa ggtgatcae tgaagaag tgatege gaggtgg ggategg aggetgea aggecacce caagtaett ttetactca acacae ggagtctgag ttegtctaeg gcgactaea ggtgaggae aggaggaga tgatege gacaacgge gagatega aggecacce caagtaett ttetactca acacae gaagateg gagatega aggecacce caagtaett ttetactca acacae gaagateg gagatega aggecaecge aggaage aggeaggag aggeaged aggagggaagga aggeaggea aggeaggea aggeagge	gaa	jaggac t	acttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
ggacttectg gacaacgagg agaacgagga catecttgag gacategtge teaceetg cttgttegaa gacagggaaa tgategaaga gaggeteaag acetaegee acetette caaattgate aacgggatea tgategaaga gaggeteaag acetaegee acetette gteegaegga ttegeeaaca ggacateat caeggagga acetaeteg acetega gteegaegga ttegeeaaca ggaactteat gaaggagga acataeteg acetegae tgetaaettg geeggetete eegetatta gaagggeet ttgeagage tgetaaettg geeggetete eegetatta gaagggeet ttgeagagge tgaggagge ateeagagg eteggeeaa caaggeeagga acategtta ttgagagt tgetaaettg geeggetete eegetattaa gaagggeet ttgeagagge tgaaggtge tgaggagge ataaaagge ttggeedea caageeagga acategtta ttgagag tgaggaggge ataaaagge ttggeetea gaacategta ttgagagg gaceaggag etggaagtae tggeedea aaagggea gagaattee egeagagga acatgae teagetgeag acegagaage tgteetea gateeteaa aaeggaaggg acatgae ggaceaggag etggaeaca acagttgte egetaaggea gagaatee egeagaag teagetetg aaeggaage tgteetea gateeteaa aaeggaaggg acatgae ggaceaggag etggeeae eetee eetee eetee eetee eetee gteetteetg aaeggeage teateacea gegtaagte gaeaeeteg etegaeae gageaggaga ttgeegae eetee eetee eetee eetee eetee eetee gagaggagga ttgeegae eetee eetee eetee eetee eetee eetee gagaggagga ttgeegae eetee eetee eetee eetee eetee eetee gagaggege taeeteae gegagteaa teggateae eagaege eegaetee gagaggagga ttgeegae eegaetee eetee eetee eetee eetee gagagegee taeeteae gegagtea ggegaeae eetee eetee eetee gagagegee taeeteae gegagtea ggegaeae eetee eetee eetee eeteetee aaggeedee eetee eetee eetee eetee eetee gagagee taeeteae gegagteae eegaetee eetee eetee eeteetee aaggeedee eetee eetee eetee eetee eetee gagageege gagaeegea aggeeaeee eetee eetee eetee eetee gaeaaeege eetee eetee eetee eetee eetee eetee gaeaaeege gagaeegaa aggeeaeee eetee eetee eetee gaeaaeege gagaeegaa aggeeaeeee eetee eetee eetee gaeaaeege gagaeegaa aggeeaeee eetee eetee eetee eetee gaeaaeege gagaeegaa aggeeaeee eetee eetee eetee gaeaaeege gagaeegaa aggeeaeee eetee eetee eetee gaeaaeege gagaeegaa aggeeaeee eetee eetee eetee gaeaaeege gagaeegaa eetee eetee eetee eetee eetee eetee eetee eetee eetee eetee eetee eetee eetee eetee eete	gga	aggttc a	acgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
35 cttgttcgaa gacagggaaa tgatcgaaga gaggetcaag acctacgece acctette cgacaaggtg atgaacage tgaagagaeg cagatatace ggetgggaa ggetetee gtccgaegga ttegecaaca ggaactteat geagetaat caegaeggae actateteg gtccgaegga ttegecaaca ggaactteat geagetaat caegaeggae cettege gtccgaegga atceagaagg etcaggtget tggaegggg gaeteette caegaegge ttgaegge tggetgaegete gtgaaggtga tgggaegee caageeagg aacategtta ttggagaeg tegecagaga caactaece agaaaggee gaagaattee egeagagge tgaaggee tgaggaggge ataaaagage ttggetetea gaeceeag gaegaetee etcaegg gaecaegge tegetgee tggetaegg ettgeeage etcaegetgee gaegaetee etcaegee gaegae etcaegee tgaggaggge ataaagage ttggetetea gaeceeag aacategta ttggagaege teagetgegg ettgeeage etcaegee gaegaetee etcaegee gaegae etcaegee ggaecaggae etggaeae eccaegge ggetgetgae aacaeggaegg eccaegee eccees acaegee eccees ec	gga	tteetg g	Jacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
<ul> <li>³⁵ cgacaaggtg atgaacagc tgaagagacg cagatatacc ggctgggaa ggctctco caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcotg gtccgacgga ttcgccaaca ggaacttcat gcaggtcatt cacgacgact ccttgacc caaggaggac atccagaagg ctcaggtgtc tggacagggt gactcottg atgagac tgctaacttg gccggctct ccgctattaa gaaggcatt ttgcagacgg tgacgaggt tggcgagac caaactaccc agaaagggca gaagaattcc cgcgagagga tgaaggc tgaggagggc ataaaagagc ttggctcta gatcctcaag gagcacccg tcgagaac tcagctgcag aacgagaagc tgtacctgta ctacctcaaa aacggaaggg acatgtac ggaccaggag ctggacatca acaggttgt cgactacga gacgactcg ataaaat ggacaagtcc gacaacgtc cctccgagg ggtcgtaga agagagg acatgtac ggacaaggag ttgccgacaca taaggttgt cgactacga tcgtgcct gtcttcctg aaggtagact ccatcgaca taaaggtcg acacgtccg ataaaat aggcaagtcc gacaacgtc cctccgagg ggtcgtaga acagataca gagaggagga ttgtccgac tcgataagg cggtagtaca caaggtcg acagctcttg aacgccaagc tcgatacaa taaggtgct gacaacctg ctaggca acagctcttg aacgccaag tggccaaat tctggatcc gacaacctg ctaggaca ccgccaaatt accaagcacg tggccaaat tctggatcc cgcatgaaca ccaagtac gagatgagg ttgtccgacg cggaggtcaa ggtgatgac tcgtcaaa ccgccaaatt accaagcacg tggccaaat tctggatcc cgcatgaaca ccaagtac gagagtcg gagatcgac aggtcacaa ggtgaggag atcaacaact accaccac ggagtctgg ttcgtctacg gcgagtcaa ggtgacgac aggtgaga tgatcgct gtctgagcag gagatcgca aggccaccg caagtactc ttcaacacaa cgactacgg ggagtcgga aggccaccg caagtactc ttcacaccaa acaccac ggactacgag gagatcgga aggccacca cggtgagag aggagag tgatcgct gtctgagcag gagatcgga aggccaccg caagtactc ttcacacaaaat atcctaag ggagtctga ttcgtctacg gcgactacaa ggtgacgag aggagttcg caactgtc gtctgagcag gagatcgga aggccaccg caagtactc ttcacaccaa acactac gaccaacgg gagatcgga aggccaccg caagtactc aggaggc cactgatc gaccaacgg gagatcgga aggccaccg caagtactc ttcaccaca acactacg gaccaacgg gagatcgga aggactgga aggacaccg caagtactc cactgac gaccaacgg gagactgga aggacaccg caagtacc caacaagg accacacg gaaggtgct tccatgccc aggtgaaca cggagag accgagg accacacg gaaggagga atccacac cgcgagaga accacacaca gacaacgg gagacggaga aggacaccg caagtaccc caacacac gaccaacgg gagacgga aggaccaccg caagtacc cacacacg gaagg</li></ul>	ctt	ttcgaa g	jacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga	4020
<ul> <li>caaattgatc aacgggatca gggacaagca gtcagggaag actatactcg acttcctg gtccgacgga ttcgccacaa ggaacttcat gcagctcatt cacgacgact ccttgacc caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttg atgaggacg tgacggca tagacgca cagccagga acatcgta ttggaaggtg tgacggca caagccagg acatcgta ttggaaggg tgaggggg acatggac cagcacagg aacatcgta ttggagggg acatggag tgaggggg ataaaagggca gaagaattcc cgcgagagga tgaaggag tgacggca aacggagag tgacggca acaggtgga tggcaccaa acaggtgga ggaccagga ctggacatca acaggttgtc cgactacga ggaccacga tcggagaac tcaccaa ggacaccaa tcgtgcct gtgacatca acaggttgtc cgactacgac gtcgacacaa tcgtgcct gtgaaggtga tgtccgacga acaggtcga acatgtac catcccaa ggtcgtag aacggaggg ctggacatca acaggttgtc cgactacgac gtcgacacaa tcgtgcct gacaacgtc gacaacgtc cctccgagga gggtgagaa acatgtag acaggtcttg aacgccaag tcgtcacaa taaagtgctg acaccgca ataaaggc tggacaaggc tggccaaat tctggatcc gacaacctga ctaaggct gagaggagg ttgtccgacaa tctggacca aggaggagga ttgtccgac gggggtcaa ggtgatcacc ttgaagaca ccaagtac cgactacga aggagtcga gggacttcac aggtgggag acatgat accacaca ggtgaggg atcaacact accacaca ggtgacgga atcaacaact accacaca ggtgatgac ttctccca aggagtcg aggagggg aggagttgg ggactcgg aggagggg agggaggg agggaggg agggagg agggagg agggaggg agggagg agggaggg agggagggg agggaggg agggaggg agggaggg agggagggggg</li></ul>	cga	aaggtg a	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
9tccgacgga ttcgccaaca ggaacttcat gcagctcatt cacgacgact ccttgacc caaggaggac atccagaagg ctcaggtgtc tggacagggt gactccttgc atgagagtc tgctaacttg gccggctctc ccgctattaa gaagggcatt ttgcagacgg tgagaggtc tggacgaggc gtgaaggtga tgggacgcca caagccagag aacatcgtta ttggagag tcggcggagac caaactaccc agaaagggca gagaattcc cgcgagaga tgaagcgc tgaggagggc ataaaagagc ttggctcta gatcctcaag gagcacccg tcgagaac tcagctgcag aacgagaagc tgtacctgta ctacetccaa aacggaaggg acatgtac ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaa tcgtgcct gtccttcctg aaggatgac ccatecgacaa taaagtgctg acacgctccg ataaaaat aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaa actactgg acagctcttg aacgcaagc tcgataaggc cggattcatc aagagacagc tcgtcgaa ccgccaaatt accaagcacg tggccaaat tctggattcc cgactagaca ccaagtac tgaaaatgac aagctgatc gcgggtcaa ggtgatcacc ttgaagtcc agctgcac gagagggag ttgtccgagc tcgatacaa ggtgaggg atcaacact accacgac cgacttccg aaggattcc gcgggttcaa ggtgatcac ttgaagtcc agctggtc gagagggagg ttgtcgtag ggcggtcaa ggtgatcac ttgaagtcc agctggtc ggagttgag ttcgtctacg gcgactacaa ggtgaggag atcaacact accacgac cgacttccg aaggactcc agttcacaa ggtgaggag atcaacact accacgac gagagtcgag tcgtctacg gcgagtcaa ggtgatcac ttgaagtcc agctggtc ggagtctgag ttcgtctacg gcgactacaa ggtgaggag tgacacact acctaag ggagtctgag ttcgtctacg gcgactacaa ggtgaggag tgacgcc cactgac gacacacgt gagatcgga agccccc caagtact ttctactcca acaccac gacacacgt gagatcgga agccccc caagtact ttctactcca acaccac gaccaacgg gagatcgga agccgca cagtactt ttctactcca acactac gaccaacgg gagatcgga agatcgtg ggacaaggg aggagtcg aggagccc cactgac saccgaggt tccttcaag aggaggag aggaggag aggaggag aggaggag aggagg	caa	ttgatc a	acgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
<ul> <li>caaggaggac atccagaagg ctcaggtgtc tggacagggt gactcettge atgaggad tgctaacttg gccggetete ccgetattaa gaagggeatt ttgcagaceg tgaaggte tgacgagete gtgaaggtga tgggacgeae caagecagag aacategtta ttgagatg tegegagaae caaactaece agaaagggea gaagaattee egegagagga tgaagege tegaggagge ataaagage ttggetetea gateeteaag gageaeeeeg tegagaae teagetgeag aacgagaage tgtacetgta etaeeteaa aacggaaggg acatgtae ggaceaggag etggaeatea acaggttgte egaetaega aacageega etagaeee gteetteetg aaggatgee eetaeegaga ggtegtgaag aagatgaaaa actaetgg acagetettg aaegeeage tegataeee gegateee gaeageegagaga ttgteegage tegataage gagaggagga ttgteegage tegataagge eggatteet agaggaeee eetaegee eegeetaeatt aceaageeg tggeeeaat teetggatee egatagee tgaaaatga aagetgatee gegaggee aggtgagga ateaaeaea eeaagtae eegeeteega aaggaetee eggaggeeaa ggtgaggag ateaaeaea eeaagtae eegeeteega aagetgatee gegaeteaa ggtgateaee tegaagaea eeaagtae eegeeteega aaggeetee agtteeaa ggtgaggag ateaaeaea aceeagae eegeeteega aagetgatee gegaeteaa ggtgateae tgaagaea aceeagae eegeeteega aaggaetee agteeteaa ggtgaggag ateaaeaaea aceeagae ggagtetega ttegteeag eggaeteaa ggtgategee gtagagaga tgategee ggagtetgag ttegteeag eggaetaea ggtgaegee gtaggagaa tgategee gegaetteega gagategea aggeeacee eaagtaee gtagagaaga tgategee gtetgageag gagategea aggeeacee eaagtaee aggaggaga tgategee gtetgageag gagategea aggeeacee eaagtaee aggaagee eaagtaee stetetteaa aeceaggaa agategee aggeaeaea eaggtagaea ageegagee eaagtaee stetetteaa aeceaggaa agaeegee eaagtaee aggaageee eaagtaee steteteaag aeggaetee eeeeaa ggtgaaeae aggaageee eaatee gaeeaaeggt gagaeegga agategeega aggeeaeee eaagtaee aggaageee eaagtaee steteteaag agageegga agategeega aggeeaeae eaagtaee agaeagee eaagtaee steeteaga aggeegga agategeega aggeeaeaee eaagtaee agaeagee eaagtae steeteeag agaeegga agaeeggae agaeaeae eaagaegga agaaeegee eaagtaee steeteaga aggeegga agaeeggae aggeaeaee eaagaae aeegaagee eaagaeeeeeeee</li></ul>	gto	gacgga t	tcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
<ul> <li>tgctaacttg gccggetete ecgetattaa gaagggeatt ttgeagaeeg tgaaggte tgaeggeee ecgetattaa gaagggeatt ttgeagaeeg tgaeggee tggeaggee aaaeteee agaaagggea eaageegge aaaeteee agaaaggee gaagaattee eggeaggagg tggaeggee aaaeggaage tggeetetea gateeteaa aaeggaaggg aaeggaagge tgtaeetgaa eaaeggtgte egaetaegae gtegaeeaa teegtgeet gteetteeg aaggeaggee ecdeteeggeaggeeggeeggeeggeeggeeggeeggeeggee</li></ul>	caa	yaggac a	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
<ul> <li>40</li> <li>tgacgagete gtgaaggtga tgggaegeea caageeagag aacategtta ttgagatg tegegagaae caaactacee agaaagggea gaagaattee egegagagga tgaagege tegaggagge ataaaagage ttggetetea gateeteaag gageaeeeeg tegagaae teagetgeag aacgagaage tgtacetgta etaeeteaag gageaeeeeg tegagaae ggaeeaggag etggaeatea acaggttgte egaetaeea aaeeggaaggg acatgtae gteetteetg aaggatgaet eeateegaea taaagtgetg acaeegeegae tegtegaeaa actaetgg acagetettg aaegeeage testaeeeegag ggtegtgaag aagatgaaa actaetgg gagaggagga ttgteegaee eeeeegagga ggtegtgaag aagatgaaa actaetgg acagetettg aaegeeage testaeeee gegtaagtee gaeaaeeteg etegtegae eegeeaaat aceaageaeg teggaeatea ggtgateee egaagtee egagaee eeeee tgaaaatgae aagetgatee geegagteaa ggtgateee eegaae eeeeeeeeee</li></ul>	tga	aacttg g	jccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
<ul> <li>tcgcgagaac caaactaccc agaaagggca gaagaattee cgcgagagga tgaagggg tgaggaggge ataaaagage ttggetetea gateeteaag gageaceeeg tegagaag tcagetgeag aacgagaage tgtacetgta etaeeteaa aacggaaggg acatgtae ggaecaggag etggaeatea acaggttgte egaetaegae gtegaeeaa tegtgeet gteetteetg aaggatgaet eeategaeaa taaagtgetg acaegeteeg ataaaaat aggeaagtee gaeaaegtee eeteegaga ggtegtgaag aagatgaaaa actaetgg acagetettg aacgeeaage tegtaeaeea gegtaagtte gaeaaeetga etagtgee gagaggagga ttgteegaeaa teeteggatee aaggagaeae eeage gagaggagga ttgteegaeae tegtaagge eggatteate aagagaeae tegtegaa eegeeaaatt aceaageaeg tggeeeaaat tetggatee egeatgaeae eeage tgaaaatgae aagetgatee gegaggteaa ggtgateaee ttgaagtee agetggte egaetteege aaggaettee agteetaeaa ggtgaggag ateaaeaaet aceeaea tgaaaatgae aagetgatee gegaggteaa ggtgatgagg ateaaeaaet aceeaeae eegeetteege aaggaettee agteetaeaa ggtgagggag ateaaeaet aceeaeae ggagtetgag ttegteetaeg gegaetaeaa ggtgaggag ateaaeaaet aceeaeae ggagtetgag ttegteetaeg gegaetaeaa ggtgaegae gtgaggaaga tgateget gtetgageag gagateggea aggeeaeee eaggtagate aggaagegee eacteag gaecaaeggt gagateggaa aggeeaeee eaggtgagate aggaagegee eacteateg ettetteaag acegagatea etetegeeaa eggtgagate aggaagegee eacteateg gaecaaeggt gagaetggag agategtgg ggaecaaaggg aggaattee eacteag gaaggtgete teeatgeete aggtgaaeat egteaagaag acegaagte agaeegga atteteeaag gagteee teeeeaagg aaaeeegaga aagetgaee eacegaega atteteeaag gagteee teeeeaagg aaaeeegagaa aaeeegae aagetgaee eacegaegaee eacegaegaeee eaceeaagae eegaaaee eegaagaee eaceaagaeg aeeegaaeee eaceeaagaeg aeegaaeee eaceegae agetgaeee eaceeaaeega aeegaaeee eaceegae agetgaeee eaceeaaeegae eaceeaaeee eaceeaaeegaeeeeeeeeee</li></ul>	tga	gagctc g	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
<ul> <li>tgaggaggge ataaaagage ttggetetea gateeteaag gageaceeeg tegagaage tegacaga gageaceeg tegagaage tegacetea aaeggaagge acatgtae gageaceeeg etgacetea aeaggttgte egactaegae gtegaceaea tegtgeet aaggeaggeeg etgeaceaea teateegae gegaagtee gaeaaegtee eeteegaga ggtegtgaag aagatgaaa aetaeteg gagaggagga ttgteegage tegaeaaet eegaeaeae eegaeaee egaeaeee egaeaeeee egaeaeeee egaeaeeee egaeaeeee egaeaeeee egaeaeeee egaeaeeee egaeaeeeeeeee</li></ul>	tco	yagaac c	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
<ul> <li>tcagctgcag aacgagaage tgtacctgta ctacetecaa aacggaaggg acatgtae ggaccaggag etggacatea acaggttgte egactaegae gtegaceaea tegtgeet aaggatgaet ecategaeaa taaagtgetg acaegeteeg ataaaaat aagagaggagga ttgteegagg ggtegtgaag aagatgaaaa actaetgg agaggaggag ttgteegage tegtaaage eggatteate aagagaeage tegtegaa eegeegaatt aceaageaeg tegteaaat tetggatee egeatgaaea eegeegaattae aagetgatee gegaggteaa ggtgatgaeg ateaaeaaet aeceaeege aaggaettee agteetaeaa ggtgaggag ateaaeaaet aeceaege eggatteae agetgaege eggaggeegaggag aceaegeegaggeegaggae ageegaegee eagteegaeae ecaegeegaaat aeceaegeegaeae etgtegag ageegeegaeae etgtegag ggtgaggag ateaaeaaet aeceaeege aggagetegag ateaeeaaeat aeceaeege gggagetegag ttegtetaeg gegaetaea ggtgaggae ggtgagaeae etetegeea aggaagteegee aggeegee eagteete ttetaeeeaaeaet aeceaeegeegaeae etetegaeae etgtegaeae ggtgagaeae ggtgagaeae ggtgagaee eaeteaeegeegaeaeegee eaeteegeeaaeeegee eaeteegeeaaeeegee eaeteegeeaeaeeeeeeeeee</li></ul>	tga	jagggc a	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
ggaccaggag ctggacatca acaggttgtc cgactacgac gtcgaccaca tcgtgcct gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgtccg ataaaaat aggaggagga tggccaagc tcatcaccaa gcgtaagttc gacaacctga ctaaggct gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaa ccaagtac cgactacgac aagctgatc gcgaggtcaa ggtgatcacc ttgaagtcca agctgtgg aggagtctgag ttcgtctacg gcgactacaa ggtgaggag atcaacaat accaacga ggtgaggag atcaacaact accaacac ggtgaggag atcaacaact accaacac agttctacaa ggtgaggag atcaacaact accaacaca ggtgaggag atcaacaact accaacaca ggtgaggag atcaacaact accaacaca agttctacaa ggtgaggag atcaacaact accaacaca agttctacaa ggtgaggag atcaacaact accacaca ggaggtctgag ttcgtctacg gcgactacaa ggtgagac ggaggag tgatcgca aggccaccg caagtactc ttctaccaa acatcatg gtctgagcag gagatcgca aggccaccg caagtactc ttctacca acatcatg gaccaacggt gagactgga aggccacca cggtgagat aggaggtct aggagggag aggattgg ggacaaaggg agggattcg ctactgga aggtgacat cgtcaagaag accgaagtc agaccgga aagtcgca aggtgaacat cgtcaagaag accgaagtc agaccgga atcaccacag aggagggattgg gaacaacgg ggagaccgaa aggccaccg caagtactc ttctacca acatcatg gaccaacggt gagactggag agatcgtg ggacaaaggg agggattcg ctactgg agaccgaag aggtgacaa cgtcaagag accgaagtc accgaagag aggtgaaca cgtcaagaag accgaagtc agaccgga aggtgaaca cgtcaagaag accgaagtc agaccgga atcaccaa agctgaag accgaagtc agaccgga aacccgaa aagctgaag accgaagtc agaccgga agaccgaa aggtgaaca cgtcaagaag accgaagtc agaccgga atcaccaa agaccgaa aggtgaaca cgtcaagaag accgaagtc agaccgga atcaccaa agaccgaa aggtgaaca cgtcaagaag accgaagtc agaccgga agaccgaag accgaagtc agaccgga aacccgaa aagctgaa agaccgaag accgaagtc agaccgga aacccgaa aagctgaa agaccgaag accgaagtc agaccgaagaa accgaagt aaccgaaga accgaaga accgaaga agaccgaaga agaccgaaga accgaaga accgaaga accgaaga accgaaga aacccgaa aacccgaa aacccgaagaa accgaagaa aacccgaa aaccgaagaa accgaagaa aacccgaa agaccgaagaa aacccgaa aaccgaagaa aacccgaagaa aacccgaa aaccgaagaa aacccgaagaa aacccgaagaa aacccgaa agaccgaagaa aacccgaagaa aacccgaaagaa ac	tca	ctgcag a	acgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
gtccttcctg aaggatgact ccatcgacaa taaagtgctg acacgctccg ataaaaat aggcaagtcc gacaacgtcc cctccgagga ggtcgtgaag aagatgaaaa actactgg acagctcttg aacgccaagc tcatcacca gcgtaagttc gacaacctga ctaaggct gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaa ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtac tgaaaatgac aagctgatcc gcgaggtcaa ggtgatgag atcaacaact accaccac cgacttccgc aaggacttcc agttctacaa ggtgaggag atcaacaact accaccac ggaggtctgag ttcgtctacg gcgactacaa ggtgatgag atcaacaact accaccac ggagtctgag ttcgtctacg gcgactacaa ggtgatgac gtgaggaga tgatcgct gtctgagcag gagatcgca aggccaccgc caagtacttc ttctactcca acatcatg gaccaacggt gagactgga agatcgtgg ggacaaaggg agggatttcg ctactgtg sacaggtgtct tccatgcct aggtgaacat cgtcaagaag accgaagttc agaccgga attctccaag gagtcatcc tccccaagg aaactccgac aagctgatcg ctagaaga attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaga	gga	caggag c	etggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
<ul> <li>45 aggcaagtee gacaacgtee eeteegaga ggtegtgaag aagatgaaaa actaetgg acagetettg aacgeeaage teateaceea gegtaagtte gacaacetga etaagget gagaggagga ttgteegage tegataagge eggatteate aagagacage tegtegaa eegeeaaatt aceaageaeg tggeecaaat tetggattee egeatgaaea eeaagta tgaaaatgae aagetgatee gegaggteaa ggtgateaee ttgaagteea agetggte egaetteege aaggaettee agttetacaa ggtgaggag ateaaeaaet aceaeeae eggagtetgag ttegtetaeg gegaetaea ggtgategae gtgaggaaga tgateget gtetgageag gagategea aggeeaeege eaagtaette ttetaaeteea acateatg ettetteaag acegagatea eteetegeaa ggtgagate aggaageee eaetee gaeagggtet eteetegeaa aggeeaeege eaagtaette ttetaeteea acateatg gaagtetgag gagategga aggeeaeege eaagtaette ttetaeteea acateatg ettetteaag acegagatea eteetegeaa eggtgagate aggaaggegee eaetege gaeaaeggt gagaetggag agateggtg ggaeaaaggg agggatteeg etaetgga sateeteeag gagteeatee teeceaagag acegaagte agaeegga atteteeag gagteeatee teeceaagag aaaeteegae aagetgateg etagaaag</li> </ul>	gto	ttcctg a	aggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
<ul> <li>acagctettg aacgecaage teateaceea gegtaagtte gacaaeetga etaagget gagaggagga ttgteegae tegataagge eggatteate aagagaeage tegtegaa eegeeaatt aceaageaeg tggeeeaaat tetggattee egeetgaea eeageegee etgtegae eggaggeegee eggaggeegee eggaggeegee eggaggeegee eggaggeegee eggaggeegee eggaggeegee eggaggeegee eggaggeegee eggaggeeeeeeee</li></ul>	ago	aagtcc g	Jacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
<ul> <li>gagaggagga ttgtccgagc tcgataaggc cggattcatc aagagacagc tcgtcgaa ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtac tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccac ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgct gtctgagcag gagatcgca aggccaccgc caagtacttc ttctactcca acatcatg cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaggtctgg gaaggtgct tccatgccc agatcgca aggccacagg aggaggtctgg saccaacggt gagactggag agatcgtgg ggacaaaggg aggagttcg ctactgtg gaaggtgct tccatgccc aggtgaacat cgtcaagaag accgaagttc agaccgga attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaag</li> </ul>	aca	ctcttg a	acgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
<ul> <li>ccgccaaatt accaagcacg tggcccaaat tctggattcc cgcatgaaca ccaagtac tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggtc cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccac acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaag ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgct gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatg cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaaggcgcc cactgatc gaccaacggt gagactggag agatcgtgg ggacaaaggg agggatttcg ctactgtg gaaggtgctc tccatgcct aggtgaacat cgtcaagaag accgaagttc agaccgga attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaag</li> </ul>	gaq	ggagga t	tgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
<ul> <li>tgaaaatgac aagctgatcc gcgaggtcaa ggtgatcacc ttgaagtcca agctggto cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccac</li> <li>acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaag ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgct gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatg cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatc gaccaacggt gagactggag agatcgtgt ggacaaaggg agggatttcg ctactgtg gaaggtgcte tccatgcct aggtgaacat cgtcaagaag accgaagttc agaccgga attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaag</li> </ul>	cco	caaatt a	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
<ul> <li>cgacttccgc aaggacttcc agttctacaa ggtgagggag atcaacaact accaccac</li> <li>acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaag</li> <li>ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgct</li> <li>gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatg</li> <li>cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcggc cactgatc</li> <li>gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtg</li> <li>gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccgga</li> <li>attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaag</li> </ul>	tga	aatgac a	agctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agetggtete	4980
<ul> <li>acacgacgcc tacctcaacg ctgtcgttgg aaccgccctc atcaaaaaat atcctaag ggagtctgag ttcgtctacg gcgactacaa ggtgtacgac gtgaggaaga tgatcgct gtctgagcag gagatcggca aggccaccgc caagtacttc ttctactcca acatcatg cttcttcaag accgagatca ctctcgccaa cggtgagatc aggaagcgcc cactgatc gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtg gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccgga attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaag</li> </ul>	cqa	ttccqc a	aggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacqc	5040
ggagtetgag ttegtetaeg gegaetaeaa ggtgtaegae gtgaggaaga tgateget gtetgageag gagateggea aggeeaeege caagtaette ttetaeteea acateatg ettetteaag acegagatea etetegeeaa eggtgagate aggaagegee eaetgate gaecaaeggt gagaetggag agategtgtg ggaeaaaggg agggattee teeatgtg 55 gaaggtgete teeatgeete aggtgaaeat egteaagaag aeegaagte agaeegga atteteeaag gagteeatee teeecaagag aaeeteegae aagetgateg etagaaag	aca	gacgcc t	acctcaacq	ctgtcattaa	aaccgccctc	atcaaaaaat	atcctaagct	5100
gtetgageag gagateggea aggeeacege caagtaette ttetaeteea acateatg ettetteaag acegagatea etetegeeaa eggtgagate aggaagegee eaetgate gaceaaeggt gagaetggag agategtgtg ggaeaaaggg agggattee eaetgtg 55 gaaggtgete teeatgeete aggtgaaeat egteaagaag aeegaagte agaeegga atteteeaag gagteeatee teeecaagag aaaeteegae aagetgateg etagaaag	qqa	tctgag t	tcqtctacq	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
cttetteaag acegagatea etetegeeaa eggtgagate aggaagegee eaetgate gaceaaeggt gagaetggag agategtgtg ggaeaaaggg agggatteg etaetgtg 55 gaaggtgete teeatgeete aggtgaaeat egteaagaag aeegaagtte agaeegga atteteeaag gagteeatee teeecaagag aaaeteegae aagetgateg etagaaag	ata	gagcag g	agatcooca	aggecaccoc	caagtacttc	ttctactcca	acatcatgaa	5220
gaccaacggt gagactggag agatcgtgtg ggacaaaggg agggatttcg ctactgtg gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccgga attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaag	ctt	ttcaao a	accgagatca	ctctcoccaa	cootgagate	aggaagcocc	cactgatcga	5280
⁵⁵ gaaggtgctc tccatgcctc aggtgaacat cgtcaagaag accgaagttc agaccgga attctccaag gagtccatcc tccccaagag aaactccgac aagctgatcg ctagaaag	gao	aacoot o	agactogag	agatcototo	ggacaaaggg	agggatttcg	ctactotoao	5340
attetecaag gagtecatec tececaagag aaacteegac aagetgateg etagaaag	gaa	atactc t	ccatocctc	aggtgaacat	cotcaaoaao	accgaagtte	agaccogago	5400
	att	tccaag g	agtccatcc	tccccaagag	aaactcccac	aagctgatcg	ctagaaagaa	5460
agactgggac cetaagaagt acggaggett cgatteteet accetggeet actetgto	aga	tgggac c	ctaagaagt	acqqaqqctt	cgattctcct	accotoocct	actctgtgct	5520

