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Overview

In the European Union and Canada, there are ongoing debates about deregulating organisms derived from 
methods of new genetic engineering (New GE, also called genome editing or new genomic techniques). 

Proposals to exempt genome editing from government regulation of genetically modified organisms (GMOs) 
largely rest on assumptions about similarities between genome editing and conventional plant breeding that 
are not supported by scientific findings. These assumptions have led to the impression that there are no new 
and specific risks caused by New GE as compared to conventional breeding. 

Genome editing has the unprecedented power to make large parts of the genome accessible to change, by over-
riding the natural mechanisms of genome organization such as repair mechanisms or backup genes. Thereby, 
New GE techniques can cause pervasive changes in the genome of plants and animals, without inserting addi-
tional ‘foreign’ genes. These processes are also known to result in unintended effects, especially if ‘gene scissors’ 
(site directed nucleases or SDNs) such as CRISPR/Cas are applied. Both intended and unintended genetic 
changes can go far beyond what was seen in applications of previous methods. Many potential intended and 
unintended effects are specific to the techniques of New GE and may result in a new quality of risks that de-
mand independent and mandatory risk assessment. 

If these findings are overlooked in regulation, the introduction of New GE organisms will endanger ecosystems 
and food safety. 

2. Differences in patterns of mutations used in conventional 
breeding compared to New GE

For the first time, genome editing makes large parts of the genome of many species accessible to change 
(via targeted mutations) (Kawall, 2019). The CRISPR/Cas techniques can override the natural mechanisms 
in genome organisation that protect essential genes (Belfield et al., 2018; Frigola et al., 2017; Halstead et 
al., 2020; Kawall, 2019; Monroe et al., 2022). As a result, novel genotypes and biological characteristics 
can emerge from applications of this technology. These observations are relevant to both intended and 
unintended effects. 

For example, it is now shown that genes essential for the survival of species are more frequently repaired by 
natural mechanisms in the cells, compared to others, i.e. they are more protected from mutation (Huang & 
Li, 2018; Belfield et al., 2018; Monroe et al., 2022). In addition, both the structure of the chromosomes and 
the location of the genes influence the rate of mutations (Halstead et al., 2020; Monroe et al., 2022). Further-
more, gene duplications play a major role, in particular, in the genome of plants (Wendel et al., 2016; Gaines 
et al., 2019). Biological characteristics, such as herbicide resistance in weeds, can be fostered through gene 
duplication (Gaines et al., 2019) and backup functions established (Jones et al., 2017). These and other recent 
findings are challenging the classical evolutionary theory that mutations occur randomly, irrespective of their 
consequences for the organism (e.g. fitness costs). 

On the other hand, if a site directed nuclease (e.g. CRISPR/Cas9 or TALENs) is designed to cut a specific 
DNA sequence, it will cut the same sequence again if the cell’s own repair mechanism repairs it correctly. 
Such a nuclease will likely continue to cut until the intended incorrect repair is achieved and no more target 
sequence is available (Brinkman et al., 2018). Whilst this will result in high efficiency of cutting and mutat-
ing/changing of target sites, the same may be true for non-target sites with similar DNA sequences. Such 
changes would be unlike any other random mutations, as they would also override the cell’s own protective 
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mechanisms, as well as potentially alter not just a single copy of a non-target gene, but several or all copies (de-
pending on plant species and degree of ploidy). This is something that would not happen with conventional 
breeding, including with chemical or radiation-induced mutagenesis. 

As a result, tools like CRISPR/Cas can prevent the cells from restoring the original function of the gene; they 
can also override other natural protection mechanisms (Kawall, 2019). In addition, CRISPR/Cas can also 
block the function of all the ‘backup’ copies of a target gene, of which there can be several in the genome 
of plants. 

Thus, the techniques used for New GE can not only escape the boundaries of species, but also those of nat-
ural genome organisation (which impacts the rate and the distribution of mutations by repair mechanism 
and genomic factors such as several copies of one gene etc.). This persistence and overriding of the cell’s own 
protective mechanisms makes genome editing a novel technology with novel capacities and consequences 
unlike any other. The resulting organisms do not have a history of safe use (see Figure 1), and their safety must 
therefore be assessed. 

In this context, it is not the number of changes per se that needs to be taken into account, but the pattern of 
changes and the genotypes and phenotypes resulting from these intended and unintended changes. These basic 
differences between plant breeding and genetic engineering are overlooked in many publications that try to 
examine the risks of unintended effects (see, for example, Schnell et al., 2015; Holme et al., 2019). 