	aatcataacc	aaggtggaga	agggcaagtc	caagaagctg	aaatccotca	aggageteet	5580
	coogattacc	atcatogaga	ggagttcctt	cgagaagaac	cctatcgact	tectogagge	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctoccaaot	actccctctt	5700
	cgagttggag	aacqqaaqqa	agaggatgct	aacttctacc	ggagagttgc	agaagggaaa	5760
5	tgagetegee	cttccctcca	agtacgtgaa	cttcctqtac	ctcgcctctc	actatgaaaa	5820
	attgaagggg	tctcctgagg	acaacgagca	gaagcagete	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcq	agcagatete	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggetgaa	aacattatcc	acctottac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
10	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccqq	cctctatgaa	acaaqqattq	acttqtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
15	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599
20	<210> 120						
20	<210> 429						
	<211> 0399						
	<212 > DINA						
25	<220>						
	<223> Artificial S	Sequence					
		oquonoo					
	<400> 429						
30							
35							

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	ctgtaacttc	tgcactcacg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
	gtttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
30	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100

gtactcaata gggctcgaca tagggactaa ctccgttgga tgggccgtca tcaccgacga gtacaaggtg ccctccaaga agttcaaggt gttgggaaac accgacaggc acagcataaa gaagaatttg atcggtgccc tcctctcga ctccggagag accgctgagg ctaccaggct caagaggacc gctagaaggc gctacaccag aaggaagaac agaatctgct acctgcagga gatcttctcc aacgagatgg ccaaggtgga cgactccttc ttccaccgcc ttgaggaatc attcctggtg gaggaggata aaaagcacga gagacaccca atcttcggga acatcgtcga cgaggtggcc taccatgaa agtaccctac catctaccac ctgaggaaga agctggtcga

5

	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
10	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agetectetg	tctgcttcca	tgattaagcg	3060
15	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
	cqqaqqcqcc	tcccaqqaaq	agttctacaa	gttcatcaag	cccatccttq	agaagatgga	3240
	cootaccoao	gagetattag	tgaagttgaa	cagagaggag	ctattaagaa	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctogga	gagetccacg	ccatcttgag	3360
20	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatett	3420
20	gaccttcaga	attecttact	acatcaaacc	actcoccaga	ggaaactcta	aattcaccta	3480
	gatgacccgc	aaatctgaag	agaccattac	tecetogaac	ttcgaggaag	tcotogacaa	3540
	agacacttcc	getcagtett	tcatcgagag	gatgaccaac	ttcgataaaa	atctocccaa	3600
	cgagaaggtg	ctocccaage	actccctgtt	gtacgagtat	ttcacagtgt	acaacgaget	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcet	accttettat	ccggagagca	3720
25	gaagaaggeg	atcatcacc	tactetteaa	gaggaageee	aaggtgactg	tcaagcaget	3780
	gaagaaggee	tacttcaaca	agatcgagtg	cttccactcc	atcaagatct	ctaatataa	3840
	gaaggaggac	aacocct.ccc	ttagaccgagcg	ccacgateta	ctcaagatta	ttaaagacaa	3900
	ggacaggete	acceccecc	agaacgagga	categateeg	gacatogatog	tracctoac	3960
	cttattaaa	gacaacgagg	tgatcgagga	gaggetcaag	acctacoccc	acctettera	4020
	caacaaaata	ataaaacaac	taaaaaaaa	cagatatacc	acctacyccc	agetetecega	4020
30	cgacaaggeg	acgaaacage	rgaagagacg	atgacacacc	ageeggggaa	adttactass	4000
	atagaagaa	ttogggacca	gggacaagca	gccagggaag	accatacted	acttoccugaa	4200
	geeegaegga	atagagaaga	ggaacticat	tagaaaaaa	cacyacyact	atagagagat	4200
	taayyayyac	acceagaagg	acception	cyyacayyyt	ttaasasaaa	tabageacat	4200
	tgetaaettg	geeggetete	tagazagaa	gaagggcatt	Ligeagaeeg	tyaayyteyt	4320
25	tgacgagete	grgaaggrga	Lyggacycca	caagecagag	aacategtta	tassagarget	4360
35	tegegagaae	caaactaccc	agaaagggca	gaagaattee	cgcgagagga	tgaagegeat	4440
	tgaggaggge	ataaaagage	ttggetetea	gatecteaag	gageacceeg	tegagaacae	4500
	teagetgeag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tegtgeetea	4620
	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgeteeg	ataaaaatag	4680
40	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4/40
	acagetettg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
45	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
50	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
55	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880

2160

2220

2280

5 10	ctacctggac cgccaacctc gcaggctgaa caagtacttc cgcaacactc gctgggaggc ccgccacgat catcttctgg atgctaatca gaataaaaga	gaaattatcg gacaaggtgc aacattatcc gacaccacca atccaccaat gactctagag ggcgagctgg attggccaac ctataatgtg gaaagagatc	agcagatctc tgtccgccta acctgtttac ttgacaggaa ccatcaccgg ccgatcccaa gaggccgcaa ttaattaatg ggcatcaaag atccatatt	tgagttctcc caacaagcac cctcacaaac gagatacacc cctctatgaa gaagaagaga gcgggcaagg tatgaaataa ttgtgtgtta cttatcctaa	aagcgcgtga agggataagc ttgggagccc tccaccaagg acaaggattg aaggtgaaga taggttaacc aaggatgcac tgtgtaatta atgaatgtca	tattggccga ccattcgcga ctgctgcctt aggtgctcga acttgtccca gaccacggga tagacttgtc acatagtgac ctagttatct cgtgtctta	5940 6000 6120 6180 6240 6300 6360 6420 6480
	tcatatataa	atgaaccaga ttaatatcaa	tgggttagc	taaccaaatc aaaacaaatc	catatacata tagtctaggt	taaatattaa gtgttttgc	6540 6599
15	<210> 430 <211> 6599 <212> DNA <213> Artificial						
20	<220> <223> Artificial S	Sequence					
	<400> 430						
25							
30							
35							
40							
45							
50							
55							

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	ttattggaga	gtactttgcg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
10	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
20	gttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
50	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
35	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460

	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
5	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
5	cttgattgcc	cagetgeetg	ocoaaaaoaa	gaacggactg	ttcogaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttogac	ctcaccaaaa	acactaaatt	2880
	acaattatat	aaagagagag	accaccatca	cctccacaac	ttactaccc	agatagggg	2940
	gcagttgtt	aaagacaccc	tagaagataa	conceptacaac	reargety	tagataggega	2000
	ccaatacycc	galelele		gaactigtee	gacgcaatee	tgetgteega	3000
10	cateetgaga	greaacaetg	agattaccaa	agereeterg	tetgetteea	tgattaageg	3060
10	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	ageagetgee	3120
	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
	cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cggtaccgag	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagctccacg	ccatcttgag	3360
15	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
15	gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctoccaaoc	actccctqtt	gtacgagtat	ttcacagtgt	acaacqaqct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaageet	accttcttat	ccggagagca	3720
20	gaagaagggg	atcotcoacc	toctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
20	gaagaaggee	tacttcaaca	agatcgagtg	cttccactcc	atcaagetct	ctaatataa	3840
	gaaggaggac	accectaga	ttaggatta	agaggatata	gtcgagatta	ttaaagagaaa	3000
	ggacaggite	aacyceteee	ligggactia	ccacgaterg	cicaagatta	tasaatasa	3900
	ggaetteetg	gacaacgagg	ayaacyayya	calcellyay	gacalogige	Leaceetgae	3980
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggeteaag	acctacgeee	acctcttcga	4020
25	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
25	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
30	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
50	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacqaqaaqc	tgtacctgta	ctacctccaa	aacqqaaqqq	acatgtacgt	4560
	ggaccaggag	ctogacatca	acaggettete	cgactacgac	otcoaccaca	tcotocctca	4620
	atecttecta	aaggatgact	ccatcgacaa	taaagtgctg	acacoct.cco	ataaaaataq	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	gatcataaag	aagatgaaaa	actactogag	4740
35	acagetetta	aacaccaaac	tcatcaccca	ggoogoguug	accascetas	ctaaggetga	4800
00	acageceeeg	ttataaaaaa	tagataaga	gegettgete	aaaaaaaaa	taataassa	4860
	gagaggagga	cigicegage	tagaaaaaat	tataattaa	aayayacayc	cegeegaaae	4800
	terestere	accaagcacg	Lygeecaaal	Letggattee	cycalgaaca	ccaagtacga	4920
	tgaaaatgac	aagetgatee	gegaggteaa	ggtgatcacc	ttgaagteea	agetggtete	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
40	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
40	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
45	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggett	cgattctcct	accgtggcct	actctgtgct	5520
	aatcataacc	aaggtggaga	agggcaagtc	caagaagctg	aaatccotca	aggageteet	5580
	coogattacc	atcatogaga	ggagttcct+	cgagaagaag	cctatcoact	tectogagge	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctoccaaot	actccctctt	5700
	caaattaaaa	aacoosaacaa	agaggatact	aacttataca	agagagttag	agaagggaaaa	5760
50	tagataga	attaataa	agaggatget	attactates	atagaatata	agaayyyaaa	5000
	attassacc	tataataaaa	ageacycydd	assagged	ttaataaaaa	accacyaaaa	5020
	glugaagggC	recetyagg	acaacyayda			aycacaayca	2000
	ctacctggac	gaaattateg	agcagatete	tgagttetee	aagegegege	tattggeega	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000

gcaggetgaa aacattatec acetgtttae ceteacaaac ttgggageee etgetgeett

caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga

cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca

gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga

55

6060

6120

6180

ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc 6300 catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac 6360 atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct 6420 gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta 6480 5 taattetttg atgaaccaga tgeattteat taaccaaate catatacata taaatattaa 6540 tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc 6599 <210> 431 <211> 6599 10 <212> DNA <213> Artificial <220> <223> Artificial Sequence 15 <400> 431 20 25 30 35 40 45 50 55

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
F	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	tgagatgtgg	tgcgtacgtg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
20	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagtttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
30	gtttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
35	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
55	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
40	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggetgaet	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
45	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
----	--------------	--------------	-------------	---------------------	--------------	------------	------
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatetettee	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agetectetg	tctgcttcca	tgattaagcg	3060
5	ctacgacgag	caccaccaaq	atctgaccct	gctcaaggcc	ctootgagac	agcagetgee	3120
5	coagaagtac	aaggagatct	ttttcgacca	otccaagaac	gactacacca	gatacattga	3180
	cagaggcgcc	tcccaggaag	agttctacaa	ottcatcaao	cccatccttg	agaagatgga	3240
	cootaccoao	gagetottog	tgaagttgaa	cagagaggag	ctottoagga	agcagagaac	3300
		ggaaggatcc	ctcaccaaat				3360
	gagggaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatett	3420
10	gaggeaggag	attecttact	acatcagacc	actorcaga	gagaagacteta	agttcaccta	3480
	gatecccaga	aaatctgaag	agaccattac	tccctccaac	ttccaccaa	tcatagacaa	3540
	gargacettac	actorectet	tcatcaacaa	ataacaac	ttogataaaa	atotoccaa	3600
	ggggggettee	atagagaaaa	actored	gacgaccaac	ttaaaatat	accegeeeaa	3660
	cyayaayyty	agetagetage	acceccyct	gracyaytat	cccacagtgt	acaacyayee	3000
	caccaaggug	aagtacgtca	tagagggaat	gaggaageet	geettettgt	tassagagea	2720
15	gaagaaggee	alcglegace	lgelelleaa	gaccaacagg	aaggugacug		3760
	gaaggaggac	tacttcaaga	agategagtg	cttcgactcc	gtegagatet	ctggtgtcga	3840
	ggacaggttc	aacgcctccc	ttgggactta	ccacgatetg	ctcaagatta	ttaaagacaa	3900
	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggeteaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
20	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
25	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
30	acagctcttg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
00	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
35	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cootgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactogag	agatcototo	ggacaaaggg	agggatttcg	ctactotoao	5340
	gaaggtgctc	tccatocctc	aggtgaacat	cotcaagaag	accgaagttc	agaccogago	5400
	attctccaaq	gagtccatcc	tccccaagag	aaactccgac	aagetgateg	ctagaaagaa	5460
40	agactoggac	cctaagaagt	acqqaqqctt	coattetet	accotoocct	actctotoct	5520
	aatcataacc	aaggtggaga	agggcaagtc	caagaagetg	aaatccotca	aggageteet	5580
	coogattacc	atcatogaga	ggagtteett	cgagaagaac	cctatcgact		5640
	caagggatat	aaagaggtga	agaaggaget	catcatcaag	ctoccaaot	actccctctt	5700
	cgagttggadad	aacqqaaqqa	agaggatget	agettetace	ggagagttgc	agaagggaaa	5760
45	tgagetggggg	attacatace	agtacgtgee	cttcctatec	ctcgcctctc	actatoaaaa	5820
40	attaaaaaaa	tetectgagg	acaacgagggg	gaaggaggtg	ttogtogage	agcacaagca	5880
	ctacctorac	gaaattatco	aggagatete	tranttetee	aagggggggggg	tattggggga	5940
	caccaacctc	gaaacaaaataa	tatccacta	caacaaccec	aggggggggg	ccattcocca	6000
	-gooddooco		-googooca	- a a c a a g c a c	-ggggaluugl		0000

gcaggetgaa aacattatee acetgtttae eetcacaaae ttgggageee etgetgeett

caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga

cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga

ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc

catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac

atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct

gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta

taattetttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa

tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc

50

55

6060

6120

6180

6240

6300

6360

6420

6480

	EF 3 191 393 B1
F	<210> 432 <211> 6599 <212> DNA <213> Artificial
5	<220> <223> Artificial Sequence
10	<400> 432
15	
20	
25	
30	
35	
40	
50	
50	
55	

	ccaaatataa	tttaatataa	agtgaagtaa	taatcaaaaa	aaaaantnta	aaacqaaqta	60
	cctactaata	agtastatta	aacaaaataa	at got a a a gt	atcaastata	taaaataaaa	120
	tttaataaaa	ageaacaeeg	2222222222	acygraaagr	gccayacaca	agaggagagt	180
	citaataaaa	gyaayaaaaa	taggataga	taaacayyuu	ttaattaat	agageagage	240
5	atacttagaay	atttatatta	cacegalaga	attaccalay	apparttaga	acallaaaaa	240
0	atacttygat	CLLLCLCLLA	ccccgclat	allyagacci	gaaactugag	agagalacac	300
	taatettgee		attecetaae	LLACAGGACL	cagegeatgt		360
	cgttccccat	ttaagteeca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagettg	gattettaaa	aaagatcgag	ttttagaget	agaaatagca	480
	agttaaaata	aggetagtee	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgCtttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
10	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
20	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtettg	tagatatgta	accgtcgata	1800
	gttttttgt	agatttattc	acatottatc	aagettaate	ttttactatq	tatgcgacca	1860
30	tatctggatc	cagcaaaggc	gatttttaa	ttccttqtqa	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattootaaa	ctataaatqt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttaacttta	tgatagttta	atttatatot	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatogcacc	gaagaagaag	cocaaootoa	togacaaaaa	2100
	otactcaata	ggggttggaca	tagggactaa	ctccottoga	tooocotca	tcaccoacoa	2160
35	gtacaaggtg	ccctccaaga	agttcaaggt	ottoggaaaac	accgacagge	acagcataaa	2220
	gaagaatttg	atcontoccc	tcctcttcga	ctcccccacac		ctaccagget	2280
	caagaggaggagg	actagaagge	getacaccag	aaggaagaag	agaatctgct		2340
	gatettetee	aacqaqatqq	ccaaggtgga	cgactccttc	ttccaccocc	ttgaggaatc	2400
	attectorto	gaggaggata	aaaaggacggu	gagagagagga	atcttcggga		2460
	caagatageg	taccatgaaa	agtaccetac	catctaccac	ctgaggaga	agetgetege	2520
40	ctctacccac	aaggetgadt	tacacttaat	ttacctocct	ctcactcaca	tgataaagtt	2520
	accordance	ttagtatta	agggagagat	gaaggagag	aatagaaga	tgacaaaget	2500
	attastaaaa	ataattaaaa	agggagacee	gattttagag	aaceecgacg	tggacaagee	2040
	tagaattaaa	gagaagata	taatatataa	tagtatata	aggaacceaa	gggttggggaa	2700
	attasttaa	gecaayyeea	acaaaaaaaa	gaaggaagta	ttoggaaagt	tastaatat	2,00
45	atagatagaa	ttgagtggggg	acttoreta	gaacyyacty	atagagagag	aggetagett	2020
	agaattatat	aaaaaaaa	addicadyre	aataasasa	ttaataaaaa	acycladyll	2000
	geageterer	aaayacacet	tagaagata	apattata	angagenter	ayacayycya	2740
	ccaatacycc	galcicttee	agettageta	yaacitytee	yacycaatec	tasttosaa	3000
	atagaga	greater	ayactaccaa	ageleetetg	ataataaaaa	Lyallaayeg	2120
	clacgacgag	caccaccaag	alcigaceet	yeleaaggee	clyglgagac	aycayctycc	3120
50	cyayaagtaC	aayyagatCt	LEEECGACCA	ycccaagaac	ygeraegeeg	yatacattga	2180

	cadaaaaaaaa	toccaggaag	agttetacaa	attestesaa	cccatcctto	agaagatgga	3240
	aggtaggegee	agatatta	tgaagttgaa	geeeaceaag	atattaaaaa	agaagacaga	3300
	cygtaccyay	gagetyttyg	cyaayuuyaa	cayayayyac	cuguugagga	ageagagaac	2260
	cilicyacaac	ggaagcatee	ClCaccaaal	ccaccuggga	gagereeacg	ccalcilgag	2420
5	gaggcaggag	gatttetate	cetteetgaa	ggacaaccgc	gagaagattg	agaagatett	3420
	gacetteaga	attecttact	acgrcgggcc	actcgccaga	ggaaacteta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctgcccaagc	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca	3720
10	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga	4020
15	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
10	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagete	atgaaggtga	toggacgcca	caagccagag	aacatcotta	ttgagatggc	4380
20	tcocoaoaac	caaactaccc	agaaaggggca	gaagaattcc	cacaaaaaaa	tgaagcgcat	4440
		ataaaagagg	ttooctctca	gatecteaag	gageacecco		4500
	tcagetgeag	aacqaqaaqc	totacctota	ctacctccaa	aacqqaaqqq	acatotacot	4560
	agaccaggag	ctogagaage	acaggettata	caactacaac	atcascasa	tcatacata	4620
	ggaccaggag	aaggatgact	ccatccacaa	taaatacta	acacacteca	ataaaataa	4680
05	aggaaagtag	aaggacgacc	ccaccyacaa	aataataaaa	acacyceccy	actactactag	4000
25	aggeaagtee	gacaacytee	tastasaga	gguugugaag	aayatyaaaa	attactyyay	4740
	acagetetty	aacyccaayc	teactecca	geglaagile	gacaacetga		4000
	gagaggagga	ttgtccgage	tegataagge	cggattcatc	aagagacagc	tegtegaaae	4860
	ccgccaaatt	accaagcacg	tggeeeaaat	tetggattee	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagetgatee	gcgaggtcaa	ggtgatcacc	ttgaagteea	agetggtete	4980
30	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
35	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
40	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagetegee	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggg	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctogac	gaaattatco	agcagatete	tgagttctcc	aagcgcgtga	tattooccoa	5940
	coccaacete	gacaaggtgc	totccoccta	caacaagcac	agggataagg	ccattcgcga	6000
45	gcaggetgaa	aacattatcc	acctottac	cctcacaaac	ttgggaggccc	ctactacett	6060
	caagtactto	gacaccacca	ttgacaggaa	gagatacacc		aggtgctcga	6120
	cocaacacto	atccaccaat	ccatcaccoo	cctctatcaa	acaaqqattq	acttotocca	6180
	actacace	gactetaga	coatacces	raaraaraara	aaggaaag	acceccaca	6240
	geegggagge	gacciciayay	aggaaggaag	gaayaayaya	taggttagg	tagagettata	6240
50		ggegageegg	yayyuuyuda	totacotco		Layactlyte	6300
	calcutetgg	atotootot	claditaatg	the of ot ot t	aayyatgcac	acalayigad	0300
	atgetaatea	ccataatgtg	ygcatcaaag				6420
	gaataaaaga	gaaagagatC	acceatattt	CCTATCCTAA	acgaatgtca	CGTGTCTTTA	6480
	taattettg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

55

<210> 433 <211> 6599 <212> DNA

	<213> Artificial
5	<220> <223> Artificial Sequence <400> 433
10	
15	
20	
25	
30	
35	
40	
45	
50	

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataqqtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttogat	ctttctctta	ccctotttat	attgagacct	gaaacttgag	agagatacac	300
	taatetteec	ttattattc	attooctaac	ttacaggact	cagegeatgt		360
	cattoccat	ttaagtccca	caccotctaa	acttattaaa	ttattaatot	ttataactag	420
	atocacaaca	acaaaactta	tactatata	ctcatataaa	ttttagaget	agaaatagga	480
	acycacaaca	accadegetteg	attataaat	tassasata	gaacagagta	agtactttt	540
10	tttaaaaca	aggetagtee	gulateaact	cyaaaaaycy	tatatatat	tttattaget	540
10	tttgeggeeg	caallygall	gggtttactt		tactacact	cticatiagat	660
	ttttaatcag	geleelgall		testesste	LCCLGAACLL	glallallea	200
	gragaregaa	tadattataa	aaayataaaa	tCatadada		CLALCAALCA	720
	tattaaagea	atgaatatgt	aaaattaatc	ttatettat	tttaaaaaat	catataggtt	780
	tagtatttt	τταααααταα	agataggatt	agttttacta	ttcactgctt	attacttta	840
15	aaaaaatcat	aaaggtttag	tattttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
00	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtettg	tagatatgta	accotcoata	1800
	attttttat	agatttattc	acatottatc	aagettaate	ttttactato	tatocoacca	1860
30	tatctogatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttota	atatgaagtt	1920
	gaaattttgt	tattootaaa	ctataaatgt	atgaagttag	agtatacctt	taccttctta	1980
	tttaacttta	tgatagttta	atttatatot	atttaagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatogcacc	gaagaagaag	cacaaaataa	togacaaaaa	2100
	atactcaata	ggggtggage	tagggettee	ctccattaga	tagacatca	tcaccgacga	2160
35	gtacecaata	gggcccgaca	agttgaagg	attagaaaaa	accascacca	acaccataaa	2220
	geacaaggeg	atagataga	taatattaa	gttggggaaac	accyacayge	atagcacaat	2220
	gaagaactug	actagaagga	actacaccac	aaggaagaag	accyccyagy	acatacagget	2200
	caayayyacc	gecagaagge	gecacaccag	aayyaayaac	ttagaagaa	ttaagaaata	2400
	gatettettet	aacyayacyy	ccaayytyya	cgactectte	atattagaga	aggaate	2400
	accelggig	taggaggata	aaaagcacga	gagacaccca	aterceggga	acategiega	2400
40	cyagguggee	Laccalyaaa	aglacectae	theasterat	ctgaggaaga	agelgglega	2520
	CLELACEGAE	aaggergaer	Lycycllgal	LLACCLGGCL	elegeleaca	tyalaaagtt	2580
	ccgcggacac	tteeteattg	agggagacet	gaacccagac	aacteegaeg	tggacaaget	2040
	cttcatccag	ctcgttcaga	cctacaacca	getttegag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	teetetetge	tcgtctgtca	aagtccagga	ggcttgagaa	2760
45	cttgattgcc	cagetgeetg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agctcctctg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
50	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
	cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cggtaccgag	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagctccacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
55	gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540

	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctgcccaagc	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca	3720
	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
5	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcotoc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggetcaag	acctacqccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	gactagagaa	aactctccca	4080
10	caaattgatc	aacqqqatca	gggacaagca	gtcagggaag	actatactco	acttcctgaa	4140
10	otccoacooa	ttcoccaaca	ggaacttcat	gcagetcatt	cacgacgact	ccttgacctt	4200
	caaggaggag	atccagaagg	ctcaggtgtc	togacagggt	gactccttgc	atgaggagat	4260
	toctaactto	accaactete	ccoctattaa	gaagggcatt	ttocagacco	tgaaggtcgt	4320
	tgacgagete	gtgaaggtga	toggacocca	caagecagag	aacatcotta		4380
			agaaagggcca		cacaaaaaaaa		4440
15	taaaaaaaaa	ataaaaaaaa	ttooctctca	gatgatetee	gagegegege	togagaacac	4500
	tragetgegge	aacqaqaaqc	tatacctata	ctacctccaa	aacqqaaqqq	acatotacot	4560
	ggaggaggag	ctogagatge	acaggettata	cractacrac	atcaccaca	tcatacatca	4620
	ggaccaggag	aaggatgact	ccatccacaa	taaatacta	acacacteca	ataaaataa	4680
	aggaaagtag	aaggacgacc	cotocgacaa	antantana	acacyceecy	actactora	4740
20	aggeaagtee	gacaacytee	tastasaaa	ggttgtgaag	aagatgaaaa	attactygag	4900
20	acagetetty	tetacacaca	taattaaaaa	geglaagile	gacaaceega	taataassa	4800
	gagaggagga	Ligicogage	togalaagge	tataasttaa	aagagacagc	cegeegaaae	4000
	tassatas	accaagcacg			theoretage		4920
	tgaaaatgac	aagetgatee	gegaggteaa	ggtgateace	ttgaagteea	agetggtete	4980
	egaetteege	aaggacttee	agelectada	ggugagggag	alcaacaact	accaccacge	5040
25	acacgacgee	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atectaaget	5100
	ggagtetgag	ttcgtctacg	gegaetaeaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtetgageag	gagateggea	aggecacege	caagtacttc	ttctactcca	acatcatgaa	5220
	CTTCTTCaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagegee	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
30	gaaggtgete	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
00	attetecaag	gagtccatcc	tccccaagag	aaactccgac	aagetgateg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggett	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggageteet	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
35	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagetegee	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
40	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
45	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatata	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

50 <210> 434 <211> 6599 <212> DNA

<213> Artificial

## 55 <220>

<223> Artificial Sequence

<400> 434

	ccgggtgtga cctagtaata	tttagtataa agtaatattg	agtgaagtaa aacaaaataa	tggtcaaaag atggtaaagt	aaaaagtgta gtcagatata	aaacgaagta taaaataggc	60 120
5							
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							

tttaataaaa ggaagaaaaa aaacaaacaa aaaataggtt gcaatggggc agagcagagt catcatgaag ctagaaaggc taccgataga taaactatag ttaattaaat acattaaaaa atacttggat ctttctctta ccctgtttat attgagacct gaaacttgag agagatacac taatcttgcc ttgttgtttc attccctaac ttacaggact cagcgcatgt catgtggtct cgttccccat ttaagtccca caccgtctaa acttattaaa ttattaatgt ttataactag atgcacaaca acaaagcttg atccaagata ttgagtgatg ttttagagct agaaatagca agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tttgcggccg caattggatc gggtttactt attttgtggg tatctatact tttattagat ttttaatcag gctcctgatt tctttttatt tcgattgaat tcctgaactt gtattattca gtagatcgaa taaattataa aaagataaaa tcataaaata atattttatc ctatcaatca tattaaagca atgaatatgt aaaattaatc ttatctttat tttaaaaaat catataggtt tagtattttt ttaaaaataa agataggatt agttttacta ttcactgctt attactttta asagettag tatttttta asatasatat aggastagtt ttagtattg a a t a a t

30

5

10

	aaaaaatcat	aaaggetttag	+ + + + + + + + + + + + + + + + + + + +	aaataaatat	aggaatagtt	ttactattca	900
	adaaaattaat	aaayyuuay	tttoooottt	aaacaaacac	taatagee	atttaccacca	960
	tttaaaata	agaaaaatag	atataattaa	adyatayttt	actacctage	accegecacy	1020
	dataatatag	ageegaaaeg	acycegetae	attaccicaa	daaataagaa	acyacyccyc	1020
15	cataatatty	ccaaacycca	actygactac	gregaaceea	caaaccecac	aaayeyeyey	1140
	aaalCaaalC	gereaaaeea	tassatasaa	caacycyttt	gilacacyci	taaceeacy	1200
	cgagtagage	acagtaacct	tcaaataage	gaatggggca	taatCagaaa	teegaaataa	1200
	acctaggggc	attateggaa	atgaaaagta	geteacteaa	tataaaaatc	taggaaccet	1200
	agttttcgtt	atcactctgt	geteetege	tetattete	agtetetgtg		1320
	aggatteega	acgagtgacc	ttettegttt	ctcgcaaagg	taacageete	tgetettgte	1380
20	tettegatte	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgtttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	CGCTTTGTTT	ttgtggttca	1500
	gttttttagg	attetttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
25	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
20	acaggattaa	aagtttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
	gtttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
30	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
35	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
40	cttgattgcc	cagetgeetg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaaqacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacocc	gatetettee	tcoccoctaa	gaacttgtcc	gacgcaatcc	tactatccaa	3000
	catcctgaga	gtcaacactg	agattaccaa	agetectetg	tctgcttcca	tgattaagcg	3060
45	ctacgacgag	caccaccaaq	atctgaccct	gctcaaggcc	ctootgagac	agcagetgee	3120
40	coagaagtac	aaggagatet	ttttcgacca	otccaagaac	gactacacca	gatacattga	3180
	cadadacacc	teccaggaag	agttctacaa	gttcatcaag	cccatccttq	agaagatgga	3240
	cogtaccoag	gagetgttgg	tgaagttgaa	cagagaggag	ctattgagga	agcagagaac	3300
	cttcgacaac	gaaagata	ctcaccaaat	ccacctogoa	gagetccacq	ccatcttgag	3360
	gagggaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatett	3420
50	gaggeaggag	atteettact	acatcaaaca	actorcara	gagaagacteta	agttcaccta	3480
	gatazooga	aaatctcaaa	agaccetter	tractage	ttogaggaaa	tratareree	3540
	gaugacettaa	act cart of t	tataaaaa	ratraccase	ttogataaaa	atotoccasa	3240
	ggggggettee	atagagaaaa	actocctatett	gaugaccade	ttaagatat	acceptedad	3660
		aagtagetge	account	gracyayiat	agattattat	acaacyayet	2000
	gaagaaggeg	adyracyrea	tagtattact	gaggaageet	agenterate		2720
55	yaayaayyCC	alcylcyacc		yaccaacayg	aayyuyacug		2/00
	yaayyayyaC	Lacildaga	ayalcyayig	GLLCYACLCC	ylcyayatet	ciggigicga	J04U

180 240

300 360

420

480

540

600

660

720

780

840

3900

ggacaggttc aacgcctccc ttgggactta ccacgatctg ctcaagatta ttaaagacaa

	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
_	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
5	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
10	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
15	acagctcttg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
00	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
20	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
25	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
30	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
25	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
55	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
40	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

- 45 <210> 435 <211> 6599 <212> DNA <213> Artificial
- 50 <220> <223> Artificial Sequence

<400> 435

5	ccgggtgtga cctagtaata tttaataaaa catcatgaag atacttggat taatcttgcc cgttccccat atgcacaaca	tttagtataa agtaatattg ggaagaaaaa ctagaaaggc ctttctctta ttgttgtttc ttaagtccca acaaagcttg	agtgaagtaa aacaaaataa aaacaaacaa taccgataga ccctgtttat attccctaac caccgtctaa gctttgtaca	tggtcaaaag atggtaaagt aaaataggtt taaactatag attgagacct ttacaggact acttattaaa tgcctgcacg	aaaaagtgta gtcagatata gcaatggggc ttaattaaat gaaacttgag cagcgcatgt ttattaatgt ttttagagct	aaacgaagta taaaataggc agagcagagt acattaaaaa agagatacac catgtggtct ttataactag agaaatagca	60 120 180 240 300 360 420 480
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							

	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgctttt	540
	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tctttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
5	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
5	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attacttta	840
	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctoctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccage	atttoccaco	960
	tttgaacgtg	ageegaaaeg	atotcottac	attatettaa			1020
	cataatatco	ccaaatocca	actogectac	atcaaccca	caaatcccac	aaaacacata	1080
10	aaatcaaatc	octcaaacca	caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	caacgcgttt	attacacact	caatcccacq	1140
	cgagtagagg	acagtaacct	tcaaataaqc	gaatggggcce	taatcagaaa	tcccaaataa	1200
	acctagge	attatcoraa	atraaaarta	gaacgggggaa	tataaaaatc	taggaaccet	1260
	agttttcgtt	atcactctat	actocctocc	totatttoto	agtetetata	tttacaacta	1320
	aggetteget	accastance	ttattaattt	ctcccaaaac	taacacctc	tactattata	1380
	tattaatta	acyaytyacc	tatatattat	ttaccatcat	attattattaa	ttatattt	1440
15	ttattata	tttatget	tgatattaga	ttacyacyac	gccccccgg	ttatgettet	1500
	atttttarge	attattta	tttttaaata	cigiligili		agagettattt	1560
	getetetagg	according	ttttttaa	gattaategy	tattatatt	atattataaa	1620
	ggtgtgttgg	tatatat	tttaggag	totacayatta	tgetgeatte	gigilacaaa	1620
	tattagagaga	cycacyactt	ttttacgaggt	attacttta	agtattaaag	attacyaacc	1740
~~	cyccyayaca	gaaccatgat	agastattas	griegittae	togetetate	guuguuta	1000
20	acaggattaa	adglillia	agcalgliga	aggagicity	tagalalgia	accylcyala	1960
	gillilligi	gggtttgttc	acalgliate	adgettaate		Lalgegacea	1000
		tattaataagge	gattttttaa	atacatta	additigta		1920
	gaaalligi	tallyglada	clalaalgi	glgaagllgg	aglalacell		1980
	tttggetttg	tgatagttta	atttatatgt	attttgagtt	etgaettgta	tttettgaa	2040
25	ttgattetag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggetegaea	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	teetettega	ctccggagag	accgctgagg	ctaccagget	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatetget	acctgcagga	2340
	gatettetee	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
30	atteetggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
	cgaggtggcc	taccatgaaa	agtaccctac	Catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggetgaet	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaaget	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tectetetge	tcgtctgtca	aagtccagga	ggcttgagaa	2760
35	cttgattgcc	cagetgeetg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	ageteetetg	tctgcttcca	tgattaagcg	3060
40	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
40	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
	cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cggtaccgag	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagetecacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
45	gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctgcccaagc	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca	3720
	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
50	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggeteaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
55	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
55	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260

	tgctaacttg	gccggctctc	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagctc	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
	tgaggagggc	ataaaagagc	ttggctctca	gatcctcaag	gagcaccccg	tcgagaacac	4500
5	tcagctgcag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagctcttg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
10	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
15	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
15	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
20	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
25	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
20	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
30	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
35	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

<210> 436
 <211> 6599
 <212> DNA
 <213> Artificial

<220>

45 <223> Artificial Sequence

<400> 436

50

5	ccgggtgtga cctagtaata tttaataaaa catcatgaag atacttggat taatcttgcc cgttccccat atgcacaaca	tttagtataa agtaatattg ggaagaaaaa ctagaaaggc ctttctctta ttgttgtttc ttaagtccca acaaagcttg	agtgaagtaa aacaaaataa aaacaaacaa taccgataga ccctgtttat attccctaac caccgtctaa tttggaaggc	tggtcaaaag atggtaaagt aaaataggtt taaactatag attgagacct ttacaggact acttattaaa cccccgtgcg	aaaaagtgta gtcagatata gcaatggggc ttaattaaat gaaacttgag cagcgcatgt ttattaatgt ttttagagct	aaacgaagta taaaataggc agagcagagt acattaaaaa agagatacac catgtggtct ttataactag agaaatagca	60 120 180 240 300 360 420 480
10	agttaaaata tttgcggccg ttttaatcag gtagatcgaa tattaaagca tagtatttt	aggctagtcc caattggatc gctcctgatt taaattataa atgaatatgt ttaaaaataa	gttatcaact gggtttactt tctttttatt aaagataaaa aaaattaatc agataggatt	tgaaaaagtg attttgtggg tcgattgaat tcataaaata ttatctttat agttttacta	gcaccgagtc tatctatact tcctgaactt atattttatc tttaaaaaat ttcactgctt	ggtgctttt tttattagat gtattattca ctatcaatca catataggtt attactttta	540 600 660 720 780 840
15							
20							
25							
30							
35							
40							
45							
5U							

aaaaaatcat aaaggtttag tatttttta aaataaatat aggaatagtt ttactattca ctgctttaat agaaaaatag tttaaaattt aagatagttt taatcccagc atttgccacg tttgaacgtg agccgaaacg atgtcgttac attatcttaa cctagctgaa acgatgtcgt

	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
5	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
-	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctqt	getecetege	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcattt	ctcgcaaagg	taacagcctc	tactcttatc	1380
	tcttcgattc	gatctatocc	totctcttat	ttacgatgat	atttcttcaa	ttatgttttt	1440
10	ttatttatoc	tttatgctgt	tgatgttcgg	ttatttattt	cacttatt	ttgtggttca	1500
	atttttaga	attetttag	tttttgaatc	gattaatcoo	aagagatttt	coagttattt	1560
	agtatattag	aggtgaatct	ttttttgag	gtcatagatc	tattatatt	otottataaa	1620
	catgcgactt	tatatattt	tttacgaggt	tatgatgttc	taattattt	attatgaatc	1680
	tattaagaca	gaaccatgat	ttttattat	attcatttac	actattaaaq	atttattta	1740
	acaqqattaa	aagttttta	aggatattaa	aggagtetta	tagatatgta	accotcoata	1800
15	attttt	aagtttatta	ageatgeega	aggagteetg	ttttactato	tatgogaga	1860
	tatatagata	gggtttgttt	acatyttate atttttate	ttoottotoo	aacttttatta	atatgegacea	1920
	accedydaec	tattaataaa	gattetettaa	ataeettaa	accellegea	tacattatta	1920
	tttaaattta	tactygtaaa	atttatatgt	gtgaagttgg	agracatteta	tttattta	2040
	ttasttataa	tttaagtila	acctacacyc	accegagee	aggaagetaa	trancososo	2040
	ctostsots	lllaagtaat	toggeace	gaagaagaag	taraasta	tggacaaaaa	2100
20	gtactcaata	gggetegaea	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccagget	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
25	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
25	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
30	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agctcctctg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
35	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
	cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cggtaccgag	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagetecacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
	gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
40	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctgcccaage	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaqqtq	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccqqaqaqca	3720
	gaagaaggcc	atcqtcqacc	toctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
45	gaaggaggag	tacttcaaga	agatcgagtg	cttcgactcc	atcgagatct	ctggtgtcga	3840
40	ggacaggttc	aacocctccc	ttoogactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
	ggacttcctg	gacaacgagg	agaacgagga	catecttoag	gacatcotoc	tcacctgac	3960
	cttottcoaa	gacagggaga	tgatcgaaga	gaggetcaag	acctacgece	acctettega	4020
	caacaaaata	atgaaacag	tgaagagaga	cagatatacc	aactaaaaaa	aacteteega	4080
	caaattgatg	aacqqqatca	ggaagagaeg	atcaggaaag	actatactco	acttcctcaa	4140
50	atccaccac	ttogggacca	gggacaagea	gceagggaag	caccaccact	ccttgacctt	4200
	caaccaccyda	atocagaaga	ctcacatata	tagacagat	gactocttoc	atraggacet	4200
	taayyayyac	acceagaagg	acceptetee	cygacayyyt	ttagaagaaga	tagagetacat	4200
	tagaaaata	gaaggatat	tagasagas	gaagggggatt	agatactto	ttasastaaa	4320
	tagagagaga	gryaayyrya	agaaagagaga	caayccayag	agagagagaga	tapagaaga	4300
	tagagagaac	caaactaccc	ayaaayyyda	yaayaattee	cycyagagga	tagagegeat	4440
55		acaaaagage		galcotcaag	yaycaccccg		4500
	Leagetgeag	aacgagaage	lgtacctgta	ccacetecaa	aacggaaggg	acatgtacgt	4560
	ggaccaqqaq	ctggacatca	acaggttgtc	CGACTACGAC	grcgaccaca	LCGLGCCLCA	4620

	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgctccg	ataaaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagctcttg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
5	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
5	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
10	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
15	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
20	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
20	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
25	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
30	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

#### <210> 437 35

# <211> 6599

<212> DNA <213> Artificial

<220>

40 <223> Artificial Sequence

<400> 437

45

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	gtttcgtaca	acaatggcag	ttttagagct	agaaatagca	480
	agttaaaata	aggetagtee	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
10	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attacttta	840
	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaaqaa	caacgcgttt	gttacacgct	caatcccacq	1140
	cgagtagagc	acagtaacct	tcaaataaqc	gaatgggggga	taatcagaaa	tccgaaataa	1200
20	- 9 - 9 - 9 - 9 - 9 -	<b>y</b>	<b>---</b>	555555	···· <b>·</b>	<b>j</b>	
05							
25							
30							
35							
55							
40							
45							
50							
55							

	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcqttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	atttcttcaa	ttatgttttt	1440
5	ttatttatgc	tttatgctgt	tgatgttcgg	ttatttattt	cactttattt	ttgtggttca	1500
5	gtttttagg	attetttag	tttttgaatc	gattaatcog	aagagatttt	coagttattt	1560
	aatatattaa	aggtgaatct	ttttttgag	gtcatagatc	tottotattt	otottataaa	1620
		totatoattt	tttacgaggt	tatgatgttc	taattattt	attatgaatc	1680
	tattgagaga	gaaccatgat	ttttattat	attcatttac	actattaaaq	attattta	1740
	acaqqattaa	aagttttta	aggatattaa	aggaggeetue	tagatatgta	accotcoata	1800
10	attttt	aagtttatta	ageacytega	aggagteetg	ttttaatata	tatgggaga	1860
	tatatagata	gggtttgttt	acatyttate	ttaattata	agettttatta	atatgegacea	1920
	accelygate	tattaataa	gatter	ataccattaa	additigta	togettetto	1 9 2 0
	gaaaccity	tactyglaaa	clalaalyl	glyaagllyg	agraracerr	tatetta	1980
		theoretoot	allialalgi	alligagii	cigacilgia	transasasas	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
15	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccagget	2280
	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
20	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
	ctctaccgac	aaggctgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
	ccgcggacac	ttcctcattg	agggagacct	gaacccagac	aactccgacg	tggacaagct	2640
	cttcatccag	ctcgttcaga	cctacaacca	gcttttcgag	gagaacccaa	tcaacgccag	2700
	tggagttgac	gccaaggcta	tcctctctgc	tcgtctgtca	aagtccagga	ggcttgagaa	2760
	cttgattgcc	cagctgcctg	gcgaaaagaa	gaacggactg	ttcggaaact	tgatcgctct	2820
25	ctccctggga	ttgactccca	acttcaagtc	caacttcgac	ctcgccgagg	acgctaagtt	2880
	gcagttgtct	aaagacacct	acgacgatga	cctcgacaac	ttgctggccc	agataggcga	2940
	ccaatacgcc	gatctcttcc	tcgccgctaa	gaacttgtcc	gacgcaatcc	tgctgtccga	3000
	catcctgaga	gtcaacactg	agattaccaa	agetectetg	tctgcttcca	tgattaagcg	3060
	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagctgcc	3120
20	cgagaagtac	aaqqaqatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
30	cqqaqqcqcc	tcccaqqaaq	agttctacaa	gttcatcaag	cccatccttq	agaagatgga	3240
	cootaccoao	gagetattag	tgaagttgaa	cagagaggag	ctattaagaa	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctogga	gagetceacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatett	3420
	gaccttcaga	attecttact	acatcagacc	actcoccaoa	ggaaactcta	aattcaccta	3480
35	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcotogacaa	3540
	gagacacttee	getcagtett	tcatcgagag	gatgaccaac	ttcgataaaa	atctoccaa	3600
	cgagaaggtg	ctocccaaoc	actccctott	gtacgagtat	ttcacagtgt	acaacgaget	3660
		aagtacgtca	cagagggaat	gaggaageet	acettettat	ccggagagca	3720
	gaagaaggcc	atcotcoacc	toctcttcaa	gaccaacagg	aaggtgactg	tcaagcaget	3780
	gaagaaggac	tacttcaaga	agatcgagtg	cttcgactcc	atcaagatct		3840
40	gaaggaggac	aacgeeteee	ttoogactta	ccacgatetg	ctcaagatta	ttaaagacaa	3900
	ggacaggete	gacaacgagg	agaacgagga	catectteag	gacatcotoc	tracctrac	3960
	cttattaaa	gacaacgagg	tgatcgaaga	gaggetcaag	acctacoccc	acctcttcga	4020
	caacaaaata	atgaaacag	tgaagagaga	cagatatacc	actacgeee	agetetecega	4020
	caaattgatg	aacqqqatca	ragagagacg	atcagagaaa	actatactco	acttoctosa	4140
	atacagaaa	ttogggacca	gggacaagea	gccagggaag	accacacced	acttoacatt	4200
45	geeegaegga	atagagaaga	ggaacttcat	tagaaaaaa	cacyacyact	ataagaagat	4260
	taayyayyac	acceayaayy	acception	cyyacayyyt	ttaasasaaa	tabageacat	4200
	tgecaaectg	geeggeeeee	tagazagaa	gaagggcatt	cuguagadeg	tyaayyteyt	4320
	tgacgagete	grgaaggrga	Lygyacycca	caagecagag	aacategita	tragatage	4360
	tagaaaaaaa	caaactaccc	ayaaayyyca	gaagaattee	cycyagagga	tagagegeat	4440
50		acaaaayayc	tataatata	galcolcadg	yaycaccccg	ccyayaacac	4000
	agaagaagaag	aacyayaage		dracetecaa	aacyyaaggg	tactoct	4000
	yyaccaggag	ctggacatda	acayyttgtC	cyactacgac	yccyaccada	Legigeetea	4020
	greetteetg	aaggatgact	ccatcgacaa	LaaagtgCtg	acacgeteeg	ataaaatag	4680
	aggeaagtee	gacaacgtcc	ceteegagga	ggtcgtgaag	aagatgaaaa	actactggag	4/40
	acagetettg	aacgccaagc	tcatcaccca	gegtaagtte	gacaacctga	ctaaggetga	4800
55	gagaggagga	ttgtccgagc	tegataagge	cggattCatc	aagagacagc	tcgtcgaaac	4860
	ccgccaaatt	accaagcacg	tggcccaaat	tetggattee	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980