Figure 1: An historical perspective on the differences between plant breedting and genetic engineering.



Unintended effects caused by techniques of new genetic engineering create a new quality of hazards and risks
3. Unintended effects caused by the processes of New GE     

6 |   

3. Unintended effects caused by the processes of New GE

The differences between New GE and conventional breeding are relevant to several layers of the discussion 
about risks of the organisms derived thereof: 

There are intended traits, produced without the insertion of additional ‘foreign’ genes (also called SDN-1 
processes), such as changes in oil content (Morineau et al., 2017), protein composition (Sanchez-Leon et al., 
2018), sugar concentration (Kannan et al., 2018), plant architecture (Shen et al., 2017), harvesting (Roldan et 
al., 2017) or biological active plant constituents such as GABA (Nonaka, et al., 2017), which go far beyond 
what is achieved by conventional breeding (for an overview, also see Kawall, 2021a). These new intended GE 
traits are the result of specific patterns of genetic changes introduced by ‘gene scissors’ such as CRISPR/Cas. 
Just as is the case with transgenic plants, such patterns are unlikely to result from random mutations and 
conventional breeding methods. 

In addition, there are also unintended genetic alterations in the target region (on-target effects) or in other 
genomic regions (off-target effects) that are specific to gene scissors such as CRISPR/Cas and add a new quality 
of hazards and risks. For example, larger structural genomic changes such as translocations, deletions, duplica-
tions, inversions and scrambling of chromosomal sequences can occur near the SDN target site (as well as at 
the SDN target site). This has not only been shown to occur in mammalian cells, but also in New GE plants 
(see e.g., Hahn & Nekrasov 2019). 

In brief, there are three aspects of unintended genetic or epigenetic alterations that should be fully addressed 
together as relevant to risk assessment (see, for example, Kawall et al., 2020; Kawall 2021a; Eckerstorfer et al., 
2021; Yang et al., 2022) but are not addressed by several experts (see, for example, Schnell et al., 2015; Holme 
et al., 2019):

1. Quantity: how many (unintended) alterations are being induced;

2. Quality: this relates to, and depends on, the genomic sites where unintended alterations occur, which 
genes are unintentionally altered (DNA sequence as well as epigenetic changes), and which regulatory 
elements and mechanisms might be altered;

3. The type of (unintended) induced alterations: are they point mutations, small insertions or deletions 
(InDels), larger structural changes such as inversions, translocations, deletions duplications, etc.

Findings of a broad range of unintended effects caused by CRISPR/Cas have already been published. Several 
publications describe how CRISPR/Cas causes unintended changes, including off-target effects, on-target 
effects and chromosomal rearrangements (Kosicki et al., 2018; Lalonde et al., 2017; Kapahnke et al., 2016, 
Haapaniemi et al., 2018; Wolt et al., 2016; Cho et al., 2014; Sharpe & Cooper, 2017; Adikusuma et al., 2018; 
Kosicki et al., 2020; Biswas et al., 2020; Tuladhar et al., 2019; Ono et al., 2019; Leibowitz et al., 2021; Skryabin 
et al., 2020; Weisheit et al. 2020; Michno et al., 2020; Norris et al., 2020; Grunewald et al., 2019; Burgio & 
Teboul, 2020; Liu et al., 2021). These unintended changes can cause a variety of unwanted effects. For example, 
the integrity of a non-target gene may be compromised if its coding region is cleaved by CRISPR/Cas (e.g. 
cleavage at off-target-sites). This could lead to changes in the metabolism of the organism that could affect its 
safety for human health and the environment. Such effects are highly dependent on the genomic context with-
in which such unintended alterations occur (e.g. within a gene, loss of function mutations; outside of genes, 
unintended alterations in promoters could alter gene expression).

In addition, genome editing is a multi-step process, with inherent and specific risks independent of the 
purposed traits. For example, in plants, New GE typically makes use of the older genetic engineering (‘Old 
GE’) such as non-targeted methods like Agrobacterium transformation to deliver the DNA for the nuclease 
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(‘gene scissors’) into the cells. Thus, in most cases, the result of the first step of the CRISPR/Cas application 
is a transgenic plant. Only at the end of the multistep process is breeding applied in order to remove the 
transgenic elements from the plant’s genome. 