	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
_	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
5	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
10	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
15	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
20	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
25	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599
	<210> 438						
	<211> 6599						
30	<217> 0000						
~~	<2125 Divit						
	~2 IS/ Artificial						

<220>

<400> 438

<223> Artificial Sequence

35

40

45

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	tgccattgtt	gtacgaaacg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
15	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560

	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtettg	tagatatgta	accgtcgata	1800
5	attttttat	agatttattc	acatottatc	aagettaate	ttttactatq	tatgcgacca	1860
0	tatctogatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttota	atatgaagtt	1920
	gaaattttgt	tattootaaa	ctataaatot	atgaagttag	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatot	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cacaagatga	togacaaaaa	2100
	gtactcaata	ggggtggaga	tagggactaa	ctccattaga	tagaccatca	tcaccgacga	2160
10	gtaceaaata	ccctccaaga	agttcaaggt	attaggaaaac	accoacaooc	acagcataaa	2220
	gaagaatttg	atcontoccc	tcctcttcga	ctcccccacac	accortoago	ctaccaget	2280
	caagaggaggagg	actagaagag	actacaccaa	aaggaagaag	agaatctact	acctgcaggee	2340
	gatettetee	aacqaqatqq	ccaagetgga	caactcotto	ttccaccgcc	ttgaggaatc	2400
	attoctocto	aacgagacgg	aaaaggegga	gagagagaga	at att aggae	acatogtoga	2460
	caagatagaa	taccatcaaa	agtaggatag	gagacaccea	atacaggga	acatogtoga	2520
15	atataggaa	accatgaaa	tagaattaat	ttagetgeet	atagataga	tastasatt	2520
	aggggggggg	ttaataatta	agggagagg	racecyget	aatagaaga	tgalaaaytt	2500
	attastasa	ataattaaaa	agggagacec	gattttagag	acceeyacy	tggacaaget	2040
	tagaattaa	agaaagata	tactatata	tagtatata	gagaacccaa	ccaacyccag	2700
	attasttaa	gecaaggeta	regeneration	regreegeea	ttaggaaaat	tgotogatat	2700
~~	atagatagaa	tagetgeetg	gcgaaaagaa	gaacggaccg	ctoggaaact	cgategetet	2020
20	clectggga	LIGACICCCA	acticaagic	caacticgac	theateraag	acyclaagii	2000
	geagligiei	aaayacacct	acgacgatga	celegaeaae		agalaggega	2940
	ccaatacgcc	gatetetee	tegeegetaa	gaacttgtcc	gacgcaatcc	tgetgteega	3000
	cateetgaga	gtcaacactg	agattaccaa	ageteetetg	tetgetteea	tgattaageg	2120
	ctacgacgag	caccaccaag	atetgaceet	getcaaggee	ctggtgagac	ageagetgee	3120
25	cgagaagtac	aaggagatet	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
	cggaggcgcc	teccaggaag	agttetacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cggtaccgag	gagetgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	CtCaccaaat	ccacctggga	gageteeacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	cetteetgaa	ggacaaccgc	gagaagattg	agaagatett	3420
	gaccttcaga	attecttact	acgregggee	actogecaga	ggaaactcta	ggttcgcctg	3480
30	gatgacccgc	aaatctgaag	agaccattac	teeetggaae	ttcgaggaag	tcgtggacaa	3540
	gggcgcttcc	geteagtett	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctgcccaage	actecetgtt	gtacgagtat	ttcacagtgt	acaacgaget	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaageet	geettettgt	ccggagagca	3720
	gaagaaggee	ategregace	tgetetteaa	gaccaacagg	aaggtgactg	tcaagcaget	3760
~-	gaaggaggac	tacttcaaga	agategagtg	cttcgactcc	gtegagatet	ctggtgtcga	3840
35	ggacaggtte	aacgeeteee	ttgggadtta	ceaegatetg	ctcaagatta	ttaaagacaa	3900
	ggactteetg	gacaacgagg	agaacgagga	cateettgag	gacategtge	teacectgae	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggeteaag	acctacgece	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggeteteeg	4080
	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
40	gtccgacgga	ttcgccaaca	ggaacttcat	geagereatt	cacgacgact	ccttgacctt	4200
	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactecttge	atgagcacat	4260
	tgetaacttg	geeggetete	ccgctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagete	gtgaaggtga	tgggacgcca	caagccagag	aacatcgtta	ttgagatggc	4380
	tcgcgagaac	caaactaccc	agaaagggca	gaagaattcc	cgcgagagga	tgaagcgcat	4440
	tgaggagggc	ataaaagagc	ttggctctca	gatecteaag	gagcaccccg	tcgagaacac	4500
45	tcagetgeag	aacgagaagc	tgtacctgta	ctacctccaa	aacggaaggg	acatgtacgt	4560
	ggaccaggag	ctggacatca	acaggttgtc	cgactacgac	gtcgaccaca	tcgtgcctca	4620
	gtccttcctg	aaggatgact	ccatcgacaa	taaagtgctg	acacgeteeg	ataaaaatag	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggtcgtgaag	aagatgaaaa	actactggag	4740
	acagetettg	aacgccaagc	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggctga	4800
	gagaggagga	ttgtccgagc	tcgataaggc	cggattcatc	aagagacagc	tcgtcgaaac	4860
50	ccgccaaatt	accaagcacg	tggcccaaat	tctggattcc	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
55	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaagqq	agggatttcg	ctactgtgag	5340

	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctg	aaatccgtca	aggagctcct	5580
5	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700
	cgagttggag	aacggaagga	agaggatgct	ggcttctgcc	ggagagttgc	agaagggaaa	5760
	tgagctcgcc	cttccctcca	agtacgtgaa	cttcctgtac	ctcgcctctc	actatgaaaa	5820
	gttgaagggc	tctcctgagg	acaacgagca	gaagcagctc	ttcgtggagc	agcacaagca	5880
10	ctacctggac	gaaattatcg	agcagatctc	tgagttctcc	aagcgcgtga	tattggccga	5940
	cgccaacctc	gacaaggtgc	tgtccgccta	caacaagcac	agggataagc	ccattcgcga	6000
	gcaggctgaa	aacattatcc	acctgtttac	cctcacaaac	ttgggagccc	ctgctgcctt	6060
	caagtacttc	gacaccacca	ttgacaggaa	gagatacacc	tccaccaagg	aggtgctcga	6120
	cgcaacactc	atccaccaat	ccatcaccgg	cctctatgaa	acaaggattg	acttgtccca	6180
	gctgggaggc	gactctagag	ccgatcccaa	gaagaagaga	aaggtgaaga	gaccacggga	6240
15	ccgccacgat	ggcgagctgg	gaggccgcaa	gcgggcaagg	taggttaacc	tagacttgtc	6300
	catcttctgg	attggccaac	ttaattaatg	tatgaaataa	aaggatgcac	acatagtgac	6360
	atgctaatca	ctataatgtg	ggcatcaaag	ttgtgtgtta	tgtgtaatta	ctagttatct	6420
	gaataaaaga	gaaagagatc	atccatattt	cttatcctaa	atgaatgtca	cgtgtcttta	6480
	taattctttg	atgaaccaga	tgcatttcat	taaccaaatc	catatacata	taaatattaa	6540
20	tcatatataa	ttaatatcaa	ttgggttagc	aaaacaaatc	tagtctaggt	gtgttttgc	6599

<210> 439 <211> 6599 <212> DNA

25 <213> Artificial

<220> <223> Artificial Sequence

30 <400> 439

35

45

50

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
F	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	tatatgacta	ggaaaattcg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atatttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attacttta	840
15	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
20	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
30	gtttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920

	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
5	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacagge	acagcataaa	2220
0	gaagaatttg	atcootoccc	tcctcttcga	ctccqqaqaq	accoctoaco	ctaccagget	2280
	caagaggagg	actagaagga	gctacaccag	aaqqaaqaac	agaatctgct	acctocagoa	2340
	gatettetce	aacgagatgg	ccaaggtgga	coactccttc	ttccaccocc	ttgaggaatc	2400
	attectooto	gaggaggata	aaaagcacga	gagacaccca	atcttcogga	acatcotcoa	2460
			agtaccetac	catctaccac			2520
10	ctctaccgac	aaggetgact	tacacttaat	ttacctocct	ctcoctcaca	tgataaagtt	2580
	ccacacacac	ttcctcatta	aggggeeegae	gaacccagac	aactcccacc	togacaaget	2640
	cttcatccac	ctcattcaga	cctacaacca	gattttcgag	gagaacccaa	tcaacaccaa	2700
	tagaattaac	accaagacta	tectetetec	toatatata	aagtaceeaa	gggttgagaa	2760
	attasttaa	gecaaggeta	agaaaaagaa	reaccorder	ttaggaaaat	tastagatat	2920
	atagataga	ttgagtgeetg	gcyaaaayaa	gaacgyaccy	atagagagag	aggettagett	2020
15	ccccccggga	LUgaeleeca	acticaayte	caacticgac	theateraa	acyclaagii	2000
	gcagttgtct	aaagacacct	acgacgatga	ccccgacaac	ttgetggeee	agataggega	2940
	ccaatacgcc	gatetettee	tegeegetaa	gaacttgtcc	gacgcaatcc	tgetgteega	3000
	cateetgaga	gtcaacactg	agattaccaa	ageteetetg	tetgetteea	tgattaageg	3060
	ctacgacgag	caccaccaag	atctgaccct	gctcaaggcc	ctggtgagac	agcagetgee	3120
	cgagaagtac	aaggagatct	ttttcgacca	gtccaagaac	ggctacgccg	gatacattga	3180
20	cggaggcgcc	tcccaggaag	agttctacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cggtaccgag	gagctgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagetecacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
	gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
25	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctgcccaagc	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca	3720
	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
30	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
00	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggctcaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggctctcccg	4080
	caaattgatc	aacgggatca	gggacaagca	gtcagggaag	actatactcg	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagctcatt	cacgacgact	ccttgacctt	4200
35	caaggaggac	atccagaagg	ctcaggtgtc	tggacagggt	gactccttgc	atgagcacat	4260
	toctaactto	accaactete	ccoctattaa	gaagggcatt	ttgcagaccg	tgaaggtcgt	4320
	tgacgagete	atgaaggtga	toggacgcca	caaqccaqaq	aacatcotta	ttgagatggc	4380
	tcocoaoaac	caaactaccc	agaaaggggga	gaagaattcc	cacaaaaaaa	tgaagcgcat	4440
	tgaggagggg	ataaaagagg	ttooctctca	gatecteaag	gaggaggggg	tcgagaacac	4500
	tcagetgeag	aacgagaagc	totacctota	ctacctccaa	aacogaagog	acatotacot	4560
40	ggaccaggag	ctogacatca	acaggttgtc	coactacoac	otcoaccaca	tcotocctca	4620
	atcetteeta	aaggatgact	ccatcgacaa	taaagtgctg	acacget.ccg	ataaaaataq	4680
	aggcaagtcc	gacaacgtcc	cctccgagga	ggt.cgt.gaag	aagatgaaaa	actactogag	4740
	acagetettg	aacgccaage	tcatcaccca	gcgtaagttc	gacaacctga	ctaaggetga	4800
	gagaggagga	ttatccaage	tcgataaggc	cogattcatc	aagagagagag	tcatcaaaac	4860
	cccccaaatt	accaaccacc	togcccaaat	tctggattcc	cacataaaca	ccaagtacga	4920
45	taaaataac	aagetgatco	acquartera	antatcacc	ttgaagtgaaca	agetgateta	4980
	cgaaattagac	aageegatee	acttotacaa	ggtgaccacc	atgaageeea	ageeggeeee	5040
	agaggaggg	taggaccecc	ageteetacaa	aaccocccato	atcaacaact	atcataacgt	5100
	acacyacycc	taccicaacy	agaatagaa	aaceyceece	atcaaaaaa	tastaatss	5160
	gyayuuugag	gagatagaga	aggagagagag	gycycacyac	ttataataaa	agatostos	5100
50	glelgageag	gagaleggea	aggecacege	caagtactte	LICLACICCA	acateatgaa	5220
	anagener	accyayatea	agatactat	cygryagate	ayyaaycycc	cactyatega	520U
	gaccaacggt	gagactggag	agategegeg	ggacaaaggg	agggatttcg	claciglyag	5340
	yaayytgete		aggugaacat	cgtcaagaag	accyaagttC	ayaccggagg	5400
	attetecaag	yagtecatec	Lecceaagag	aaactccgac	aagetgateg		5460
	agactgggac	ectaagaagt	acggaggett	cgattetet	accgrggcct	actetgtget	5520
55	ygtegtggdd	aaggtggaga	agggcaagtC	caagaagetg	aaateegtea	aggageteet	5580
	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	LCCLGGAGGC	5640
	caagggatat	aaagaggtga	agaaggacct	catcatcaag	ctgcccaagt	actccctctt	5700

5	cgagttggag tgagctcgcc gttgaagggc ctacctggac cgccaacctc gcaggctgaa caagtacttc cgcaacactc gctgggaggc	aacggaagga cttccctcca tctcctgagg gaaattatcg gacaaggtgc aacattatcc gacaccacca atccaccaat gactctagag	agaggatgct agtacgtgaa acaacgagca agcagatctc tgtccgccta acctgtttac ttgacaggaa ccatcaccgg ccgatcccaa	ggcttctgcc cttcctgtac gaagcagctc tgagttctcc caacaagcac cctcacaaac gagatacacc cctctatgaa gaagaagaga	ggagagttgc ctcgcctctc ttcgtggagc aagcgcgtga agggataagc ttgggagccc tccaccaagg acaaggattg aaggtgaaga	agaagggaaa actatgaaaa agcacaagca tattggccga ccattcgcga ctgctgcctt aggtgctcga acttgtccca gaccacggga	5760 5820 5940 6000 6120 6180 6240
10	ccgccacgat catcttctgg atgctaatca gaataaaaga taattctttg tcatatataa	ggcgagctgg attggccaac ctataatgtg gaaagagatc atgaaccaga ttaatatcaa	gaggccgcaa ttaattaatg ggcatcaaag atccatattt tgcatttcat ttgggttagc	gcgggcaagg tatgaaataa ttgtgtgtgtta cttatcctaa taaccaaatc aaaacaaatc	taggttaacc aaggatgcac tgtgtaatta atgaatgtca catatacata tagtctaggt	tagacttgtc acatagtgac ctagttatct cgtgtcttta taaatattaa gtgttttgc	6300 6360 6420 6480 6540 6599
	<210> 440 <211> 6599 <212> DNA						
20	<213> Artificial <220> <223> Artificial S	equence					
25	<400> 440						
30							
35							
40							

	ccgggtgtga	tttagtataa	agtgaagtaa	tggtcaaaag	aaaaagtgta	aaacgaagta	60
	cctagtaata	agtaatattg	aacaaaataa	atggtaaagt	gtcagatata	taaaataggc	120
	tttaataaaa	ggaagaaaaa	aaacaaacaa	aaaataggtt	gcaatggggc	agagcagagt	180
	catcatgaag	ctagaaaggc	taccgataga	taaactatag	ttaattaaat	acattaaaaa	240
5	atacttggat	ctttctctta	ccctgtttat	attgagacct	gaaacttgag	agagatacac	300
	taatcttgcc	ttgttgtttc	attccctaac	ttacaggact	cagcgcatgt	catgtggtct	360
	cgttccccat	ttaagtccca	caccgtctaa	acttattaaa	ttattaatgt	ttataactag	420
	atgcacaaca	acaaagcttg	aattcgattg	gaccattagg	ttttagagct	agaaatagca	480
	agttaaaata	aggctagtcc	gttatcaact	tgaaaaagtg	gcaccgagtc	ggtgcttttt	540
10	tttgcggccg	caattggatc	gggtttactt	attttgtggg	tatctatact	tttattagat	600
	ttttaatcag	gctcctgatt	tcttttatt	tcgattgaat	tcctgaactt	gtattattca	660
	gtagatcgaa	taaattataa	aaagataaaa	tcataaaata	atattttatc	ctatcaatca	720
	tattaaagca	atgaatatgt	aaaattaatc	ttatctttat	tttaaaaaat	catataggtt	780
	tagtatttt	ttaaaaataa	agataggatt	agttttacta	ttcactgctt	attactttta	840
1 5	aaaaaatcat	aaaggtttag	tatttttta	aaataaatat	aggaatagtt	ttactattca	900
15	ctgctttaat	agaaaaatag	tttaaaattt	aagatagttt	taatcccagc	atttgccacg	960
	tttgaacgtg	agccgaaacg	atgtcgttac	attatcttaa	cctagctgaa	acgatgtcgt	1020
	cataatatcg	ccaaatgcca	actggactac	gtcgaaccca	caaatcccac	aaagcgcgtg	1080
	aaatcaaatc	gctcaaacca	caaaaaagaa	caacgcgttt	gttacacgct	caatcccacg	1140
	cgagtagagc	acagtaacct	tcaaataagc	gaatggggca	taatcagaaa	tccgaaataa	1200
20	acctaggggc	attatcggaa	atgaaaagta	gctcactcaa	tataaaaatc	taggaaccct	1260
	agttttcgtt	atcactctgt	gctccctcgc	tctatttctc	agtctctgtg	tttgcggctg	1320
	aggattccga	acgagtgacc	ttcttcgttt	ctcgcaaagg	taacagcctc	tgctcttgtc	1380
	tcttcgattc	gatctatgcc	tgtctcttat	ttacgatgat	gtttcttcgg	ttatgttttt	1440
	ttatttatgc	tttatgctgt	tgatgttcgg	ttgtttgttt	cgctttgttt	ttgtggttca	1500
25	gttttttagg	attcttttgg	tttttgaatc	gattaatcgg	aagagatttt	cgagttattt	1560
	ggtgtgttgg	aggtgaatct	ttttttgag	gtcatagatc	tgttgtattt	gtgttataaa	1620
	catgcgactt	tgtatgattt	tttacgaggt	tatgatgttc	tggttgtttt	attatgaatc	1680
	tgttgagaca	gaaccatgat	ttttgttgat	gttcgtttac	actattaaag	gtttgtttta	1740
	acaggattaa	aagtttttta	agcatgttga	aggagtcttg	tagatatgta	accgtcgata	1800
20	gtttttttgt	gggtttgttc	acatgttatc	aagcttaatc	ttttactatg	tatgcgacca	1860
30	tatctggatc	cagcaaaggc	gatttttaa	ttccttgtga	aacttttgta	atatgaagtt	1920
	gaaattttgt	tattggtaaa	ctataaatgt	gtgaagttgg	agtatacctt	taccttctta	1980
	tttggctttg	tgatagttta	atttatatgt	attttgagtt	ctgacttgta	tttctttgaa	2040
	ttgattctag	tttaagtaat	ccatggcacc	gaagaagaag	cgcaaggtga	tggacaaaaa	2100
	gtactcaata	gggctcgaca	tagggactaa	ctccgttgga	tgggccgtca	tcaccgacga	2160
35	gtacaaggtg	ccctccaaga	agttcaaggt	gttgggaaac	accgacaggc	acagcataaa	2220
	gaagaatttg	atcggtgccc	tcctcttcga	ctccggagag	accgctgagg	ctaccaggct	2280

	caagaggacc	gctagaaggc	gctacaccag	aaggaagaac	agaatctgct	acctgcagga	2340
	gatcttctcc	aacgagatgg	ccaaggtgga	cgactccttc	ttccaccgcc	ttgaggaatc	2400
	attcctggtg	gaggaggata	aaaagcacga	gagacaccca	atcttcggga	acatcgtcga	2460
	cgaggtggcc	taccatgaaa	agtaccctac	catctaccac	ctgaggaaga	agctggtcga	2520
5	ctctaccgac	aaggetgact	tgcgcttgat	ttacctggct	ctcgctcaca	tgataaagtt	2580
5	ccocooacac	ttcctcatto	agggagaget	gaacccagac	aactccgacg	togacaaget	2640
	cttcatccag	ctcottcaga	cctacaacca	gettttcgag	gagaacccaa	tcaacgccag	2700
	togagttgag	accaagacta	tectetetee	tcatctatca	aagtccagga	gacttgagaa	2760
	cttgattgcc	cagetgeetg	acaaaaaaaa	gaacggactg	ttcggaaact	tgatcgctct	2820
	ctccctccca	ttgactccca	acttcaactc	caacttccac	ctcgccgaga	acactaactt	2880
10	acaattatat	aaaaaaaaa	acceccator	catagegac	ttaatagaaa	acyceaayee	2000
	gcagttgttt	aaayacaccc	tagaagataa	cecegacaac		tagataggega	2000
	ccaacacycc	gatetettee	agettagaaa	gaactugtee	tatgattaga	tgetgteega	3060
	cateetgaga	gicaacacig	ayattaccaa	agereererg	stastasasa	cyattaayey	2120
	clacgacgag	caccaccaag	atergaeeet	geleaaggee	clgglgagac	ageagetgee	2120
	cgagaagtac	aaggagatet	ttttcgacca	gtecaagaac	ggctacgccg	gatacattga	3180
15	cggaggcgcc	teccaggaag	agttetacaa	gttcatcaag	cccatccttg	agaagatgga	3240
	cggtaccgag	gagetgttgg	tgaagttgaa	cagagaggac	ctgttgagga	agcagagaac	3300
	cttcgacaac	ggaagcatcc	ctcaccaaat	ccacctggga	gagetecacg	ccatcttgag	3360
	gaggcaggag	gatttctatc	ccttcctgaa	ggacaaccgc	gagaagattg	agaagatctt	3420
	gaccttcaga	attccttact	acgtcgggcc	actcgccaga	ggaaactcta	ggttcgcctg	3480
	gatgacccgc	aaatctgaag	agaccattac	tccctggaac	ttcgaggaag	tcgtggacaa	3540
20	gggcgcttcc	gctcagtctt	tcatcgagag	gatgaccaac	ttcgataaaa	atctgcccaa	3600
	cgagaaggtg	ctgcccaagc	actccctgtt	gtacgagtat	ttcacagtgt	acaacgagct	3660
	caccaaggtg	aagtacgtca	cagagggaat	gaggaagcct	gccttcttgt	ccggagagca	3720
	gaagaaggcc	atcgtcgacc	tgctcttcaa	gaccaacagg	aaggtgactg	tcaagcagct	3780
	gaaggaggac	tacttcaaga	agatcgagtg	cttcgactcc	gtcgagatct	ctggtgtcga	3840
	ggacaggttc	aacgcctccc	ttgggactta	ccacgatctg	ctcaagatta	ttaaagacaa	3900
25	ggacttcctg	gacaacgagg	agaacgagga	catccttgag	gacatcgtgc	tcaccctgac	3960
	cttgttcgaa	gacagggaaa	tgatcgaaga	gaggetcaag	acctacgccc	acctcttcga	4020
	cgacaaggtg	atgaaacagc	tgaagagacg	cagatatacc	ggctggggaa	ggeteteeg	4080
	caaattgatc	aacqqqatca	gggacaagca	gtcagggaag	actatactcq	acttcctgaa	4140
	gtccgacgga	ttcgccaaca	ggaacttcat	gcagetcatt	cacgacgact	ccttgacctt	4200
~~	caaqqaqqac	atccagaagg	ctcaggtgtc	togacagogt	gactecttoc	atgagcacat	4260
30	toctaactto	accaactete	ccoctattaa	gaagggcatt	ttocagacco	tgaaggtcgt	4320
		gtgaaggtga		caagecagag	aacatcotta		4380
	tcgcgagaac	caaactaccc	agaaagggcca	gaagaattcc	cacaaaaaaa	tgaagcgcat	4440
	taaaaaaaaa	ataaaaaaaa	ttaactetca	gatgateeee	gagagagga	tcgagaacac	4500
	tcagetgeag	aaccaacaacc	tatacctata	ctacctccaa	aacqqaaqqqq	acatotacot	4560
25	ggaggaggag	atogagatage	agagettete	agaataagaa	atoggaaggg	taatgaataa	4620
55	gyaccagyag	acceggacacca	acayguigue	tacatacyac	geegaceaca	ataaaataa	4020
	aggaaagtag	aaggatgatt	ccatcgacaa	catagtycty	acacyceccy	actactactag	4000
	aggeaagtee	gacaacytee	tastasaga	gguegugaag	aayatyaaaa	attactgyay	4/40
	acagetettg	aacyccaage	tantaccca	gegladgile	gacaaccuga		4000
	gagaggagga	ttgteegage	tegataagge	cggattcatc	aagagacagc	tcgtcgaaac	4860
40	ccgccaaatt	accaagcacg	tggcccaaat	tetggattee	cgcatgaaca	ccaagtacga	4920
	tgaaaatgac	aagctgatcc	gcgaggtcaa	ggtgatcacc	ttgaagtcca	agctggtctc	4980
	cgacttccgc	aaggacttcc	agttctacaa	ggtgagggag	atcaacaact	accaccacgc	5040
	acacgacgcc	tacctcaacg	ctgtcgttgg	aaccgccctc	atcaaaaaat	atcctaagct	5100
	ggagtctgag	ttcgtctacg	gcgactacaa	ggtgtacgac	gtgaggaaga	tgatcgctaa	5160
	gtctgagcag	gagatcggca	aggccaccgc	caagtacttc	ttctactcca	acatcatgaa	5220
45	cttcttcaag	accgagatca	ctctcgccaa	cggtgagatc	aggaagcgcc	cactgatcga	5280
	gaccaacggt	gagactggag	agatcgtgtg	ggacaaaggg	agggatttcg	ctactgtgag	5340
	gaaggtgctc	tccatgcctc	aggtgaacat	cgtcaagaag	accgaagttc	agaccggagg	5400
	attctccaag	gagtccatcc	tccccaagag	aaactccgac	aagctgatcg	ctagaaagaa	5460
	agactgggac	cctaagaagt	acggaggctt	cgattctcct	accgtggcct	actctgtgct	5520
	ggtcgtggcc	aaggtggaga	agggcaagtc	caagaagctq	aaatccgtca	aggagetect	5580
50	cgggattacc	atcatggaga	ggagttcctt	cgagaagaac	cctatcgact	tcctggaggc	5640

caagggatat aaagaggtga agaaggacct catcatcaag ctgcccaagt actccctctt cgagttggag aacggaagga agaggatgct ggcttctgcc ggagagttgc agaagggaaa

tgagetegee etteceteca agtacgtgaa ettectgtae etegeetete aetatgaaaa

gttgaagggc tctcctgagg acaacgagca gaagcagctc ttcgtggagc agcacaagca

ctacctggac gaaattatcg agcagatctc tgagttctcc aagcgcgtga tattggccga

cgccaacctc gacaaggtgc tgtccgccta caacaagcac agggataagc ccattcgcga

gcaggetgaa aacattatec acetgtttac ceteacaaac ttgggageee etgetgeett

55

5700

5760

5820

5880

5940

6000

caagtacttc gacaccacca ttgacaggaa gagatacacc tccaccaagg aggtgctcga 6120 cgcaacactc atccaccaat ccatcaccgg cctctatgaa acaaggattg acttgtccca 6180 gctgggaggc gactctagag ccgatcccaa gaagaagaga aaggtgaaga gaccacggga 6240 ccgccacgat ggcgagctgg gaggccgcaa gcgggcaagg taggttaacc tagacttgtc 6300 5 catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac 6360 6420 atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta 6480 taattetttg atgaaccaga tgcattteat taaccaaate catatacata taaatattaa 6540 tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgc 6599 10 <210> 441 <211> 96 <212> RNA <213> Artificial 15 <220> <223> Artificial Sequence <400> 441 20 60 gacgagcaca caugucgauu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 96 cguuaucaac uugaaaaagu ggcaccgagu cggugc 25 <210> 442 <211> 96 <212> RNA <213> Artificial 30 <220> <223> Artificial Sequence <400> 442 35 ggugcucguu cucgugagaa guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60 cguuaucaac uugaaaaagu ggcaccgagu cggugc 96 <210> 443 40 <211> 96 <212> RNA <213> Artificial <220> 45 <223> Artificial Sequence <400> 443 gccacuucau uuacucaacu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60 50 cguuaucaac uugaaaaagu ggcaccgagu cggugc 96 <210> 444 <211> 96 55 <212> RNA <213> Artificial

<220>

<223> Artificial Sequence

<400> 444

5	gacucaaagu cguuaucaac	cauauuuuuc uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
10	<210> 445 <211> 96 <212> RNA <213> Artificial						
15	<220> <223> Artificial S	Sequence					
	<400> 445						
20	gucccuugua cguuaucaac	cuuguacgua uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
25	<210> 446 <211> 96 <212> RNA <213> Artificial						
30	<220> <223> Artificial S	Sequence					
	<400> 446						
35	guauucuaga cguuaucaac	aaagaggaau uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
	<210> 447 <211> 96 <212> RNA						
40	<213> Artificial						
	<220> <223> Artificial S	Sequence					
45	<400> 447						
	ggugcuaagc cguuaucaac	acgacaucca uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
50	<210> 448 <211> 96 <212> RNA						
55	<220>						

<223> Artificial Sequence

<400> 448

5	gacgugaugc cguuaucaac	aucauagaug uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
10	<210> 449 <211> 96 <212> RNA <213> Artificial						
	<220> <223> Artificial S	Gequence					
15	<400> 449						
	gaggaaauga cguuaucaac	cuguggcaca uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
20	<210> 450 <211> 96 <212> RNA <213> Artificial						
25	<220> <223> Artificial S	Gequence					
30	<400> 450						
	gacauggcac cguuaucaac	uguaacauca uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
35	<210> 451 <211> 96 <212> RNA <213> Artificial						
40	<220> <223> Artificial S	Sequence					
	<400> 451						
45	ggaacugaca cguuaucaac	cacgacauga uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
50	<210> 452 <211> 96 <212> RNA <213> Artificial						
55	<220> <223> Artificial S	Gequence					
	<400> 452						

	gacaugaugg cguuaucaac	aacgugacua uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
5	<210> 453 <211> 96 <212> RNA <213> Artificial						
10	<220> <223> Artificial S	equence					
	<400> 453						
15	gugugugagg cguuaucaac	uacacaauua uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
20	<210> 454 <211> 96 <212> RNA <213> Artificial						
25	<220> <223> Artificial S	Sequence					
	<400> 454						
30	guaauguacg cguuaucaac	uuguugugug uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
35	<210> 455 <211> 96 <212> RNA <213> Artificial						
40	<220> <223> Artificial S <400> 455	equence					
45	ggaaacuuuu cguuaucaac	gugagcaagu uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
50	<210> 456 <211> 96 <212> RNA <213> Artificial						
	<220> <223> Artificial S	Sequence					
55	<400> 456						

	ggaccaaaga cguuaucaac	cuucauuaau uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
5	<210> 457 <211> 96 <212> RNA <213> Artificial						
10	<220> <223> Artificial S	Sequence					
	<400> 457						
15	ggcaacgaca cguuaucaac	augaagugca uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
20	<210> 458 <211> 96 <212> RNA <213> Artificial						
25	<220> <223> Artificial S	Sequence					
	<400> 458						
30	gccaugcacu cguuaucaac	cacauaaucg uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
35	<210> 459 <211> 96 <212> RNA <213> Artificial						
40	<220> <223> Artificial S	Sequence					
	<400> 459						
45	gacacaauuu cguuaucaac	aguugccuga uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
50	<210> 460 <211> 96 <212> RNA						
50	<220> <223> Artificial S	Sequence					
55	<400> 460						
	gaaauaaaag cguuaucaac	gccuauaaaa uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96

	<210> 461 <211> 96 <212> RNA <213> Artificial	
5	<220>	
	<223> Artificial Sequence	
10	<400> 461	
	guucagguug uuguacgaca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu ggcaccgagu cggugc	60 96
15	<210> 462 <211> 96	
	<212> RNA <213> Artificial	
20	<220> <223> Artificial Sequence	
	<400> 462	
25	gaugaagaca ugaaucauug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu ggcaccgagu cggugc	60 96
30	<210> 463 <211> 96 <212> RNA <213> Artificial	
35	<220> <223> Artificial Sequence	
	<400> 463	
40	ggcaaguugg guuaugaaau guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu ggcaccgagu cggugc	60 96
45	<210> 464 <211> 96 <212> RNA	
	<213> Artificial	
50	<220> <223> Artificial Sequence	
50	<400> 464	
55	gauuauguau gaugcaaguu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu ggcaccgagu cggugc	60 96

----

<210> 465 <211> 96

<212> RNA <213> Artificial <220> 5 <223> Artificial Sequence <400> 465 gaccaaaggc acguacguaa guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60 10 96 cguuaucaac uugaaaaagu ggcaccgagu cggugc <210> 466 <211>96 15 <212> RNA <213> Artificial <220> <223> Artificial Sequence 20 <400> 466 60 ggccuuuacg uacgugccuu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 96 cguuaucaac uugaaaaagu ggcaccgagu cggugc 25 <210> 467 <211> 96 <212> RNA 30 <213> Artificial <220> <223> Artificial Sequence 35 <400> 467 60 gauagucauc cuaguuagug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu ggcaccgagu cggugc 96 40 <210> 468 <211>96 <212> RNA <213> Artificial 45 <220> <223> Artificial Sequence <400> 468 50 gauguaguac cacacuaacu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60 cguuaucaac uugaaaaagu ggcaccgagu cggugc 96 55 <210> 469 <211> 96 <212> RNA

<213> Artificial

<220> <223> Artificial Sequence

<400> 469

5

gcuguaacuu cugcacucac guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60 cguuaucaac uugaaaaagu ggcaccgagu cggugc 96 10 <210> 470 <211> 96 <212> RNA <213> Artificial 15 <220> <223> Artificial Sequence <400> 470 20 guuauuggag aguacuuugc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60 cguuaucaac uugaaaaagu ggcaccgagu cggugc 96 <210> 471 25 <211> 96 <212> RNA <213> Artificial <220> 30 <223> Artificial Sequence <400> 471 gugagaugug gugcguacgu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60 35 cguuaucaac uugaaaaagu ggcaccgagu cggugc 96 <210> 472 <211> 96 40 <212> RNA <213> Artificial <220> <223> Artificial Sequence 45 <400> 472 ggauucuuaa aaaagaucga guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60 96 cguuaucaac uugaaaaagu ggcaccgagu cggugc 50 <210> 473 <211>96 <212> RNA 55 <213> Artificial

<220> <223> Artificial Sequence <400> 473

5	gugcuauggu cguuaucaac	gcucguguaa uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
	<210> 474						
	<211> 96						
	<212> RNA						
10	<213> Artificial						
	<220>						
	<223> Artificial S	Sequence					
15	<400> 474						
	gauccaagau	auugagugau	guuuuagagc	uagaaauagc	aaguuaaaau	aaggcuaguc	60
	cguuaucaac	uugaaaaagu	ggcaccgagu	cggugc			96
20							
	<210> 475						
	<211> 96						
	<212> RNA <213> Artificial						
25							
	<220>						
	<223> Artificial S	Sequence					
	<400> 475						
30							
	aacuuuauac	augecugeae	auuuuuaaaaa	112022211200	22011122221	220001120110	60
	cguuaucaac	uugaaaaagu	ggcaccgagu	cggugc	aagaaaaaaa	aaggeaagae	96
35	<210> 476						
	<211> 96						
	<212> RNA						
	<213> Artificial						
40	<220>						
	<223> Artificial S	Sequence					
	<400> 476						
45	ດາາາາາດຕອອດດ	cccccauac	ammadade	11agaaa11agg	aamuaaaau	aaggeuague	60
	cguuaucaac	uugaaaaagu	ggcaccgagu	cggugc	aagaaaaaa	aaggeaagae	96
	<210> 477						
50	<211> 96						
	<212> RNA						
	<213> Artificial						
	<220>						
55	<223> Artificial S	sequence					
	<400> 477						
	gguuucguac cguuaucaac	aacaauggca uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
----	--------------------------------------------------------	--------------------------	--------------------------	----------------------	------------	------------	----------
5	<210> 478 <211> 96 <212> RNA <213> Artificial						
10	<220> <223> Artificial S	Sequence					
	<400> 478						
15	gugccauugu cguuaucaac	uguacgaaac uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
20	<210> 479 <211> 96 <212> RNA <213> Artificial						
25	<220> <223> Artificial S	Sequence					
	<400> 479						
30	guauaugacu cguuaucaac	aggaaaauuc uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
35	<210> 480 <211> 96 <212> RNA <213> Artificial						
40	<220> <223> Artificial S	Sequence					
	<400> 480						
45	gaauucgauu cguuaucaac	ggaccauuag uugaaaaagu	guuuuagagc ggcaccgagu	uagaaauagc cggugc	aaguuaaaau	aaggcuaguc	60 96
50	<210> 481 <211> 22 <212> DNA <213> Artificial						
	<220> <223> Artificial S	Sequence					
55	<400> 481 gagaacgagc aca	catgtcg at	22				
	<210> 482						

	<211> 23 <212> DNA <213> Artificial
5	<220> <223> Artificial Sequence
10	<400> 482 ggtttagttt ggcgttggta aaa 23
	<210> 483 <211> 19 <212> DNA <212> Artificial
15	<220> <223> Artificial Sequence
20	<400> 483 tggtttcaat ctaagaatg 19
25	<210> 484 <211> 26 <212> DNA <213> Artificial
	<220> <223> Artificial Sequence
30	<400> 484 aaccaaataa actccattct cacgag 26
35	<210> 485 <211> 26 <212> DNA <213> Artificial
40	<220> <223> Artificial Sequence <400> 485
45	<ul> <li>&lt;210&gt; 486</li> <li>&lt;211&gt; 31</li> <li>&lt;212&gt; DNA</li> <li>&lt;213&gt; Artificial</li> </ul>
50	<220> <223> Artificial Sequence
	<400> 486 tgtatggtgt caagtatgaa gtttatagtg a 31
55	<210> 487 <211> 18 <212> DNA <213> Artificial

<220> <223> Artificial Sequence <400> 487 5 agctttctct catcaaaa 18 <210> 488 <211> 29 <212> DNA 10 <213> Artificial <220> <223> Artificial Sequence 15 <400> 488 29 tactacaact caaagtcata tttttcagg <210> 489 <211> 26 20 <212> DNA <213> Artificial <220> <223> Artificial Sequence 25 <400> 489 ttctagaata ccctccgtac gtacaa 26 <210> 490 30 <211> 26 <212> DNA <213> Artificial <220> 35 <223> Artificial Sequence <400> 490 cccagatgat tctcttttca ctattg 26 40 <210> 491 <211> 19 <212> DNA <213> Artificial 45 <220> <223> Artificial Sequence <400> 491 19 caagggactt gtgagttgt 50 <210> 492 <211> 26 <212> DNA <213> Artificial 55 <220> <223> Artificial Sequence

<400> 492 aaagaagagg cagactccaa ttcctc 26 <210> 493 5 <211> 26 <212> DNA <213> Artificial <220> 10 <223> Artificial Sequence <400> 493 tccattttgt ctgttctcca tggatg 26 15 <210> 494 <211> 23 <212> DNA <213> Artificial 20 <220> <223> Artificial Sequence <400> 494 cacattgtcc cagtcacaga aag 23 25 <210> 495 <211> 16 <212> DNA <213> Artificial 30 <220> <223> Artificial Sequence <400> 495 35 agatgcggta aattat 16 <210> 496 <211> 22 <212> DNA 40 <213> Artificial <220> <223> Artificial Sequence 45 <400> 496 22 acgtgatgca tcatagatgc gg <210> 497 <211> 23 50 <212> DNA <213> Artificial <220> <223> Artificial Sequence 55 <400> 497 23 agtgttctgg cacaaggttt acc

	<210> 498
	<211> 16
	<212> DNA
	<213> Artificial
5	
	<220>
	<223> Artificial Sequence
	<400> 498
10	ctcctccagt ggccac 16
	<210> 499
	<211> 23
	<212> DNA
15	<213> Artificial
	<220>
	<223> Artificial Sequence
20	<400> 499
	tccctgaaat ttgtggttgg taa 23
	<210> 500
	<211> 22
25	<212> DNA
	<213> Artificial
	<220>
	<223> Artificial Sequence
30	Szz3- Artificial Sequence
50	<100> 500
	<210> 501
25	<210> 501
35	<2112 IO
	<212> DNA
	-000
10	<22U>
40	<223> Artificial Sequence
	100 501
	<400> 501
	catggcgtaa cccgtgat 18
15	040 500
45	<210> 502
	<211> 27
	<212> DNA
	<213> Artificial
50	<220>
	<223> Artificial Sequence
	100 500
	<400> 502
	cccttttaag gaaaaaaact acgtcat 27
55	0.40 <b>F</b> 00
	<210> 503
	<211> 20
	<212> DNA

	<213> Artificial
5	<220> <223> Artificial Sequence
5	<400> 503 acatggcact gtaacatcac 20
	<210> 504
10	<211> 19
	<212> DNA <213> Artificial
	<220>
15	<223> Artificial Sequence
	<400> 504
	ccctgaaatt tgtggttgg 19
20	<210> 505
	<211> 22
	<212> DNA <213> Artificial
25	<220>
	<223> Artificial Sequence
	<400> 505
30	alleyyaaci yacacacyac al 22
	<210> 506
	<211> 22
	<212> DNA
05	<213> Artificial
35	<220>
	<223> Artificial Sequence
40	togacatoca agotoaaaaa co 22
	<210> 507
	<211> 17
45	<212> DNA
45	<213> Artificiai
	<220> <223> Artificial Sequence
50	<400> 507
	atggaacgtg actaagg 17
	<210> 508
	<211> 27
55	<212> DNA
	<213> Artificial
	<220>

	<223> Artificial Sequence
5	<400> 508 cgataacgag aaggagatac ataaggt 27
5	<210> 509 <211> 24 <212> DNA <213> Artificial
10	<220> <223> Artificial Sequence
15	<400> 509 tgaacttett catececata attg 24
20	<210> 510 <211> 18 <212> DNA <213> Artificial
	<220> <223> Artificial Sequence
25	<400> 510 cgttgttgtg tgaggtac 18
30	<210> 511 <211> 21 <212> DNA <213> Artificial
35	<220> <223> Artificial Sequence <400> 511
40	<210> 512 <211> 23 <212> DNA <213> Artificial
45	<220> <223> Artificial Sequence
	<400> 512 ttgcaattgt gcactgtttt ttt 23
50	<210> 513 <211> 18 <212> DNA <213> Artificial
55	<220> <223> Artificial Sequence
	<400> 513

	agcacatgtt ctaatgaa	18
5	<210> 514 <211> 23 <212> DNA <213> Artificial	
10	<220> <223> Artificial Sequence	
	<400> 514 cacacacaaa aattaccaaa gg	c 23
15	<210> 515 <211> 23 <212> DNA <213> Artificial	
20	<220> <223> Artificial Sequence	
	<400> 515 tttggtgtcc acagaatatt cga	23
25	<210> 516 <211> 28	
	<212> DNA <213> Artificial	
30	<220> <223> Artificial Sequence	
35	<400> 516 ctttaatgca ttgttttgga tagtcate	28
	<210> 517 <211> 22 <212> DNA	
40	<213> Artificial	
	<223> Artificial Sequence	
45	<400> 517 agatgtagta ccacactaac ta	22
	<210> 518 <211> 19	
50	<212> DNA <213> Artificial	
	<220> <223> Artificial Sequence	
55	<400> 518 ctgcactcac cggcaaagt	19
	<210> 519	

	<211> 25 <212> DNA <213> Artificial	
5	<220> <223> Artificial Sequence	
10	<400> 519 acctetetat ecettettte ttegt	25
	<210> 520 <211> 21 <212> DNA <212> Artificial	
15	<213> Artificial <220> <223> Artificial Sequence	
20	<400> 520 ctctccaata aagagaatag a	21
25	<210> 521 <211> 25 <212> DNA <213> Artificial	
	<220> <223> Artificial Sequence	
30	<400> 521 aagtgagatg tggtgcgtac gtagg	25
35	<210> 522 <211> 27 <212> DNA <213> Artificial	
40	<220> <223> Artificial Sequence <400> 522	
45	ggtttgtggc tataacttga gagaatg <210> 523 <211> 23	27
	<212> DNA <213> Artificial	
50	<220> <223> Artificial Sequence	
	<400> 523 attottaaaa aagatogaag gao	23
55	<210> 524 <211> 22 <212> DNA <213> Artificial	

<220> <223> Artificial Sequence <400> 524 5 gaattcaggt cggatccaag at 22 <210> 525 <211> 22 <212> DNA 10 <213> Artificial <220> <223> Artificial Sequence 15 <400> 525 gtgctatggt gctcgtgtaa gg 22 <210> 526 <211> 17 20 <212> DNA <213> Artificial <220> <223> Artificial Sequence 25 <400> 526 17 tgagtgatcg gagtttc <210> 527 30 <211> 24 <212> DNA <213> Artificial <220> 35 <223> Artificial Sequence <400> 527 caacaccaac accctttcta acag 24 40 <210> 528 <211> 17 <212> DNA <213> Artificial 45 <220> <223> Artificial Sequence <400> 528 17 aaggcccccc gtgcagg 50 <210> 529 <211> 15 <212> DNA <213> Artificial 55 <220> <223> Artificial Sequence

<400> 529 agcatcaaaa ttggc 15 <210> 530 5 <211> 24 <212> DNA <213> Artificial <220> 10 <223> Artificial Sequence <400> 530 ccccggtttc gtacaacaat ggca 24 15 <210> 531 <211> 26 <212> DNA <213> Artificial 20 <220> <223> Artificial Sequence <400> 531 catcctcgct actctctaag acaatg 26 25 <210> 532 <211> 16 <212> DNA <213> Artificial 30 <220> <223> Artificial Sequence <400> 532 35 cttgatctca attccg 16 <210> 533 <211> 22 <212> DNA 40 <213> Artificial <220> <223> Artificial Sequence 45 <400> 533 aatctattat cccccggttt cg 22 <210> 534 <211> 25 <212> DNA 50 <213> Artificial <220> <223> Artificial Sequence 55 <400> 534 ccctatatga ctaggaaaat tcagg 25

	<210> 535
	<211> 23
	<212> DNA
	<213> Artificial
5	
	<220>
	<223> Artificial Sequence
10	<400> 535
10	gctacattig gtigggtcac tig 23
	<210> 536
	<211> 330
	<212> DNA
15	<213> Artificial
	<220>
	<223> Artificial Sequence
20	<400> 536
	tcggtcccta tgcctat 17
	<210> 537
	<211> 23
25	<212> DNA
	<213> Artificial
	<330>
	<220
30	~223> Antificial Sequence
00	<400> 537
	canatacana coaccactaa tag
	<210> 538
35	<211> 27
	<212> DNA
	<213> Artificial
	<220>
40	<223> Artificial Sequence
	. 400. 500
	<400> 538
	gaaactitig igagcaagta ggtagct 27
45	<210> 539
	<211> 23
	<212> DNA
	<213> Artificial
50	<220>
	<223> Artificial Sequence
	<400> 539
55	atggcaagaa caagaccaaa gac 23
55	<210> 540
	<211> 21
	<212> DNA

	<213> Artificial
5	<220> <223> Artificial Sequence
Ū	<400> 540 agagtcaaga ccaattaatg a 21
10	<210> 541 <211> 22 <212> DNA <213> Artificial
15	<220> <223> Artificial Sequence
	<400> 541 atgaagtgtg agtgggcaag tg 22
20	<210> 542 <211> 19 <212> DNA <213> Artificial
25	<220> <223> Artificial Sequence
30	<400> 542 gtcctcaccg ccatgcact 19
25	<210> 543 <211> 18 <212> DNA <213> Artificial
35	<220> <223> Artificial Sequence
40	<400> 543 cgtttcttcc acgattat 18
45	<210> 544 <211> 22 <212> DNA <213> Artificial
	<220> <223> Artificial Sequence
50	<400> 544 gcgtttcttc cacgattatg tg 22
55	<210> 545 <211> 15 <212> DNA <213> Artificial