At each stage of the process – including (i) insertion of the DNA of the gene scissors into the cells, (ii) target 
gene recognition and cutting, and (iii) cellular repair of the genes – specific unintended alterations can occur, 
with associated risks (for an overview, see Kawall et al., 2020). For example, alterations caused by the non-tar-
geted insertion of transgenic elements in the first step of the process may remain in the plants and impact 
safety, even if the transgenic elements are removed by further breeding at the end of the process. In this context, 
there are a number of publications reporting unintended effects arising from the application of ‘Old GE’ (see, 
for example, Liu et al., 2019; Gelvin et al., 2017; Forsbach et al., 2003; Jupe et al., 2019; Makarevitch et al., 
2003; Windels et al., 2003; Rang et al., 2005). 

The following will discuss why many of these unintended changes should be considered as specific to the pro-
cesses of New GE and understood to go along with a new quality of hazards and risks. 

a) Unintended on-target genetic changes 
As mentioned, there are patterns of genetic changes that are caused by ‘gene scissors’ such as CRISPR/Cas that 
result in the generation of new traits that go beyond what is achieved by previous methods. This is illustrated, 
for example, in an experiment where wheat is genetically engineered to produce less gluten (Sanchez-Leon et 
al., 2018). This example is also highly relevant to the discussion about unintended on-target effects: Gluten is 
suspected to cause inflammations (coeliac disease). It is known that alpha-gliadene peptides contribute to the 
overall concentration of gluten in bakery products. In the case of this wheat, 35 out of 45 targeted alpha-glia-
dine genes were altered by CRISPR/Cas (SDN-1) to reduce gluten in food products. 

This may appear to be a successful and precise application of the gene scissors, however, the changes lack 
sufficient predictability: There are many different types of insertions and/or deletions that are specific to each 
of the targeted genes. Also, in some cases, additional DNA was inserted into the target site (see Figure 2). 
Consequently, the European Food Safety Authority came to the conclusion that, in this case, the intended 
and unintended changes at the target sites pose new challenges for risk assessment: “(…) the large number of 
mutations required to achieve gluten-free wheat is far beyond any plant previously assessed. This is likely to require 
SynBio approaches to correctly identify all gliadins and glutenins in the hexaploid genome of bread wheat and to 
identify an engineering strategy that introduced mutations of the correct nature and positions in each gene to prevent 
the accumulation of any peptide fragments associated with initiation of the inflammatory cascade” (EFSA, 2021).

This case shows that, even where changes are ‘successfully’ introduced in the target genes, complex questions 
in regards to the safety of these plants need to be considered: Each and every targeted genetic site needs to un-
dergo a detailed examination to determine if the alpha-gliadine proteins are still produced, or if new proteins 
are produced unintentionally, or if any other unintended effects may occur. It is clear that such unintended 
variations of genetic changes caused by New GE go along with a new quality in hazards and risks, even if no 
off-target genetic changes are identified. 
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In addition, specific unintended on-target effects often include integration of DNA from vector DNA derived 
from transformation processes, where, for example, bacterial DNA was unexpectedly integrated (e.g. Li et 
al., 2015; Andersson et al., 2017; Zhang et al., 2018). In animal cells, it was found that unintentional inserted 
foreign DNA fragments may not only be derived from the vector construct (Norris et al. 2020), but may also 
be derived from the genome of the bacteria that is used to multiply the vector DNA (e.g. Escherichia coli) or, 
surprisingly, taken up from the source of the growth medium, such as bovine or goat DNA, or retrotransposon 
(Ono et al., 2015, 2019). Overall, the CRISPR/Cas9 system has been confirmed to have a high frequency of 
integration into the target site, resulting in large deletions in target sites (Lee et al., 2019; Yang et al., 2022).

Figure 2: Wheat with reduced concentration  
in gluten: 

35 out of 45 gene copies were altered, each one 
containing an individual type of insertion and/
or deletion. Each individually induced alteration 
can lead to frame shift mutations, causing the 
formation of unintended peptide fragments. 
While some of these changes might also occur 
without the application of CRISPR/Cas, it is 
the unique combination of these genetic chang-
es in one plant that creates a new quality in risk 
hazards and risks. 
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b) Unintended off-target genetic changes 

The CRISPR/Cas machinery is particularly known for its potential to confuse target regions with specific 
off-target regions, in addition to causing unintended insertion of additional genes, decoupling of genes and 
other specific genomic alterations (of categories such as inversions, deletions or rearrangements) that are un-
likely to emerge from spontaneous mutations or physical and chemical mutagenesis (see, for example, Biswas 
et al., 2020; Braatz et al., 2017; Höijer et al., 2022; Kawall et al., 2020). In some cases, unusual patterns of 
inheritance have also been observed, thus escaping the Mendelian rules (Höijer et al., 2022; Yang, et al., 2022). 

As a result, similar to the case with on-target genetic changes, off-target effects can also cause patterns of ge-
netic changes that go beyond what can be achieved by conventional breeding, resulting in specific and hazards 
and risks of a new quality. Yang et al. (2022) give some overview of irregular genetic changes and specific 
unintended effects caused by intrinsic factors of the CRISPR/Cas9 systems in plants. These include off-target 
DNA cleavage, repetitive unit deletion, and indels of various sizes (Zhang et al. 2014; Chakrabarti et al., 2019; 
Manghwar et al. 2020; Molla and Yang 2020; Kapusi et al., 2017). In this context, for example, the dosage of 
CRISPR/Cas9 complexes in cells expressed can result in a significant increase in off-target mutation frequency 
(Ordon et al., 2017; Zhang et al., 2018). 

Some of these unintended effects (on-target and off-target) are summarized in Figure 3. 

Figure 3: Overview of some types of unintended on-target and off-target changes caused by SDN-1 processes that can result 
in specific effects and create new quality in hazards and risks.

Normal protein 

No protein Wrong protein 

No proteins 
but biologically 
active molecules 
(RNA)

Specific unintended effects can occur on-target and off-target (SDN-1)

unsuccessful editing incorrect cutting (on-target or off-target)

Unintended effects such 
as deletions and 
insertions that may be 
unlikely to occur at 
random

cutting on-target 
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c) Unintended metabolic and physiological effects 
The mechanisms and findings presented above are mostly related to changes at the level of DNA and potential 
gene products emerging from the specific genomic sites. Additionally, unintended metabolic and physiological 
effects can occur that are relevant to the interaction of New GE organisms with the environment. 

As Table 1 shows, there are unintended effects observed in numerous species, both plants and animals. The 
unintended metabolic and physiological effects may be caused by intended or unintended genetic changes as 
discussed above. Some of these effects are known from conventional breeding (such as costs of MLO resist-
ance), however, the genotypes and effects (intended or unintended) caused by New GE go beyond what is 
achieved by previous methods (see Kawall, 2021a). 

Table 1: Select examples of unintended metabolic and physiological effects observed in plants and animals genetically engi-
neered with CRISPR/Cas, with hypothesized risks. 

Species Intended trait Unintended metabolic and physiological effects and 
hypothesized risks

Wheat Mildew resistance (MLO) Growth aberration, accelerated senescence, induced necrosis, in-
creased susceptibility to other fungal pathogens. (Spanu, 2022)

Wheat Decreased acrylamide 
content

Reduced growth and germination rate, potentially increased  
susceptibility to fungal plant pathogens. (Raffan et al., 2021) 

Camelina Altered oil quality Weakened defense mechanisms against biotic (pathogens) or abiotic 
(climate change) stressors. (Kawall 2021b)

Tomato Enhanced GABA content The changes in plant composition may also cause unintended health 
effects at the stage of consumption. Furthermore, unexpected reac-
tions of the plants to environmental stress conditions are not unlikely. 
(Nonaka et al., 2017)

Tomato Accelerated domestication Differences in plant composition are observed in comparison to 
previously bred tomatoes. These differences may also impact health at 
the stage of consumption. (Zsögön et al., 2018)

Rice Improved salinity  
tolerance

Enhanced invasiveness might occur in weedy rice after hybridisation. 
(Zhang et al., 2018)

Sea bream Faster weight gain Skeletal disorders (such as abnormal position of vertebra), which are 
not unlikely to impact animal welfare. (Kishimoto et al., 2018)

Unintended effects such as those listed in Table 1 could have serious adverse impacts on the environment, plant 
health, agricultural yield, pesticide use, animal welfare and/or food safety. If grown in fields, the interactions 
between New GE organisms and the environment, including pests, pathogens, climatic conditions, etc. adds 
further complexity and risk.

These unintended effects are the result of interactions in the complex networks of genes, proteins and other 
biological active molecules. Such unintended metabolic and physiological effects can also emerge in cases when 
genetic intervention is targeted and precise. 
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4. Systemic risks

Because techniques such as CRISPR/Cas escape the mechanisms of natural genome organisation, the resulting 
organisms need to be considered as being different to those plants and animals derived from conventional 
breeding and physical or chemical mutagenesis. As explained above, both intended and unintended effects 
from the processes of New GE can result in genotypes and phenotypes which, in comparison to conventionally 
bred plants, are as unlikely to occur as those resulting from the insertion of ‘foreign’ genes for the production 
of Bt toxins, for example. 