<220>

	<223> Artificial Sequence
	<400> 545
	tggccgcaac gacaa 15
5	<210> 546
	<2102 540 <2115 28
	<212> DNA
	<213> Artificial
10	
	<220>
	<223> Artificial Sequence
	<400> 546
15	attattacac aatttagttg cctgacgg 28
	<210> 547
	<211> 20 <212> DNA
20	<212> DNA
	<220>
	<223> Artificial Sequence
25	<400> 547
	tgtggtgata gatccccttt tatagg 26
	<210> 548
20	<211> 22 <212> DNA
50	<213> Artificial
	<220>
25	<223> Artificial Sequence
35	<400> 548
	tttttttcat ccaaccttot ca 22
	<210> 549
40	<211> 23
	<212> DNA
	<220>
45	<223> Artificial Sequence
	<100> 540
	autteagatt attatacgae atg 23
	33
50	<210> 550
	<211> 29
	<212> DNA
55	<220>
	<223> Artificial Sequence
	<400> 550

	gttgaatggt atgatgttac tgagcttat	29
	<210> 551	
	<211> 20	
5	<212> DNA	
	<213> Artificial	
	<220>	
	<223> Artificial Sequence	
10		
	<400> 551	
	ttgtggatac ggtagttgtg 20	
	<210> 552	
15	<211> 29	
	<212> DNA	
	<213> Artificial	
	<220>	
20	<223> Artificial Sequence	
	<400> 552	
	ttattgtatg aagacatgaa tcattgagg	29
25	<210> 553	
	<211> 23	
	<212> DNA	
30	<220>	
	<223> Artificial Sequence	
	<400> 553	
35	gigecattig eccattalgi alg 23	
00	<210> 554	
	<211> 29	
	<212> DNA	
	<213> Artificial	
40		
	<220>	
	<223> Artificial Sequence	
	<400> 554	
45	cttgttggta cttcatgcta gtagatttc 2	9
	<210> 555	
	<211> 24	
50	<212> DNA	
50		
	<220>	
	<223> Artificial Sequence	
55		
55	<400> 555	
	ופטממעוועט עוומועמממו ועטו 24	
	<210> 556	

	<211> 23 <212> DNA <213> Artificial
5	<220> <223> Artificial Sequence
10	<400> 556 cattatgtat gatgcaagtt ggg 23
10	<210> 557 <211> 24 <212> DNA
15	<2213> Artificial <220> <223> Artificial Sequence
20	<400> 557 catgggttat gatcctcaaa gtca 24
25	<210> 558 <211> 17 <212> DNA <213> Artificial
	<220> <223> Artificial Sequence
30	<400> 558 agctacgtga tctgatg 17
35	<210> 559 <211> 19 <212> DNA <213> Artificial
40	<220> <223> Artificial Sequence <400> 559
45	ccttcttcca ccgccttga 19 <210> 560 <211> 21
	<212> DNA <213> Artificial
50	<220> <223> Artificial Sequence
55	<pre>tigggtgtctc tcgtgctttt t 21 &lt;210&gt; 561</pre>
	<211> 19 <212> DNA <213> Artificial

<220> <223> Artificial Sequence <400> 561 5 aatcattcct ggtggagga 19 <210> 562 <211> 25 <212> DNA 10 <213> Artificial <220> <223> Artificial Sequence 15 <400> 562 25 tgatgcccac attatagtga ttagc <210> 563 <211> 22 20 <212> DNA <213> Artificial <220> <223> Artificial Sequence 25 <400> 563 22 catcttctgg attggccaac tt <210> 564 30 <211> 17 <212> DNA <213> Artificial <220> 35 <223> Artificial Sequence <400> 564 actatgtgtg catcctt 17 40 <210> 565 <211> 22 <212> DNA <213> Artificial 45 <220> <223> Artificial Sequence <400> 565 aggcttgttg tgcagttttt ga 22 50 <210> 566 <211> 21 <212> DNA <213> Artificial 55 <220> <223> Artificial Sequence

<400> 566 gcggtgagtt caggcttttt c 21 <210> 567 5 <211> 22 <212> DNA <213> Artificial <220> 10 <223> Artificial Sequence <400> 567 tggactagtg gaagttccta ta 22 15 <210> 568 <211> 23 <212> DNA <213> Artificial 20 <220> <223> Artificial Sequence <400> 568 ttcaagttgg gctttttcag aag 23 25 <210> 569 <211> 22 <212> DNA <213> Artificial 30 <220> <223> Artificial Sequence <400> 569 35 tctccttggt gctctcatca ca 22 <210> 570 <211> 15 <212> DNA 40 <213> Artificial <220> <223> Artificial Sequence 45 <400> 570 15 ctgcagcaga accaa <210> 571 <211> 3387 50 <212> DNA <213> S. thermophilus <400> 571

	atgagtgact	tagttttagg	acttgatatc	ggtataggtt	ctgttggtgt	aggtatcctt	60
	aacaaagtga	caggagaaat	tatccataaa	aactcacgca	tcttcccagc	agctcaagca	120
	gaaaataacc	tagtacgtag	aacgaatcgt	caaqqaaqac	gcttgacacg	acgtaaaaaa	180
	catcotatao	ttcotttaaa	tcotctattt	gaggaaagtg	gattaatcac	coatttaco	240
5	aagatttcaa	ttaatcttaa	cccatatcaa	ttacgagtta	agggettgac	cgatgaattg	300
	tctaatgaag	aactotttat	coctcttaaa	aatatootoa	aacaccotoo	gattagttag	360
	ctcgatgatg	ctagtgatga	cogaaattca	tcagtaggag	actatocaca	aattottaag	420
	gaaaatagta	aacaattaga	aactaagaca	ccoggacaga	tacagttgga	acoctaccaa	480
	acatatogto	aattacotoo	tgattttact	attaaaaaa	atoocaaaaa	acatcoctto	540
10	attaatotot	ttccaacatc	agettatest	tcagaaggaag	taaggeddddd	acaeectcee	600
10	caacaattta	atccacacat	tacacatosa	t+tattaata	attatataa	aattttaact	660
	ggaaaaaggaa	attattatca	tacayacyaa	aatgaaaagt	gecaceccya	ttatggtggt	720
	tagagaagga	atacacca	tttagagaaat	attttaaagt	ttataattaa	gaaatgtaga	720
	tacagaacga	gcggagaaac	agaagaaaaa	acttactoc	aggetaaaga	gaaacycaca	940
	ctocatect	aayayttay	agcagcaaaa	getteetaea	cyycicaaya	alleaally	040
15	Claaatgatt	tgaacaatet	aacagtteet	actgaaacca	taaagttgag	caaagaacag	900
	aagaatcaaa	tCattaatta	tgtCaaaaat	gaaaaggcaa	tggggccagc	gaaactttt	960
	aaatatatcg	ctaagttact	ttettgtgat	gttgcagata	tcaagggata	ccgtatcgac	1020
	aaatcaggta	aggetgagat	tCatacttc	gaageetate	gaaaaatgaa	aacgcttgaa	1080
	accttagata	ttgaacaaat	ggatagagaa	acgettgata	aattageeta	tgtcttaaca	1140
20	ttaaacactg	agagggaagg	tattcaagaa	gccttagaac	atgaatttgc	tgatggtagc	1200
20	tttagccaga	agcaagttga	cgaattggtt	caattccgca	aagcaaatag	ttccattttt	1260
	ggaaaaggat	ggcataattt	ttctgtcaaa	ctgatgatgg	agttaattcc	agaattgtat	1320
	gagacgtcag	aagagcaaat	gactatcctg	acacgacttg	gaaaacaaaa	acgacttcgt	1380
	cttcaaataa	aacaaaatat	ttcaaataaa	acaaaatata	tagatgagaa	actattaact	1440
	gaagaaatct	ataatcctgt	tgttgctaag	tctgttcgcc	aggctataaa	aatcgtaaat	1500
25	gcggcgatta	aagaatacgg	agactttgac	aatattgtca	tcgaaatggc	tcgtgaaaca	1560
							1 6 2 0
	aalyaayaly	alyaaaayaa	agelalleaa	aayattoaaa	aayeeaacaa	ayalyaaaaa	1620
	galgeageaa	cycllaagyc	cyclaaccaa	cacacygaa	aggergaart	accacatage	1000
30	gttttccacg	gtcataagca	attagegaet	aaaatcegee	truggcatca	gcaaggagaa	1 7 4 0
	cgttgccttt	atactggtaa	gacaatetea	atccatgatt	tgataaataa	tectaateag	1800
	tttgaagtag	atcatattt	acctcttct	atcacattcg	atgatageet	tgcaaataag	1860
	gttttggttt	atgcaactgc	taaccaagaa	aaaggacaac	gaacacctta	tcaggettta	1920
	gatagtatgg	atgatgcgtg	gtctttccgt	gaattaaaag	cttttgtacg	tgagtcaaaa	1980
25	acactttcaa	acaagaaaaa	agaatacctc	cttacagaag	aagatatttc	aaagtttgat	2040
35	gttcgaaaga	aatttattga	acgaaatctt	gtagatacaa	gatacgcttc	aagagttgtc	2100
	ctcaatgccc	ttcaagaaca	ctttagagct	cacaagattg	atacaaaagt	ttccgtggtt	2160
	cgtggccaat	ttacatctca	attgagacgc	cattggggaa	ttgagaagac	tcgtgatact	2220
	tatcatcacc	atgctgtcga	tgcattgatt	attgccgcct	caagtcagtt	gaatttgtgg	2280
	aaaaaacaaa	agaataccct	tgtaagttat	tcagaagaac	aactccttga	tattgaaaca	2340
40	ggtgaactta	ttagtgatga	tgagtacaag	gaatctgtgt	tcaaagcccc	ttatcaacat	2400
	tttgttgata	cattgaagag	taaagaattt	gaagacagta	tcttattctc	atatcaagtg	2460
	gattctaagt	ttaatcgtaa	aatatcagat	gccactattt	atgcgacaag	acaggctaaa	2520
	gtgggaaaag	ataagaagga	tgaaacttat	gtcttaggga	aaatcaaaga	tatctatact	2580
	caggatggtt	atgatgcctt	tatgaagatt	tataagaagg	ataagtcaaa	attcctcatg	2640
	tatcgtcacg	acccacaaac	ctttgagaaa	gttatcgagc	caattttaga	gaactatcct	2700
45	aataagcaaa	tgaatgaaaa	aggaaaagag	gtaccatgta	atcctttcct	aaaatataaa	2760
	gaagaacatg	gctatattcg	taaatatagt	aaaaaaggca	atggtcctga	aatcaagagt	2820
	cttaaatact	atgatagtaa	gcttttaggt	aatcctattg	atattactcc	agagaatagt	2880
	aaaaataaag	ttqtcttaca	gtcattaaaa	ccttqqaqaa	cagatgtcta	tttcaataaq	2940
	gctactogaa	aatacqaaat	ccttggatta	aaatatacta	atctacaatt	tgagaaaggg	3000
50	acaggaacat	ataagatttc	ccaggaaaaa	tacaatgaca	ttaagaaaaa	agagggtgtata	3060
	gattctgatt	cagaattcaa	gtttacactt	tataaaaato	attigttact	cottaaaoat	3120
	acagaaacaa	aagaacaaca	actttacat	tttcttctc	gaactttacc	taaacaaaag	3180
	cattatatta	aattaaaacc	ttatgataaa	cagaaatttg	aaggaggtga	agenttaatt	3240
	aaagtattag	gtaacgttgc	taatggtggtggt	caatocataa	aaggagtagg	aaaatcaaat	3300
	atttctattt	ataaataaa	aacagatata	ctaggaaatg	aggatatest	caaaaatgag	3360
55	gotgataago	ctaagetage	tttttaa	Jugguaalt	ayoututtat	Junuaryay	3387
	ggugacaage	Jungulaya	2000000				5507

<210> 572

<211> 3369 <212> DNA <213> S. thermophilus

5 <400> 572

	atgagtgact	tagttttagg	acttgatatc	ggtataggtt	ctgttggtgt	aggtatcctt	60
	aacaaagtga	caggagaaat	tatccataaa	aactcacgca	tcttcccagc	agctcaagca	120
	gaaaataacc	tagtacgtag	aacgaatcgt	caaggaagac	gcttgacacg	acgtaaaaaa	180
10	catcgtatag	ttcgtttaaa	tcgtctattt	gaggaaagtg	gattaatcac	cgattttacg	240
	aagatttcaa	ttaatcttaa	cccatatcaa	ttacgagtta	agggcttgac	cgatgaattg	300
	tctaatgaag	aactgtttat	cgctcttaaa	aatatggtga	aacaccgtgg	gattagttac	360
	ctcgatgatg	ctagtgatga	cggaaattca	tcagtaggag	actatgcaca	aattgttaag	420
	gaaaatagta	aacaattaga	aactaagaca	ccgggacaga	tacagttgga	acgctaccaa	480
15	acatatggtc	aattacgtgg	tgattttact	gttgagaaag	atggcaaaaa	acatcgcttg	540
	attaatgtct	ttccaacatc	agcttatcgt	tcagaagcct	taaggatact	gcaaactcaa	600
	caagaattta	attcacagat	tacagatgaa	tttattaatc	gttatctcga	aattttaact	660
	ggaaaacgga	aatattatca	tggacccgga	aatgaaaagt	cacggactga	ttatggtcgt	720
	tacagaacga	atggagaaac	tttagacaat	atttttggaa	ttctaattgg	gaaatgtaca	780
20	ttttatccag	acgagtttag	agcagcaaaa	gcttcctaca	cggctcaaga	attcaatttg	840
	ctaaatgatt	tgaacaatct	aacagttcct	actgaaacca	aaaagttgag	caaagaacag	900
	aagaatcaaa	tcattaatta	tgtcaaaaat	gaaaaggtaa	tggggccagc	gaaacttttt	960
	aaatatatcg	ctaaattact	ttcttgtgat	gttgcagata	tcaagggaca	ccgtatcgac	1020
	aaatcaggta	aggctgagat	tcatactttc	gaagcctatc	gaaaaatgaa	aacgcttgaa	1080
	accttagata	ttgagcaaat	ggatagagaa	acgcttgata	aattagccta	tgtcttaaca	1140
25	ttaaacactg	agagggaagg	tattcaagaa	gctttagaac	atgaatttgc	tgatggtagc	1200
	tttagccaga	agcaagttga	cgaattggtt	caattccgca	aagcaaatag	ttccattttt	1260
	ggaaaaggat	ggcataattt	ttctgtcaaa	ctgatgatgg	agttaattcc	agaattgtat	1320
	gagacgtcag	aagagcaaat	gactatcctg	acacgacttg	gaaaacaaaa	aacaacttcg	1380
	tcttcaaata	aaacaaaata	tatagatgag	aaactattaa	ctgaagaaat	ctataatcct	1440
30	gttgttgcta	agtctgttcg	ccaggctata	aaaatcgtaa	atgcggcgat	taaagaatac	1500

35

40

45

50

	ggagactttg	acaatattgt	catcgaaatg	gctcgtgaaa	caaatgaaga	tgatgaaaag	1560
	aaagctattc	aaaagattca	aaaagccaac	aaagatgaaa	aagatgcagc	aatgcttaag	1620
	gctgctaacc	aatataatgg	aaaggctgaa	ttaccacata	gtgttttcca	cggtcataag	1680
-	caattagcga	ctaaaatccg	cctttggcat	cagcaaggag	aacgttgcct	ttatactggt	1740
5	aagacaatct	caatccatga	tttgataaat	aatcctaatc	agtttgaagt	agatcatatt	1800
	ttacctcttt	ctatcacatt	cgatgatagc	cttgcaaata	aggttttggt	ttatgcaact	1860
	gctaaccaag	aaaaaggaca	acgaacacct	tatcaggctt	tagatagtat	ggatgatgcg	1920
	tggtctttcc	gtgaattaaa	agcttttgta	cgtgagtcaa	aaacactttc	aaacaagaaa	1980
	aaagaatacc	tccttacaga	agaagatatt	tcaaagtttg	atgttcgaaa	gaaatttatt	2040
10	gaacgaaatc	ttgtagatac	aagatacgct	tcaagagttg	tcctcaatgc	ccttcaagaa	2100
	cactttagag	ctcacaagat	tgatacaaaa	gtttccgtgg	ttcgtggcca	atttacatct	2160
	caattgagac	gccattgggg	aattgagaag	actcgtgata	cttatcatca	ccatgctgtc	2220
	gatgcattga	ttattgccgc	ctcaagtcag	ttgaatttgt	ggaaaaaaca	aaagaatacc	2280
	cttgtaagtt	attcagaaga	acaactcctt	gatattgaaa	caggtgaact	tattagtgat	2340
15	gatgagtaca	aggaatctgt	gttcaaagcc	ccttatcaac	attttgttga	tacattgaag	2400
	agtaaagaat	ttgaagacag	tatcttattc	tcatatcaag	tggattctaa	gtttaatcgt	2460
	aaaatatcag	atgccactat	ttatgcgaca	agacaggcta	aagtgggaaa	agataagaag	2520
	gatgaaactt	atgtcttagg	gaaaatcaaa	gatatctata	ctcaggatgg	ttatgatgcc	2580
	tttatgaaga	tttataagaa	ggataagtca	aaattcctca	tgtatcgtca	cgacccacaa	2640
••	acctttgaga	aagttatcga	gccaatttta	gagaactatc	ctaataagga	aatgaatgaa	2700
20	aaagggaaag	aagtaccatg	taatcctttc	ctaaaatata	aagaagaaca	tggctatatt	2760
	cgtaaatata	gtaaaaaagg	caatggtcct	gaaatcaaga	gtcttaaata	ctatgatagt	2820
	aagcttttag	gtaatcctat	tgatattact	ccagagaata	gtaaaaataa	agttgtctta	2880
	cagtcattaa	aaccttggag	aacagatgtc	tatttcaata	aaaatactgg	taaatatgaa	2940
	attttaggac	tgaaatatgc	tgatttacaa	tttgaaaaga	agacaggaac	atataagatt	3000
25	tcccaggaaa	aatacaatgg	cattatgaaa	gaagagggtg	tagattctga	ttcagaattc	3060
	aagtttacac	tttataaaaa	tgatttgtta	ctcgttaaag	atacagaaac	aaaagaacaa	3120
	cagcttttcc	gttttctttc	tcgaactatg	cctaatgtga	aatattatgt	agagttaaag	3180
	ccttattcaa	aagataaatt	tgagaagaat	gagtcactta	ttgaaatttt	aggttctgca	3240
	gataagtcag	gacgatgtat	aaaagggcta	ggaaaatcaa	atatttctat	ttataaggta	3300
30	agaacagatg	tcctaggaaa	tcagcatatc	atcaaaaatg	agggtgataa	gcctaagcta	3360
	gatttttaa						3369

<210> 573 <211> 4113 <212> DNA

<213> S. agalactiae

<400> 573

40

35

45

50

	atgaataagc	catattcaat	aggccttgac	atcggtacta	attccgtcgg	atggagcatt	60
	attacagatg	attataaagt	acctgctaag	aagatgagag	ttttagggaa	cactgataaa	120
	gaatatatta	agaagaatct	cataggtgct	ctgctttttg	atggcgggaa	tactgctgca	180
	gatagacgct	tgaagcgaac	tgctcgtcgt	cgttatacac	gtcgtagaaa	tcgtattcta	240
5	tatttacaag	aaatttttgc	agaggaaatg	agtaaagttg	atgatagttt	ctttcatcga	300
	ttagaggatt	cttttctagt	tgaggaagat	aagagaggga	gcaagtatcc	tatctttgca	360
	acattgcagg	aagagaaaga	ttatcatgaa	aaattttcga	caatctatca	tttgagaaaa	420
	gaattagctg	acaagaaaga	aaaagcagac	cttcgtctta	tttatattgc	tctagctcat	480
	atcattaaat	ttagagggca	tttcctaatt	gaggatgata	gctttgatgt	caggaataca	540
10	gacatttcaa	aacaatatca	agattttta	gaaatcttta	atacaacttt	tgaaaataat	600
	gatttgttat	ctcaaaacgt	tgacgtagag	gcaatactaa	cagataagat	tagcaagtct	660
	gcgaagaaag	atcgtatttt	agcgcagtat	cctaaccaaa	aatctactgg	catttttgca	720
	gaatttttga	aattgattgt	cggaaatcaa	gctgacttca	agaaatattt	caatttggag	780
	gataaaacgc	cgcttcaatt	cgctaaggat	agctacgatg	aagatttaga	aaatcttctt	840
15	ggacagattg	gtgatgaatt	tgcagactta	ttctcagcag	cgaaaaagtt	atatgatagt	900
10	gtccttttgt	ctggcattct	tacagtaatc	gacctcagta	ccaaggcgcc	actttcagct	960
	tctatgattc	agcgttatga	tgaacataga	gaggacttga	aacagttaaa	acaattcgta	1020
	aaagcttcat	tgccggaaaa	atatcaagaa	atatttgctg	attcatcaaa	agatggctac	1080
	gctggttata	ttgaaggtaa	aactaatcaa	gaagcttttt	ataaatacct	gtcaaaattg	1140
	ttgaccaagc	aagaagatag	cgagaatttt	cttgaaaaaa	tcaagaatga	agatttcttg	1200
20	agaaaacaaa	ggacctttga	taatggctca	attccacacc	aagtccattt	gacagagctg	1260
	aaagctatta	tccgccgtca	atcagaatac	tatcccttct	tgaaagagaa	tcaagatagg	1320
	attgaaaaaa	tccttacctt	tagaattcct	tattatatcg	ggccactagc	acgtgagaag	1380
	agtgattttg	catggatgac	tcgcaaaaca	gatgacagta	ttcgaccttg	gaattttgaa	1440

	gacttggttg	ataaagaaaa	atctgcggaa	gcttttatcc	atcgtatgac	caacaatgat	1500
	ttttatcttc	ctgaagaaaa	agttttacca	aagcatagtc	ttatttatga	aaaatttacg	1560
	gtctataatg	agttgactaa	ggttagatat	aaaaatgagc	aaggtgagac	ttatttttt	1620
-	gatagcaata	ttaaacaaga	aatctttgat	ggagtattca	aggaacatcg	taaggtatcc	1680
5	aagaagaagt	tgctagattt	tctggctaaa	gaatatgagg	agtttaggat	agtagatgtt	1740
	attggtctag	ataaagaaaa	taaagctttc	aacgcctcat	tgggaactta	ccacgatctc	1800
	gaaaaaatac	tagacaaaga	ttttctagat	aatccagata	atgagtctat	tctggaagat	1860
	atcgtccaaa	ctctaacatt	atttgaagac	agagaaatga	ttaagaagcg	tcttgaaaac	1920
	tataaagatc	tttttacaga	gtcacaacta	aaaaactct	atcgtcgtca	ctatactggc	1980
10	tggggacgat	tgtctgctaa	gttaatcaat	ggtattcgag	ataaagagag	tcaaaaaaca	2040
	atcttggact	atcttattga	tgatggtaga	tctaatcgca	actttatgca	gttgataaat	2100
	gatgatggtc	tatctttcaa	atcaattatc	agtaaggcac	aggctggtag	tcattcagat	2160
	aatctaaaag	aagttgtagg	tgagcttgca	ggtagccctg	ctattaaaaa	gggaattcta	2220
	caaagtttga	aaattgttga	tgagcttgtt	aaagtcatgg	gatacgaacc	tgaacaaatt	2280
15	gtggttgaga	tggcgcgtga	gaatcaaaca	acaaatcaag	gtcgtcgtaa	ctctcgacaa	2340
	cgctataaac	ttcttgatga	tggcgttaag	aatctagcta	gtgacttgaa	tggcaatatt	2400
	ttgaaagaat	atcctacgga	taatcaagcg	ttgcaaaatg	aaagactttt	cctttactac	2460
	ttacaaaacg	gaagagatat	gtatacaggg	gaagctctag	atattgacaa	tttaagtcaa	2520
	tatgatattg	accacattat	tcctcaagct	ttcataaaag	atgattctat	tgataatcgt	2580
20	gttttggtat	catctgctaa	aaatcgtgga	aagtcagatg	atgttcctag	ccttgaaatt	2640
20	gtaaaagatt	gtaaagtttt	ctggaaaaaa	ttacttgatg	ctaagttaat	gagtcagcgt	2700
	aagtatgata	atttgactaa	ggcagagcgc	ggaggcctaa	cttccgatga	taaggcaaga	2760
	tttatccaac	gtcagttggt	tgagacacga	caaattacca	agcatgttgc	ccgtatcttg	2820
	gatgaacgct	ttaataatga	gcttgatagt	aaaggtagaa	ggatccgcaa	agttaaaatt	2880
	gtaaccttga	agtcaaattt	ggtttcaaat	ttccgaaaag	aatttggatt	ctataaaatt	2940
25	cgtgaagtta	acaattatca	ccatgcacat	gatgcctatc	ttaatgcagt	agttgctaaa	3000
	gctattctaa	ccaaatatcc	tcagttagag	ccagaatttg	tctacggcga	ctatccaaaa	3060
	tataatagtt	acaaaacgcg	taaatccgct	acagaaaagc	tatttttcta	ttcaaatatt	3120
	atgaacttct	ttaaaactaa	ggtaacttta	gcggatggaa	ccgttgttgt	aaaagatgat	3180
	attgaagtta	ataatgatac	gggtgaaatt	gtttgggata	aaaagaaaca	ctttgcgaca	3240
30	gttagaaaag	tcttgtcata	ccctcagaac	aatatcgtga	agaagacaga	gattcagaca	3300
	ggtggtttct	ctaaggaatc	aatcttggcg	catggtaact	cagataagtt	gattccaaga	3360
	aaaacgaagg	atatttattt	agatcctaag	aaatatggag	gttttgatag	tccgatagta	3420
	gcttactctg	ttttagttgt	agctgatatc	aaaaagggta	aagcacaaaa	actaaaaaca	3480
	gttacggaac	ttttaggaat	taccatcatg	gagaggtcca	gatttgagaa	aaatccatca	3540
25	gctttccttg	aatcaaaagg	ctatttaaat	attagggctg	ataaactaat	tattttgccc	3600
30	aagtatagtc	tgttcgaatt	agaaaatggg	cgtcgtcgat	tacttgctag	tgctggtgaa	3660
	ttacaaaaag	gtaatgagct	agcettacea	acacaattta	tgaagttctt	ataccttgca	3720
	agtcgttata	atgagtcaaa	aggtaaacca	gaggagattg	agaagaaaca	agaatttgta	3780
	aatcaacatg	tctcttattt	tgatgacatc	cttcaattaa	ttaatgattt	ttcaaaacga	3840
	gttattctag	cagatgctaa	tttagagaaa	atcaataagc	tttaccaaga	taataaggaa	3900
40	aatatatcag	tagatgaact	tgctaataat	attatcaatc	tatttacttt	taccagtcta	3960
	ggagctccag	cagcttttaa	atttttgat	aaaatagttg	atagaaaacg	ctatacatca	4020
	actaaagaag	tacttaattc	taccctaatt	catcaatcta	ttactggact	ttatgaaaca	4080
	cgtattgatt	tgggtaagtt	aggagaagat	tga			4113