Therefore, New GE plants cannot be equated with plants adapted by evolutionary processes and cannot be 
regulated like all other food plants, based on the intended new characteristic(s). Instead, the processes by which 
new characteristics are introduced into organisms need to be taken into account, to examine all intended and 
unintended effects and their possible related hazards and risks (Kawall et al., 2020).

More generally, traditional breeding cannot largely or wholly be replaced by New GE because the use of these 
genomic techniques will be accompanied by so many risks, uncertainties and unknowns. The release of ge-
netically engineered organisms cannot be regarded as being neutral because of the risks posed to biodiversity, 
animal welfare, conventional and organic agriculture, traditional food production systems, and human health 
and food safety. Plants that have not adapted via evolutionary processes can disturb or interrupt ecological 
networks in many ways. 

Decision making over the use of genetic engineering and the introduction of plants and animals derived 
from Old or New GE should, therefore, be guided by the precautionary principle, to prevent ecosystems 
and food systems from being flooded with too many risks, uncertainties and unknowns within a short pe-
riod of time (and expanding over time). The potential to scale uncertainty and harm is a specific feature of 
New GE where it is possible to make biological changes at large geographical scales and across many species 
(Heinemann et al., 2021).

As with the need to reduce the use of plastics and toxics such as pesticides, there is a need to restrict the in-
troduction of organisms with human-made genetic design into the environment. Environmental problems 
created by the release of GE organisms may last as long as, or longer than, those from plastics and pesticides, 
with impacts on many future generations. 

Consequently, not only the risks associated with individual GE organisms, but also the systemic risks and 
potentially disruptive effects of using New GE need to be taken into account. Therefore, a comprehensive and 
prospective technology assessment needs to be conducted to address systemic and long-term risks. This is espe-
cially relevant if, within a short period of time, many of these genetically engineered organisms are introduced 
into the environment, agro-ecosystems and food systems. 
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5. Conclusion: The need for precautionary regulation 

There is increasing evidence that the intrinsic factors of the New GE techniques deserve much more atten-
tion from regulators. For example, according to Yang et al. (2022), “mutation locations and scales, potential 
off-target modifications, complexity of the introduced changes, and novelty of the developed traits” make it nec-
essary to apply “rigorous research on genome-editing applications and reliable techniques for risk assessments of 
genome-edited plants”.

Kawall (2021a), in investigating the generic risks that go along with the application of the CRISPR/Cas ma-
chinery, concludes, “In summary, this review here shows that about half of the market-oriented plants developed 
by SDN-1 applications contain complex alterations in their genome (i.e., altering multiple gene variants or using 
multiplexing). It also illustrates that data on both the process- and the end-product are needed for a case-by-case risk 
assessment of genome edited plants. The broad range of genetic alterations and their corresponding traits reflects how 
diverse and complex the requirements are for such a risk assessment.”

Eckerstorfer et al. (2021) come to a similar conclusion: “To this end, we suggest that two sets of considerations 
are considered: (1) trait related-considerations to assess the effects associated with the newly developed trait(s); and 
(2) method-related considerations to assess unintended changes associated with the intended trait(s) or with other 
modifications in the GE plant. (…) Based on these considerations, further guidance should be developed to ensure 
the high safety standards provided by the current regulatory framework for GMOs in the EU for GE plants in an 
adequate and efficient way, taking into account the existing knowledge and experience in a case-specific manner. 
This guidance should thus strengthen the case-specific approach that is recommended by numerous EU and Member 
States institutions.” 

The unintended effects that can result from the use of New GE techniques cannot be overlooked without 
jeopardizing environmental and food safety. Instead, all New GE organisms need to be subject to mandatory, 
independent government risk assessment before release into the environment or market. 

Furthermore, the use of New GE technology in agriculture requires comprehensive and prospective technol-
ogy assessment to address systemic risks. In accordance with the precautionary principle, such technology 
assessment should also rely on in-depth consideration of the need for the technology and the alternatives 
that could be made available. This technology assessment should be conducted with the participation of the 
public and affected communities, for example in consultation with farmers.

Without precautionary regulation of new GE:

 › large numbers of genetically engineered organisms can be expected to be released in an uncontrolled way 
within a short period of time;

 › the risks of serious damage to biological diversity, ecosystems and agricultural systems will increase; 

 › access to data needed for risk assessment by independent experts would not be available; 

 › no information would be available to track and trace the New GE organisms and food products derived 
from them; 

 › human health effects may be introduced and could accumulate unnoticed in the food system; 

 › few measures would be available to mitigate the uncontrolled spread of these organisms in the envi-
ronment; 

 › organic and other GE-free food and farming could no longer be protected from GE contamination.
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