45 <210> 574 <211> 4134 <212> DNA <213> S. agalactiae

^{50 &}lt;400> 574

5	atgaataagc attacagatg gaatatatta gatagacgct tatttacaag ttagaggatt acaatgcagg gaattggctg atcattaaat gatattcaaa	catattcaat attataaagt agaagaatct tgaagcgaac aaatttttgc cttttctagt aggagaaata acaagaaaga tcagagggca aacaatatca	aggccttgac acctgctaag cataggtgct tgctcgtcgt agaggaaatg tgaggaagat ttatcatgaa aaaagcagac tttcctaatt agcctttta	atcggtacta aagatgagag ctgctttttg cgttatacac agtaaagttg aagagaggta aaatttccga cttcgtcttg gaggatgata gaaatttttg	attccgtcgg ttttagggaa atggcgggaa gtcgtagaaa atgatagttt gcaagtatcc caatctatca tttatctggc gatttgatgt atactacct	atggagcatt cactgataaa tactgctgca tcgtattcta ctttcatcga tatctttgca tttgagaaaa tctagctcat gaggaatacc tgaaaataat	60 120 180 240 300 360 420 480 540 600
15	catttgttat	ctcaaaatgt	agatgtagaa	gcaattctaa	cagataagat	tagcaagtct	660
20							
25							
30							
35							
40							
45							
50							

	gcgaagaagg	atcgcatctt	agcgcagtat	cctaaccaaa	aatctactgg	tattttgca	720
	gaatttttga	aattgattgt	cggaaatcaa	gctgacttca	agaaacattt	caatttggag	780
	gataaaacac	cgcttcaatt	cgctaaggat	agctacgatg	aagatttaga	aaatcttctt	840
	ggacagattg	gtgatgaatt	tgcagactta	ttctcagtag	cgaaaaagct	atatgatagt	900
5	gttcttttat	ctoocattct	tacaqtaact	gatctcagta	ccaaqqcqcc	actttctocc	960
	tctatgattc	agcgttatga	tgaacatcat	gaggacttaa	agcatctaaa	acaattcqta	1020
	aaagcttcat	tacctgaaaa	ttatcgggaa	gtatttgctg	attcatcaaa	agatggctac	1080
	gctggctata	ttgaaggcaa	aactaatcaa	gaagettttt	ataaatatct	attaaaatta	1140
	ttgaccaaac	aagaaggtag	cgagtatttt	cttgagaaaa	ttaagaatga	agatttttg	1200
10	agaaaacaga	gaacetttga	taatooctca	atcccccatc	aagtccattt	gacagaattg	1260
	agggctatta	ttcgacgtca	atcagaatac	tatccattct	tgaaagagaa	tcaagatagg	1320
	attgaaaaaa	teettacett	tagaatteet	tattatotco	ggccactagc	acotoagaag	1380
	agtgattttg	catogatgac	tcgcaaaaca	gatgacagta	ttcgaccttg	gaattttgaa	1440
	gacttogtto	ataaagaaaa	atctocogaa	gettttatce	atcocatoac	caacaatgac	1500
	ctctatcttc	cagaagaaaa	agttttacca	aagcatagtc	ttatttatga	aaaatttact	1560
15	atttacaata	aattaacqaa	agttagattt	ttagcacagee	actttaaaga	ttttcaattt	1620
	ttaaatagga	agraaaaaga	aactatcttt	aacaacttat	ttaaqqaaaa	acotaaaota	1680
	actossago	atattattaga	ttttta	aaaattaata	atataaaaa	aattacaatc	1740
	aaaggaattg	agaaacagtt	taacoctaoc	ctttcaacct	atcatgatg	taaaaaata	1800
	attaggaatty	atttccttca	taatacaget	aacqaqctta	ttttagaaga	tatcotocaa	1860
20	actotaagy	tatttgaaga	tagagaaatg	attaagaat	atattaacat	ctategeccaa	1920
	tttttaccc	actorage	tagagaaatg	tataagaagta	actatactor	ctacaaagac	1920
	ttatataata	agecacagec	tagaatagaa	attagecyce	atcasasasa	aatattaaaa	2040
	tatattatta	ayccaacaaa	tggcatccga	aacaaayaya	accaaaaaaa	tastastast	2040
	atotactu	acyacyyaay	tgeaaacega	agoogtagto	ayuuyauaaa	tyatyatyat	2100
	clattatta	adccaattat	tgacaaggca	cgaactggta	gicalleyga	Laalelyaaa	2100
25	gaagiigiag	glgaadligd	topageeee	gelallaaaa	aagggattet	actaattaa	2220
	adaatagttg	algagelggt	tadagtcatg	ggetatgaae	clyaacaaat	cgtggttgaa	2200
	atggcacgtg	agaaccaaac	gacagcaaaa	ggattaagte	gttcacgaca	acgettgaca	2340
	accttgagag	aatetettge	taatttgaag	agtaatattt	tggaagagaa	aaageetaag	2400
	tatgtgaaag	atcaagttga	aaatcatcat	ttatctgatg	accgtcttt	CCTTTACTAC	2460
30	ttacaaaacg	gaagagatat	gtatacaaaa	aaggetetgg	atattgataa	tttaagtcaa	2520
	tatgatattg	accacattat	tcctcaaget	ttcataaaag	atgattetat	tgataatcgt	2580
	gttttggtat	catctgctaa	aaatcgtgga	aaatcagatg	atgttcctag	cattgaaatt	2640
	gtaaaagctc	gcaaaatgtt	ctggaaaaat	ttactggatg	ctaagttaat	gagtcagcgt	2700
	aagtatgata	atttgactaa	ggcagagcgc	ggaggcctaa	cttccgatga	taaggcaaga	2760
25	tttatccaac	gtcagttggt	tgagactcga	caaattacca	agcatgtagc	tcgtatcttg	2820
30	gatgaacgct	tcaataatga	agttgataat	ggtaaaaaga	tttgcaaggt	taaaattgta	2880
	accttgaagt	caaatttggt	ttcaaatttc	cgaaaagaat	ttggattcta	taaaattcgt	2940
	gaagttaatg	attatcacca	tgcacacgat	gcttatctta	atgcagtagt	tgccaaagct	3000
	attctaacca	aatatccaca	gttagagcca	gagtttgtct	acggaatgta	tagacagaaa	3060
	aaactttcga	aaatcgttca	tgaggataag	gaagaaaaat	atagtgaagc	aaccaggaaa	3120
40	atgtttttct	actccaactt	gatgaatatg	ttcaaaagag	ttgtgaggtt	agcagatggt	3180
	tctattgttg	taagaccagt	aatagaaact	ggtagatata	tgagaaaaac	tgcatgggat	3240
	aaaaagaaac	actttgcgac	agttagaaaa	gtcttgtcat	accctcagaa	caatatcgtg	3300
	aagaagacag	agattcagac	aggtggtttc	tctaaggaat	caatcttggc	gcatggtaac	3360
	tcagataagt	tgattccaag	aaaaacgaag	gatatttatt	tagatcctaa	gaaatatgga	3420
45	ggttttgata	gtccgatagt	agcttactct	gttttagttg	tagctgatat	caaaaaaggt	3480
10	aaagcacaaa	aactaaaaac	agttacggaa	cttttaggaa	ttaccatcat	ggagaggtcc	3540
	agatttgaga	aaaatccatc	agctttcctt	gaatcaaaag	gttatttaaa	tattagggac	3600
	gataaattaa	tgattttacc	gaagtatagt	ctgttcgaat	tagaaaatgg	gcgtcgtcga	3660
	ttacttgcta	gtgctggtga	attacaaaaa	ggtaacgagc	tagccttacc	aacacaattt	3720
	atgaagttct	tataccttgc	aagtcgttat	aatgagtcaa	aaggtaaacc	agaggagatt	3780
50	gagaagaaac	aagaatttgt	aaatcaacat	gtctcttatt	ttgatgacat	ccttcaatta	3840
	attaatgatt	tttcaaaacg	agttattcta	gcagatgcta	atttagagaa	aatcaataag	3900
	ctttaccagg	ataataagga	aaatatacca	gtagatgaac	ttgctaataa	tattatcaat	3960
	ctatttactt	ttaccagtct	aggagctcca	gcagctttta	aattttttga	taaaatagtt	4020
	gatagaaaac	gctatacatc	aactaaagaa	gtacttaatt	ctactctaat	ccatcaatct	4080
55	attactggac	tttatgaaac	acgtattgat	ttgggtaaat	taggagaaga	ttga	4134

<210> 575 <211> 4038

# <212> DNA <213> S. mutans

<400> 575

	atgaaaaaac	cttactctat	tggacttgat	attggaacca	attctgttgg	ttgggctgtt	60
	gtgacagatg	actacaaagt	tcctgctaag	aagatgaagg	ttctgggaaa	tacagataaa	120
	agtcatatcg	agaaaaattt	gcttggcgct	ttattatttg	atagcgggaa	tactgcagaa	180
	gacagacggt	taaagagaac	tgctcgccgt	cgttacacac	gtcgcagaaa	tcgtattta	240
5	tatttgcaag	agattttttc	agaagaaatg	ggcaaggtag	atgatagttt	ctttcatcgt	300
	ttagaggatt	cttttcttgt	tactgaggat	aaacgaggag	agcgccatcc	catttttggg	360
	aatcttgaag	aagaagttaa	gtatcatgaa	aattttccaa	ccatttatca	tttgcggcaa	420
	tatcttgcgg	ataatccaga	aaaagttgat	ttgcgtttag	tttatttggc	tttggcacat	480
	ataattaagt	ttagaggtca	ttttttaatt	gaaggaaagt	ttgatacacg	caataatgat	540
	gtacaaagac	tgtttcaaga	atttttagca	gtctatgata	atacttttga	gaatagttcg	600
10	cttcaggagc	aaaatgttca	agttgaagaa	attctgactg	ataaaatcag	taaatctgct	660
	aagaaagata	gagttttgaa	actttttcct	aatgaaaagt	ctaatggccg	ctttqcaqaa	720
	tttctaaaac	taattottoo	taatcaagct	gattttaaaa	agcattttga	attagaagag	780
	aaagcaccat	tgcaattttc	taaagatact	tatgaagaag	agttagaagt	actattagct	840
	caaattqqaq	ataattacgc	agagetettt	ttatcagcaa	agaaactgta	tgatagtatc	900
15	cttttatcag	ggattttaac	agttactgat	ottootacca	aagcgccttt	atctgcttcg	960
	atgattcage	gatataatga	acatcagatg	gatttagete	agettaaaca	attcattcgt	1020
	cagaaattat	cagataaata	taacqaaqtt	ttttctgatg	tttcaaaaqa	caactataca	1080
	ggttatattg	atoggaaaaac	aaatcaagaa	gettttata	aataccttaa	aggtetatta	1140
	aataagattg	agggaagtgg	ctatttcctt	gataaaattg	agcotgaaga	ttttctaaga	1200
	aagcaacgta	cctttgacaa	tooctctatt	ccacatcaga	ttcatcttca	agaaatgcgt	1260
20	gctatcattc	gtagacagge	tgaattttat	ccottttag	cagacaatca	agataggatt	1320
	gagaaattat	tgactttccg	tattccctac	tatottootc	cattagcgcg	cogaaaaaagt	1380
	gattttgctt	ggttaagtcg	gaaatcooct	gataaaatta	caccatogaa	ttttgatgaa	1440
	atcottoata	aagaatecte	tocagaaget	tttatcaatc	gtatgacaaa	ttatgatttg	1500
	tacttoccaa	atcaaaaagt	tettectaaa	catagtttat	tatacgaaaa	atttactott	1560
25	tacaatgaat	taacaaaggt	taaatataaa	acagagcaag	gaaaaacago	atttttgat	1620
	gccaatatga	agcaagaaat	ctttgatggc	gtatttaagg	tttatcgaaa	agtaactaaa	1680
	gataaattaa	togatttcct	tgaaaaagaa	tttgatgaat	ttcotattot	tgatttaaca	1740
	gatatagata	aagaaaataa	agtatttaac	acttettata	gaacttatca	tgatttgtgt	1800
	aaaatttag	ataaagattt	tctcgataat	tcaaagaatg	aaaagatttt	agaagatatt	1860
	atattaacet	taacottatt	tgaagataga	gaaatgatta	gaaaacgtct	agaaaattac	1920
30	agtgatttat	tgaccaaaga	acaaqtgaaa	aagetggaaaa	gacgtcatta	tactoottoo	1980
	qqaaqattat	canctnantt	aattcatoot	attorcaata	aagaaaggag	aaaaacaatt	2040
	cttgattatc	tcattgatga	togcaatage	aatcogaact	ttatocaact	gattaacgat	2100
	gatgetettt	ctttcaaaga	agagattoct	aaggcacaag	ttattggaga	aacagacaat	2160
	ctaaatcaag	ttattaatga	tattoctooc	agecetgeta	ttaaaaaaaaa	aattttacaa	2220
35	agettgaaga	ttattaataa	acttatcaaa	attatogoac	atcaacctga	aaatatcotc	2280
	atagaatag	cacataaaaa	ccanttacc	aatcagggac	gacgaaattc	acagcaacgt	2340
	ttgaaaggtt	tgacagattc	tattaaagaa	tttggaagtc	aaattettaa	agaacatccg	2400
	attaagaatt	cacagttaca	aaatgatagaa	ttatttat	attatttaca	aaacggcaga	2460
	geegagaaee	ctogagaaga	attogatatt	gattatctaa	accaatataa	tatagaccat	2520
<i>(</i> <b>0</b>	attatccccc	aagetttat	aaaggataat	totattoata	atagagtatt	gactagetea	2580
40	aaggaaaatg	atgazzata	adaggatate	ccaactaaaq	atattatta	taaaataaaa	2640
	tcctattoga	gtggddddet	ttcaacaaaa	cttattacac	aacotaaatt	taataattta	2700
	acaaaaacta	aacqaqqtqq	attraccrac	gatgataaag	ctogattcat	caagegtcaa	2760
	ttagtagaaa	cacqacaaat	taccaaacat	atagcacata	ttctggacccac	accatttaat	2820
	acagaaacag	atgaaaacaa	caacaaaaatt	catcaaataa	aaattataac	cttgaaatca	2880
45	acayaaacay	ccaatttccc	taagaaattt	gaactotaca	aaatacataa	aattaatgag	2000
	tatcatcato	cacatoatoo	ctatctcaat	gatateetta	aagegegegege	actacctatt	3000
	taccacacat	tagaaggetaa	atttatttat	getgetattg	ctcatttca	togacataaa	3060
	gaaaataaag	cygaaceega	accegeeeae	tattaaaata	ttatgaagtt	atttaaaaaa	3120
	gaaaatataag	atactataa	aaatootoaa	attatotoga	aaaaaaataa	gratatttct	3180
50	aatattaaaa	aantoottto	ttatocacaa	attastatta	ttaanaaant	agaggaggaga	3270
50	accordance+	tttataaaaa	atotatotto	cogaaagata	attotoadaa	agayyaycaa	2240
	ccaseeecco	agaaatteta	ttaggetagg	aagaaatata	accest++ac		2250
	cyaaaaacya	ayaaalliid	tattactast	attasses	gayyattya	ageouyatt	2120
	acactossa	acttacttage	tataatatt	atogaaaady	taaattttaa	aaaacuyada	2420
	attacttta	ttaagagaaaa	aggetator	acyyaaaaya	aagaaaatat	tataaantta	2400
55	gelycelee	atttatta	aggetacega	anycicady	aayaaaalal	aaataataaa	3500
	coadalala	agggaaata	accayaadac	yyacyadada ggaaatgatt	taggaagett	aayuyuuayg	3660
	yaaciicada	ayyyaaalya	aallyttig	CCaaalCait	Layyaaccit	youraldad	0000

gctaaaaata ttcataaagt tgatgaacca aagcatttgg actatgttga taaacataaa 3720 gatgaattta aggagttgct agatgttgtg tcaaactttt ctaaaaaata tactttagca 3780 gaaggaaatt tagaaaaaat caaagaatta tatgcacaaa ataatggtga agatcttaaa 3840 gaattagcaa gttcatttat caacttatta acatttactg ctataggagc accggctact 3900 5 tttaaattct ttgataaaaa tattgatcga aaacgatata cttcaactac tgaaattctc 3960 aacgctaccc tcatccacca atccatcacc ggtctttatg aaacgcggat tgatctcaat 4020 4038 aagttaggag gagactaa <210> 576 10 <211> 34 <212> DNA <213> Artificial Sequence <220> 15 <223> Artificial Sequence <400> 576 gaagtteeta ttetetagaa agtataggaa ette 34 20 <210> 577 <211> 30 <212> DNA <213> Artificial Sequence 25 <220> <223> Artificial Sequence <400> 577 agttcctatt cttcaaaagg tataggaact 30 30 <210> 578 <211> 30 <212> DNA <213> Artificial Sequence 35 <220> <223> Artificial Sequence <400> 578 40 agttcctatt cttcaaaaag tataggaact 30 <210> 579 <211> 30 <212> DNA 45 <213> Artificial Sequence <220> <223> Artificial Sequence 50 <400> 579 agttcctata ctctatgtag aataggaact 30 <210> 580 <211> 30 55 <212> DNA <213> Artificial Sequence

<220>

<223> Artificial Sequence

<400> 580 agttcctata ctttctggag aataggaact 30

5

#### Claims

A maize plant, maize plant part or maize seed having in its genome a genomic window comprising at least one transgenic target site for site specific integration (SSI) integrated into at least one double-strand-break target site, wherein said genomic window is flanked by:

a) at least a first marker comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and, b) at least a second marker comprising SEQ ID NO:2, SEQ ID NO:6 or SEQ ID NO:12; and

15

wherein said double-strand-break target site is a Cas9 endonuclease target site selected from the group consisting of SEQ ID NO: 3-5 or 7-11 or an active variant, capable of being recognized and cleaved by a double strand break-inducing agent, with at least 95% sequence identity to said Cas9 endonuclease target site.

- 20 2. The maize plant, maize plant part or maize seed of claim 1, wherein said genomic window is not more than 0.1, 0.2, 0.3, 0.4, 0.5, 1 or 2 cM in length.
  - **3.** The maize plant, maize plant part or maize seed of claim 1, wherein said genomic window further comprises a transgene.

25

- 4. The maize plant, maize plant part or maize seed of claim 3, wherein the transgene confers a trait selected from the group consisting of herbicide tolerance, insect resistance, disease resistance, male sterility, site-specific recombination, abiotic stress tolerance, altered phosphorus, altered antioxidants, altered fatty acids, altered essential amino acids, altered carbohydrates, herbicide tolerance, insect resistance and disease resistance.
- 30

35

40

5. The maize plant, maize plant part or maize seed of claim 1, wherein said genomic window further comprises at least a 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th, 15th, 16th, 17th, 18th, 19th, 20th, 21st, 22nd, 23rd, 24th, 25th, 26th, 2th, 28th, 29th, 30th or 31st transgenic target site for site specific integration integrated into at least a 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th, 15th, 16th, 17th, 18th, 19th, 20th, 21st, 22nd, 23rd, 24th, 25th, 26th, 2th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th, 15th, 16th, 17th, 18th, 19th, 20th, 21st, 22nd, 23rd, 24th, 25th, 26th, 2th, 28th, 29th, 30th or 31st double-strand-break target site.

6. The maize plant, maize plant part or maize seed of claim 5, wherein said at least 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th, 15th, 16th, 17th, 18th, 19th, 20th, 21st, 22nd, 23rd, 24th, 25th, 26th, 27th, 28th, 29th, 30th or 31st double-strand-break target site is selected from the group consisting of a zinc finger target site, a endonuclease target site, a meganuclease target site, a TALENs target site, a Cas9 endonuclease target site, and any one combination thereof.

7. The maize plant, maize plant part or maize seed of any one of claims 1 to 6, wherein said at least one transgenic target site for site specific integration comprises a first recombination site and a second recombination site, wherein said first and said second recombination site are dissimilar with respect to one another.

8. The maize plant, maize plant part or maize seed of claim 7, wherein said at least one transgenic target site for site specific integration further comprises a polynucleotide of interest flanked by said first recombination site and said second recombination site.

50

- 9. The maize plant, maize plant part or maize seed of claim 7, wherein the dissimilar recombination sites of said transgenic target site for site specific integration comprises a LOX site, a mutant LOX site, a FRT site or a mutant FRT site.
- 55 10. The maize plant, maize plant part or maize seed of claim 7 wherein each of said first recombination site and said second recombination site is selected from the group consisting of a FRT1 site, a FRT5 site, a FRT6 site, a FRT12 site, and a FRT87 site.

### Patentansprüche

ist:

- Maispflanze, Maispflanzenteil oder Maissamen, in ihrem/seinem Genom ein genomisches Fenster aufweisend, das mindestens eine transgene Zielstelle f
  ür ortsspezifische Integration (site specific integration, SSI) umfasst, die in mindestens eine Doppelstrangbruch-Zielstelle integriert ist, wobei das genomische Fenster von Folgendem flankiert
  - a) mindestens einem ersten Marker, umfassend SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 6 oder SEQ ID NO: 12; und
  - b) mindestens einem zweiten Marker, der SEQ ID NO: 2, SEQ ID NO: 6 oder SEQ ID NO: 12 umfasst; und

wobei die Doppelstrangbruch-Zielstelle eine Cas9-Endonuklease-Zielstelle ist, ausgewählt aus der Gruppe bestehend aus SEQ ID NO: 3-5 oder 7-11 oder eine aktive Variante, die von einem Doppelstrangbruch-Induzierungsmittel erkannt und gespalten werden kann, mit mindestens 95 % Sequenzidentität zu der Cas9-Endonuklease-Zielstelle.

15

20

25

30

5

10

- 2. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 1, wobei das genomische Fenster nicht mehr als 0,1, 0,2, 0,3, 0,4, 0,5, 1 oder 2 cm lang ist.
- 3. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 1, wobei das genomische Fenster ferner ein Transgen umfasst.
  - 4. Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 3, wobei das Transgen ein Merkmal verleiht, ausgewählt aus der Gruppe bestehend aus Herbizidtoleranz, Insektenresistenz, Krankheitsresistenz, männlicher Sterilität, ortsspezifischer Rekombination, abiotischer Stresstoleranz, verändertem Phosphor, veränderten Antioxidantien, veränderten Fettsäuren, veränderten essentiellen Aminosäuren, veränderten Kohlenhydraten, Herbizidtoleranz, Insektenresistenz und Krankheitsresistenz.
- Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 1, wobei das genomische Fenster ferner mindestens eine 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30. oder 31. transgene Zielstelle f
  ür eine ortsspezifische Integration in mindestens eine 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30. oder 31. Doppelstrangbruch-Zielstelle umfasst.
- Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 5, wobei die mindestens 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30. oder 31. Doppelstrangbruch-Zielstelle ausgewählt ist aus der Gruppe bestehend aus einer Zink-Finger-Zielstelle, einer Endonuklease-Zielstelle, einer Meganuklease-Zielstelle, einer TALENs-Zielstelle, einer Cas9-Endonuklease-Zielstelle und einer beliebigen Kombination davon.
- 40 7. Maispflanze, Maispflanzenteil oder Maissamen nach einem der Ansprüche 1 bis 6, wobei die mindestens eine transgene Zielstelle für ortsspezifische Integration eine erste Rekombinationsstelle und eine zweite Rekombinationsstelle umfasst, wobei die erste und die zweite Rekombinationsstelle ungleich in Bezug aufeinander sind.
  - Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 7, wobei die mindestens eine transgene Zielstelle f
    ür ortsspezifische Integration ferner ein Polynukleotid von Interesse umfasst, das von der ersten Rekombinationsstelle und der zweiten Rekombinationsstelle flankiert ist.
    - Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 7, wobei die ungleichen Rekombinationsstellen der transgenen Zielstelle f
      ür ortsspezifische Integration eine LOX-Stelle, eine mutierte LOX-Stelle, eine FRT-Stelle oder eine mutierte FRT-Stelle umfassen.
    - **10.** Maispflanze, Maispflanzenteil oder Maissamen nach Anspruch 7, wobei jede von der ersten Rekombinationsstelle und der zweiten Rekombinationsstelle ausgewählt ist aus der Gruppe bestehend aus einer FRT1-Stelle, einer FRT5-Stelle, einer FRT6-Stelle, einer FRT12-Stelle und einer FRT87-Stelle.

55

45

### Revendications

5

 Plante de maïs, une partie de plante de maïs ou une graine de maïs ayant dans son génome une fenêtre génomique comprenant au moins un site cible transgénique pour intégration spécifique de site (SSI) intégrée dans au moins un site cible de rupture à double brin, ladite fenêtre génomique est flanqué de :

a) au moins un premier marqueur comprenant SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 6 ou SEQ ID NO: 12 ; et, b) au moins un second marqueur comprenant SEQ ID NO: 2, SEQ ID NO: 6 ou SEQ ID NO: 12 ; et

¹⁰ dans laquelle ledit site cible à double brin est un site cible de l'endonucléase Cas9 choisi dans le groupe constitué de SEQ ID NO: 3-5 ou 7-11 ou d'un variant actif, capable d'être reconnu et clivé par un inducteur de rupture à double brin agent, avec au moins 95% d'identité de séquence avec ledit site cible de l'endonucléase Cas9.

Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 1, dans laquelle ladite fenêtre génomique ne mesure pas plus de 0,1, 0,2, 0,3, 0,4, 0,5, 1 ou 2 cM de long.

- 3. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 1, dans laquelle ladite fenêtre génomique comprend en outre un transgène.
- 4. Plante de maïs, partie de plante de maïs ou graine de maïs de la revendication 3, caractérisée en ce que le transgène confère un trait choisi dans le groupe constitué de la tolérance aux herbicides, la résistance aux insectes, la résistance aux maladies, la stérilité mâle, la recombinaison spécifique au site, la tolérance au stress abiotique, le phosphore modifié, le phosphore modifié antioxydants, les acides gras altérés, les acides aminés essentiels altérés, les glucides altérés, la tolérance aux herbicides, la résistance aux maladies.
- 5. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 1, dans laquelle ladite fenêtre génomique comprend en outre au moins un 1er, 2ème, 3ème, 4ème, 5ème, 6ème, 7ème, 8ème, 9ème, 10ème, 11ème, 12ème, 13ème, 14ème, 15ème, 16ème, 17ème, 18ème, 19ème, 20ème, 21ème, 22ème, 23ème, 24ème, 25ème, 26ème, 27ème, 28ème, 29ème, 30ème ou 31ème site transgénique cible pour une intégration spécifique intégrée au moins à un 2ème, 3ème, 4ème, 5ème, 6ème, 7ème, 8ème, 9ème, 10ème, 11ème, 12ème, 13ème, 14ème, 15ème, 16ème, 17ème, 18ème, 20ème, 21ème, 22ème, 23ème, 24ème, 25ème, 26ème, 27ème, 28ème, 29ème, 30ème ou 31ème site transgénique cible pour une intégration spécifique intégrée au moins à un 2ème, 3ème, 4ème, 5ème, 6ème, 7ème, 8ème, 9ème, 10ème, 11ème, 12ème, 13ème, 14ème, 15ème, 16ème, 17ème, 18ème, 19ème, 20ème, 21ème, 22ème, 23ème, 24ème, 25ème, 26ème, 27ème, 28ème, 29ème, 30ème ou 31ème site cible à double brin.

6. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 5, dans laquelle au moins les 2ème, 3ème, 4ème, 5ème, 6ème, 7ème, 8ème, 9ème, 10ème, 11ème, 12ème, 13ème, 14ème, 15ème, 16ème, 17ème, 18ème, 19ème, 20ème, 21ème, 22ème, 23ème, 24ème, 25ème, 26ème, 27ème, 28ème, 29ème, 30ème ou 31 ème sites cibles à rupture de double brin sont sélectionnés dans le groupe constitué d'un site cible à doigts de zinc, un site cible de l'endonucléase, un site cible de la méganucléase, un site cible des TALENs, un site cible de l'endonucléase Cas9 et toute combinaison de ceux-ci.

40

25

- 7. Plante de maïs, partie de plante de maïs ou graine de maïs de l'une quelconque des revendications 1 à 6, dans laquelle ledit au moins un site cible transgénique pour intégration spécifique de site comprend un premier site de recombinaison et un second site de recombinaison, dans lesquels ledit premier et ledit second site de recombinaison sont dissemblables l'un par rapport à l'autre.
- 45
- 8. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 7, dans laquelle au moins un site cible transgénique d'intégration spécifique de site comprend en outre un polynucléotide d'intérêt flanqué desdits premier site de recombinaison et second site de recombinaison.

9. Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 7, dans laquelle les sites de recombinaison dissemblable dudit site cible transgénique pour une intégration spécifique de site comprennent un site LOX, un site LOX mutant, un site FRT ou un site FRT mutant.

Plante de maïs, partie de plante de maïs ou graine de maïs selon la revendication 7, dans laquelle chacun desdits
 site de recombinaison et de second site de recombinaison est choisi dans le groupe constitué d'un site FRT1, d'un site FRT5, d'un site FRT6, d'un site FRT12 et d'un site FRT87.



Figure 1

EP 3 191 595 B1











Figure 4 Maize Genomic Window (CTL1) on Chromosome 1


Figure 5



Figure 6

Maize Genomic Window (CTL3) on Chromosome 3



Figure 7

Maize Genomic Window (CTL4) on Chromosome 10









438



## REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

US 5240855 A [0130]

US 5322783 A [0130]

US 5324646 A [0130]

US 5736369 A [0130]

US 5889191 A [0131]

US 5889190 A [0131]

US 5866785 A [0131]

US 5589367 A [0131]

US 5316931 A [0131]

US 5683439 A [0154]

WO 9943838 A [0154]

US 6072050 A [0154]

US 5608149 A [0154]

US 5608144 A [0154]

US 5604121 A [0154] US 5569597 A [0154]

US 5466785 A [0154] US 5399680 A [0154]

US 5268463 A [0154]

US 5608142 A [0154]

US 6177611 B [0154] US 5364780 A [0155]

US 0122169 W [0155]

US 5689049 A [0156]

US 5689051 A [0156]

US 6225529 B [0156]

WO 0012733 A [0156]

US 5814618 A [0157]

US 5789156 A [0157]

US 5837876 A [0160]

US 5750386 A [0160]

US 5633363 A [0160]

US 5459252 A [0160]

US 5401836 A [0160]

US 5110732 A [0160]

US 5023179 A [0160]

US 5380831 A [0162]

US 5436391 A [0162]

US 4873192 A [0168]

US 5605793 A [0171]

US 5837458 A [0171]

US 8697817 B [0232]

WO 62049465 A [0265]

US 74870414 [0185] [0263]

US 42713813 [0185] [0263]

US 20110167516 A [0215]

US 20090328252 A1 [0215] [0216]

EP 75444 A [0169]

•

440

## Patent documents cited in the description

•	US 62049465 [0001]	
	00 02040400 [0001]	

- US 5527695 A [0005]
- WO 2010079430 A [0039]
- WO 2007025097 A [0040] [0043]
- US 62023239 [0042] [0056]
- US 20110047655 A [0088]
- US 7626077 B [0101]
- US 5310667 A [0101]
- US 5866775 A [0101]
- US 6225114 B [0101]
- US 6248876 B [0101]
- US 7169970 B [0101]
- US 6867293 B [0101]
- US 61401456 **[0101]**
- US 5703049 A [0102]
- US 5885801 A [0102]
- US 5885802 A [0102]
- US 5990389 A [0102]
- US 5850016 A [0102]
- US 5602321 A [0103]
- US 74068296 [0104]
- WO 9820133 A [0104]
- US 20080050506 A [0105]
- US 7361811 B [0105]
- US 5792931 A [0106]
- US 5283184 A [0108]
- US 5034323 A [0108]
- US 6187994 B [0112] [0113] [0115] [0143]
- US 6262341 B [0112]
- US 6331661 B [0112]
- US 6300545 B [0112]
- US 8318493 B [0113] [0135]
- WO 0100158 A [0114] [0115]
- US 5929301 A [0118]
- WO 9925840 A [0119] [0120]
- WO 9925884 A [0123]
- US 1247202 W [0125]
- WO 9925821 A [0125] [0200]

- [0233] [0234]

US 5563055 A [0130]

US 5981840 A [0130]

US 4945050 A [0130]

US 5879918 A [0130]

US 5886244 A [0130]

US 5932782 A [0130]

WO 0028058 A [0130]

US 46369114 [0127] [0145]

- US 46368714 [0127] [0145] [0203] [0227] [0232]

## Non-patent literature cited in the description

- ROBERTS et al. Nucleic Acids Res, 2003, vol. 31, 418-20 [0037]
- ROBERTS et al. Nucleic Acids Res, 2003, vol. 31, 1805-12 [0037]
- BELFORT et al. Mobile DNA II. ASM Press, 2002, 761-783 [0037]
- GUHAN ; MUNIYAPPA. Crit Rev Biochem Mol Biol, 2003, vol. 38, 199-248 [0038]
- LUCAS et al. Nucleic Acids Res, 2001, vol. 29, 960-9 [0038]
- JURICA ; STODDARD. Cell Mol Life Sci, 1999, vol. 55, 1304-26 [0038]
- STODDARD. Q Rev Biophys, 2006, vol. 38, 49-95
  [0038]
- MOURE et al. Nat Struct Biol, 2002, vol. 9, 764 [0038]
- MORBITZER et al. PNAS, 2010 [0039]
- SCHOLZE ; BOCH. Virulence, 2010, vol. 1, 428-432 [0039]
- CHRISTIAN et al. Genetics, 2010, vol. 186, 757-761 [0039]
- LI et al. Nuc. Acids Res., 2010 [0039]
- MILLER et al. Nature Biotechnology, 2011, vol. 29, 143-148 [0039]
- ISHINO et al. J. Bacterial., 1987, vol. 169, 5429-5433 [0040]
- NAKATA et al. J. Bacterial., 1989, vol. 171, 3553-3556 [0040]
- GROENEN et al. Mol. Microbiol., 1993, vol. 10, 1057-1065 [0040]
- HOE et al. Emerg. Infect. Dis., 1999, vol. 5, 254-263 [0040]
- MASEPOHL et al. *Biochim. Biophys. Acta*, 1996, vol. 1307, 26-30 [0040]
- MOJICA et al. Mol. Microbiol., 1995, vol. 17, 85-93
  [0040]
- JANSSEN et al. OMICS J. Integ. Biol., 2002, vol. 6, 23-33 [0040]
- MOJICA et al. Mol. Microbiol., 2000, vol. 36, 244-246
  [0040]
- HAFT et al. Computational Biology, PLoS Comput Biol, 2005, vol. 1 (6), e60 [0041]
- SINGER et al. Cell, 1982, vol. 31, 25-33 [0073]
- SHEN; HUANG. Genetics, 1986, vol. 112, 441-57 [0073]
- WATT et al. Proc. Natl. Acad. Sci. USA, 1985, vol. 82, 4768-72 [0073]
- SUGAWARA ; HABER. Mol Cell Biol, 1992, vol. 12, 563-75 [0073]
- RUBNITZ; SUBRAMANI. Mol Cell Biol, 1984, vol. 4, 2253-8 [0073]
- AYARES et al. Proc. Natl. Acad. Sci. USA, 1986, vol. 83, 5199-203 [0073]
- LISKAY et al. Genetics, 1987, vol. 115, 161-7 [0073]
- BLEUYARD et al. DNA Repair, 2006, vol. 5, 1-12 [0074]

- SIEBERT; PUCHTA. Plant Cell, 2002, vol. 14, 1121-31 [0074]
- PACHER et al. Genetics, 2007, vol. 175, 21-9 [0074]
- MOLINIER et al. Plant Cell, 2004, vol. 16, 342-52 [0075]
- PUCHTA. Genetics, 1999, vol. 152, 1173-81 [0075]
- PUCHTA et al. *Plant Mol Biol,* 1995, vol. 28, 281-92 [0076]
- TZFIRA ; WHITE. Trends Biotechnol, 2005, vol. 23, 567-9 [0076]
- PUCHTA. J Exp Bot, 2005, vol. 56, 1-14 [0076]
- LYZNIK et al. Mol Gen Genet, 1991, vol. 230, 209-18
  [0076]
- WILLIAMSON et al. Eur. J. Biochem., 1987, vol. 165, 99-106 [0102]
- SCHUBERT et al. J. Bacteriol., 1988, vol. 170, 5837-5847 [0103]
- LILLEY et al. Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs. American Oil Chemists Society, 1989, 497-502 [0104]
- PEDERSEN et al. J. Biol. Chem., 1986, vol. 261, 6279 [0104]
- KIRIHARA et al. Gene, vol. 71, 359 [0104]
- MUSUMURA et al. Plant Mol. Biol., 1989, vol. 12, 123 [0104]
- PENG et al. Nature, 1999, vol. 400, 256-261 [0104]
- JONES et al. Science, 1994, vol. 266, 789 [0106]
- MARTIN et al. Science, 1993, vol. 262, 1432 [0106]
- MINDRINOS et al. Cell, 1994, vol. 78, 1089 [0106]
- LEE et al. Gene, 1998, vol. 216, 55-65 [0114]
- SCHLAKE; BODE. Biochemistry, 1994, vol. 33, 12746-12751 [0114]
- HUANG et al. Nucleic Acids Research, 1991, vol. 19, 443-448 [0114]
- SADOWSKI. In Progress in Nucleic Acid Research and Molecular Biology, 1995, vol. 51, 53-91 [0114]
- COX. In Mobile DNA. American Society of Microbiology, 1989, 116-670 [0114]
- DIXON et al. Mol. Microbiol., 1995, vol. 18, 449-458
  [0114]
- UMLAUF; COX. EMBO, 1988, vol. 7, 1845-1852
  [0114]
- BUCHHOLZ et al. Nucleic Acids Research, 1996, vol. 24, 3118-3119 [0114]
- KILBY et al. Trends Genet., 1993, vol. 9, 413-421 [0114]
- ROSSANT; GEAGY. Nat. Med., 1995, vol. 1, 592-594 [0114]
- ALBERT et al. The Plant J., 1995, vol. 7, 649-659
  [0114]
- BAYLEY et al. Plant Mol. Biol., 1992, vol. 18, 353-361
  [0114]
- ODELL et al. Mol. Gen. Genet., 1990, vol. 223, 369-378 [0114]

- DALE; OW. Proc. Natl. Acad. Sci. USA, 1991, vol. 88, 10558-10562 [0114]
- QUI et al. Proc. Natl. Acad. Sci. USA, 1994, vol. 91, 1706-1710 [0114]
- STUURMAN et al. Plant Mol. Biol., 1996, vol. 32, 901-913 [0114]
- DALE et al. Gene, 1990, vol. 91, 79-85 [0114]
- SENECOLL et al. J. Mol. Biol., 1988, vol. 201, 406-421 [0115]
- VOZIYANOV et al. Nucleic Acid Research, 2002, vol. 30, 7 [0115]
- ALBERT et al. The Plant Journal, 1995, vol. 7, 649-659 [0115]
- SAUER. Current Opinion in Biotechnology, 1994, vol. 5, 521-527 [0116]
- SADOWSKI. FASEB, 1993, vol. 7, 760-767 [0116]
- ESPOSITO et al. Nucleic Acid Research, 1997, vol. 25, 3605-3614 [0117]
- ABREMSKI et al. Protein Engineering, 1992, vol. 5, 87-91 [0117]
- KUHSTOSS et al. J. Mol. Biol., 1991, vol. 20, 897-908
  [0117]
- MASKHELISHVILI et al. Mol. Gen. Genet., 1993, vol. 237, 334-342 [0117]
- TANAKA et al. Gene, 1998, vol. 17, 67-76 [0117]
- COX. Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 80, 4223-4227 [0118]
- BUCHHOLZ et al. Nat. Biotechnol., 1998, vol. 16, 617-618 [0118] [0119]
- HARTUNG et al. J. Biol. Chem., 1998, vol. 273, 22884-22891 [0118]
- SAXENA et al. Biochim Biophys Acta, 1997, vol. 1340 (2), 187-204 [0118]
- HARTLEY et al. Nature, 1980, vol. 286, 860-864 [0118]
- GUO et al. Nature, 1997, vol. 389, 40-46 [0119]
- ABREMSKI et al. J. Biol. Chem., 1984, vol. 259, 1509-1514 [0119]
- CHEN et al. Somat. Cell Mol. Genet., 1996, vol. 22, 477-488 [0119]
- SHAIKH et al. J. Biol. Chem., 1977, vol. 272, 5695-5702 [0119]
- CROSSWAY et al. Biotechniques, 1986, vol. 4, 320-334 [0130]
- **RIGGS et al.** *Proc. Natl. Acad. Sci. USA,* 1986, vol. 83, 5602-5606 [0130]
- PASZKOWSKI et al. EMBO J., 1984, vol. 3, 2717-2722 [0130]
- TOMES et al. Plant Cell, Tissue, and Organ Culture: Fundamental Methods. Springer-Verlag, 1995 [0130]
- MCCABE et al. Biotechnology, 1988, vol. 6, 923-926
  [0130]
- WEISSINGER et al. Ann. Rev. Genet., 1988, vol. 22, 421-477 [0130]
- SANFORD et al. Particulate Science and Technology, 1987, vol. 5, 27-37 [0130]

- CHRISTOU et al. Plant Physiol., 1988, vol. 87, 671-674 [0130]
- MCCABE et al. Bio/Technology, 1988, vol. 6, 923-926 [0130]
- FINER ; MCMULLEN. In Vitro Cell Dev. Biol., 1991, vol. 27P, 175-182 [0130]
- SINGH et al. Theor. Appl. Genet., 1998, vol. 96, 319-324 [0130]
- DATTA et al. Biotechnology, 1990, vol. 8, 736-740
  [0130]
- KLEIN et al. Proc. Natl. Acad. Sci. USA, 1988, vol. 85, 4305-4309 [0130]
- KLEIN et al. Biotechnology, 1988, vol. 6, 559-563
  [0130]
- KLEIN et al. Plant Physiol., 1988, vol. 91, 440-444
  [0130]
- FROMM et al. *Biotechnology*, 1990, vol. 8, 833-839 [0130]
- HOOYKAAS-VAN SLOGTEREN et al. Nature, 1984, vol. 311, 763-764 [0130]
- BYTEBIER et al. Proc. Natl. Acad. Sci. USA, 1987, vol. 84, 5345-5349 [0130]
- **DE WET et al.** The Experimental Manipulation of Ovule Tissues. Longman, 1985, 197-209 [0130]
- **KAEPPLER et al.** *Plant Cell Reports,* 1990, vol. 9, 415-418 [0130]
- KAEPPLER et al. Theor. Appl. Genet., 1992, vol. 84, 560-566 [0130]
- D'HALLUIN et al. Plant Cell, 1992, vol. 4, 1495-1505
  [0130]
- LI et al. Plant Cell Reports, 1993, vol. 12, 250-255
  [0130]
- CHRISTOU; FORD. Annals of Botany, 1995, vol. 75, 407-413 [0130]
- OSJODA et al. Nature Biotechnology, 1996, vol. 14, 745-750 [0130]
- PORTA et al. Molecular Biotechnology, 1996, vol. 5, 209-221 [0131]
- CROSSWAY et al. Mol Gen. Genet., 1986, vol. 202, 179-185 [0132]
- NOMURA et al. Plant Sci., 1986, vol. 44, 53-58
  [0132]
- HEPLER et al. Proc. Natl. Acad. Sci., 1994, vol. 91, 2176-2180 [0132]
- HUSH et al. The Journal of Cell Science, 1994, vol. 107, 775-784 [0132]
- MCCORMICK et al. Plant Cell Reports, 1986, vol. 5, 81-84 [0133]
- JONES et al. EMBO J., 1985, vol. 4, 2411-2418
  [0148]
- DE ALMEIDA et al. *Mol. Gen. Genetics,* 1989, vol. 218, 78-86 [0148]
- GUERINEAU et al. Mol. Gen. Genet., 1991, vol. 262, 141-144 [0151]
- **PROUDFOOT.** *Cell,* 1991, vol. 64, 671-674 [0151]
- SANFACON et al. Genes Dev., 1991, vol. 5, 141-149 [0151]

- MOGEN et al. Plant Cell, 1990, vol. 2, 1261-1272
  [0151]
- MUNROE et al. Gene, 1990, vol. 91, 151-158 [0151]
- BALLAS et al. Nucleic Acids Res., 1989, vol. 17, 7891-7903 [0151]
- JOSHI et al. Nucleic Acids Res., 1987, vol. 15, 9627-9639 [0151]
- BORONAT, A. et al. *Plant Sci.*, 1986, vol. 47, 95-102 [0156]
- REINA, M. et al. Nucl. Acids Res., vol. 18 (21), 6426
  [0156]
- KLOESGEN, R. B. et al. Mol. Gen. Genet., 1986, vol. 203, 237-244 [0156]
- SCHENA et al. Proc. Natl. Acad. Sci. USA, 1991, vol. 88, 10421-10425 [0157]
- MCNELLIS et al. Plant J., 1998, vol. 14 (2), 247-257
  [0157]
- GATZ et al. Mol. Gen. Genet., 1991, vol. 227, 229-237 [0157]
- YAMAMOTO et al. Plant J., 1997, vol. 12 (2), 255-265 [0158] [0159]
- KAWAMATA et al. *Plant Cell Physiol.*, 1997, vol. 38 (7), 792-803 [0158]
- HANSEN et al. Mol. Gen Genet., 1997, vol. 254 (3), 337-343 [0158]
- RUSSELL et al. Transgenic Res., 1997, vol. 6 (2), 157-168 [0158]
- RINEHART et al. Plant Physiol., 1996, vol. 112 (3), 1331-1341 [0158]
- VAN CAMP et al. Plant Physiol., vol. 112 (2), 525-535 [0158]
- CANEVASCINI et al. Plant Physiol., 1996, vol. 112 (2), 513-524 [0158]
- YAMAMOTO et al. Plant Cell Physiol., 1994, vol. 35 (5), 773-778 [0158] [0159]
- LAM. Results Probl. Cell Differ., 1994, vol. 20, 181-196 [0158]
- OROZCO et al. Plant Mol Biol., 1993, vol. 23 (6), 1129-1138 [0158]
- MATSUOKA et al. Proc Natl. Acad. Sci. USA, 1993, vol. 90 (20), 9586-9590 [0158]
- GUEVARA-GARCIA et al. Plant J., 1993, vol. 4 (3), 495-505 [0158]
- KWON et al. Plant Physiol., 1994, vol. 105, 357-67 [0159]
- GOTOR et al. Plant J., 1993, vol. 3, 509-18 [0159]
- OROZCO et al. Plant Mol. Biol., 1993, vol. 23 (6), 1129-1138 [0159]
- MATSUOKA et al. Proc. Natl. Acad. Sci. USA, 1993, vol. 90 (20), 9586-9590 [0159]
- SIMPSON et al. EMBO J, 1958, vol. 4, 2723-2729
  [0159]
- TIMKO et al. Nature, 1988, vol. 318, 57-58 [0159]
- HIRE et al. Plant Mol. Biol., 1992, vol. 20 (2), 207-218
  [0160]
- KELLER; BAUMGARTNER. Plant Cell, 1991, vol. 3 (10), 1051-1061 [0160]

- SANGER et al. Plant Mol. Biol., 1990, vol. 14 (3), 433-443 [0160]
- MIAO et al. Plant Cell, 1991, vol. 3 (1), 11-22 [0160]
- BOGUSZ et al. Plant Cell, 1990, vol. 2 (7), 633-641
  [0160]
- LIMERICK. Plant Science, vol. 79 (1), 69-76 [0160]
- EMBO J., vol. 8 (2), 343-350 [0160]
- KUSTER et al. Plant Mol. Biol., 1995, vol. 29 (4), 759-772 [0160]
- CAPANA et al. Plant Mol. Biol., 1994, vol. 25 (4), 681-691 [0160]
- MURAI et al. Science, 1983, vol. 23, 476-482 [0160]
- SENGOPTA-GOPALEN et al. PNAS, 1988, vol. 82, 3320-3324 [0160]
- SU et al. Biotechnol. Bioeng., 2004, vol. 85, 610-9
  [0161]
- FETTER et al. Plant Cell, 2004, vol. 16, 215-28 [0161]
- BOLTE et al. J. Cell Science, 2004, vol. 117, 943-54 [0161]
- KATO et al. Plant Physiol., 2002, vol. 129, 913-42
  [0161]
- CAMPBELL ; GOWRI. Plant Physiol., 1990, vol. 92, 1-11 [0162]
- MURRAY et al. Nucleic Acids Res., 1989, vol. 17, 477-498 [0162]
- KUNKEL. Proc. Natl. Acad. Sci. USA, 1985, vol. 82, 488-492 [0168]
- KUNKEL et al. Methods in Enzymol., 1987, vol. 154, 367-382 [0168]
- Techniques in Molecular Biology. MacMillan Publishing Company, 1983 [0168]
- DAYHOFF et al. Atlas of Protein Sequence and Structure. Natl. Biomed. Res. Found, 1978 [0168]
- STEMMER. Proc. Natl. Acad. Sci. USA, 1994, vol. 91, 10747-10751 [0171]
- STEMMER. Nature, 1994, vol. 370, 389-391 [0171]
- CRAMERI et al. Nature Biotech., 1997, vol. 15, 436-438 [0171]
- MOORE et al. J. Mol. Biol., 1997, vol. 272, 336-347
  [0171]
- ZHANG et al. Proc. Natl. Acad. Sci. USA, 1997, vol. 94, 4504-4509 [0171]
- CRAMERI et al. Nature, 1998, vol. 391, 288-291 [0171]
- HIGGINS ; SHARP. CABIOS, 1989, vol. 5, 151-153
  [0177] [0178]
- HIGGINS et al. Comput Appl Biosci, 1992, vol. 8, 189-191 [0177] [0178]
- HENIKOFF ; HENIKOFF. Proc. Natl. Acad. Sci USA, 1989, vol. 89, 10915 [0181]
- NEEDLEMAN; WUNSCH. J. Mol. Biol., 1970, vol. 48, 443-453 [0182]
- GANAL, M. et al. A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome. *PloS one*, 08 December 2011 [0206]

- GANAL, M. et al. PloS one, 2011 [0207] [0208] [0209]
- SONG, Q et al. PloS one, 2013, vol. 8 (1), e54985
  [0237]