# **TESTBIOTECH Background 29 - 06 - 2018**

# Genome Editing: Increasing monopolisation in agriculture and breeding

Patents can also impact conventional breeding

Christoph Then & Ruth Tippe

In the discussion concerning new methods of genetic engineering, several experts are of the opinion that these new technologies are cheaper than previous genetic engineering methods and, therefore, more affordable for smaller companies and not just for the biotech giants. However, this overlooks the fact that the new methods using nucleases, such as CRISPR-Cas9, are patented in the same way as manipulated plants and animals.

### Patents on the basics of CRISPR technology

Companies, such as Bayer, Monsanto and DuPont, have long since had contracts with the DNAscissor inventors from the Broad Institute, which cooperates with the Massachusetts Institute for Technology, MIT & Harvard University and the University of California, to use their patents. These US institutions have already filed many more than 100 patent applications on the technology and its applications for plants, animals and humans. Several of them already have been granted in Europe (such as EP2800811 B1, EP3241902 B1).

| Company   | Cooperation with                     |
|-----------|--------------------------------------|
| Bayer     | ERS Genomics and CRISPR Therapeutics |
| DowDupont | University of California / Caribou   |
| Monsanto  | Broad Institute                      |
| Syngenta  | Broad Institute                      |

#### Table 1: Overview of patent cooperation between seed giants and the developers of CRISPR technology

#### Patents on genome editing and applications for food plants

Companies file further patents for specific applications in plant breeding. For example, Bayer, Monsanto and DowDuPont have filed their own patents on nucleases, their uses and the resulting manipulated plants. In many cases, these patent applications reveal that the new methods are just a tool for following old strategies. For example, the nucleases are used simply to produce additional herbicide resistant or insecticidal plants. Such patent applications comprise the majority of those filed by Bayer in this context. Old ideas are being dressed up as inventive innovations through new methods of genetic engineering: Bayer as well as DowDupont and Monsanto have been filing patents on glyphosate- resistant plants that are engineered with the help of CRISPR technology. These patents can be used to build up new patent monopolies to protect the core business of the agrochemical companies i.e. genetically engineered herbicide-resistant soybeans, maize, oilseed rape and cotton. This is a very specific application of the so-called innovation principle and could be seen as an attempt to dress up old ideas in new packaging.

There are also patent applications that are more specific to the new methods of genetic engineering: For example, DowDuPont as well as Monsanto have filed for patents on naturally occurring DNA



Testbiotech e. V. Institute for Independent Impact Assessment in Biotechnology sequences in plant genomes that are supposedly particularly suitable for nuclease applications. Other patent applications are for e.g. changed growth, changed plants composition, resistance to plant diseases or specific technical variations in the application of nucleases. Most of these patents cover the methods as well as the seeds, the plants and in many cases also the harvest.

Bayer in particular has been cooperating with other companies, such as Cellectis (which is closely connected to Calyxt that wants to market some CRISPR plants soon), as well as CRISPR Therapeutics. Bayer has a particular interest here - CRISPR Therapeutic. One of the inventors of CRISPR Cas9 and a founder of CRISPR Therapetic, Emmanuelle Charpentier, will hand over all applications for use on plants and animals in the agricultural sector exclusively to the company for further use.

| Patent number | Company               | Content                                                                                                                                               |  |  |  |  |
|---------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| WO2014161821  | Bayer                 | Use of nucleases for production of transgenic plants                                                                                                  |  |  |  |  |
| WO2017158126  | Bayer                 | Male sterility / CMS                                                                                                                                  |  |  |  |  |
| WO2018054911  | Bayer                 | Use of nucleases for production of transgenic plants such as those showing glyphosate resistance                                                      |  |  |  |  |
| WO2017062855  | Monsanto              | New CRISPR tools and plants and animals (respectively their cells) being engineered with                                                              |  |  |  |  |
| WO2018035354  | Monsanto              | Using CRISPR and other tools & methods to bring about changes in structure and growth in order to increase yield.                                     |  |  |  |  |
| WO2018064516  | Monsanto              | Sites in the genome of plants especially suitable for insertion of additional DNA using nucleases.                                                    |  |  |  |  |
| WO2014039702  | DowDuPont             | Soybeans with altered oil composition                                                                                                                 |  |  |  |  |
| WO2015066634  | DowDuPont             | Sites in the genome of soybean plants especially suitable for insertion of additional DNA using nucleases.                                            |  |  |  |  |
| WO2017132239  | DowDuPont             | Maize with changes in quality of starch ('waxy maize')                                                                                                |  |  |  |  |
| WO2017222779  | DowDuPont             | Causing double stranded breaks to promote new recombinations of<br>parts of chromosomes that would not be likely to occur in<br>conventional breeding |  |  |  |  |
| WO2014141147  | Cellectis /<br>Calyxt | Soybeans with altered oil composition                                                                                                                 |  |  |  |  |
| WO2018035456  | Cellectis /<br>Calyxt | Black-spot resistant potatoes                                                                                                                         |  |  |  |  |
| WO2018092072  | Cellectis /<br>Calyxt | Changes in composition of amino acids through frameshift manipulation                                                                                 |  |  |  |  |

Table 2: Some examples of patent applications on food plants and applications for CRISPR-Cas

# Impact on the seed market

The patents will allow the influence of the large seed companies to expand further - and also promote concentration in this business sector. Currently, just three companies, Monsanto, DuPont (now merged with Dow AgroSciences) and Syngenta, control around 50% of the international seed market. Of these DowDuPont is leading by around 50 international patent applications for genome editing and plants (filed at the WIPO in Geneva), and is followed by 'Baysanto' with around 30 applications. Cellectis and its subsidiary Calyxt, which cooperated with Bayer, is registered with more than 20 applications. Further applicants are Syngenta and BASF. Very few patents have been filed by traditional breeding companies, such as Rijk Zwaan and KWS.

There was a similar situation around 20 years ago when quite a number of companies attempted to make a profit from the genetic engineering of plants. The only survivors from this era are those companies that had enough money to hire the best patent attorneys and filed numerous patents. Experience shows that in a scenario dominated by patents, small and medium sized breeders cannot survive in the long-term – contrary to situation within plant variety protection law.



Figure: Number of international patent applications (WIPO /WO) in the food plant sector and genome editing per company (2008-June 2018).

### Patents on livestock

This development will also affect animal breeding. Genus, one of the largest companies in the livestock breeding sector, has already announced that it intends to use animals produced with geneediting technology, and is in cooperation with Recombinetics, a company that has already filed around a dozen patents on pigs and cattle.

 Table 3: Examples of patents filed by Recombinetics (USA) for livestock genetically engineered with nucleases, such as CRISPR-Cas

| Application Number | Claims                                                                     |  |  |  |
|--------------------|----------------------------------------------------------------------------|--|--|--|
| WO 2012116274      | Methods using nucleases to increase muscle growth in cattle and pigs.      |  |  |  |
| WO 2013192316      | Methods using nucleases to increase muscle mass in certain cattle; and     |  |  |  |
|                    | produce hornless cattle.                                                   |  |  |  |
| WO 2014070887      | Livestock that do not reach sexual maturity and can be fattened for        |  |  |  |
|                    | longer. Farmers cannot use these animals for breeding.                     |  |  |  |
| WO 2014110552      | Hornless cattle for natural and synthetic genetic applications.            |  |  |  |
| WO 2015168125      | Animals with multiple genetic changes.                                     |  |  |  |
| WO2055030881       | Applications of nucleases (TALEN) and resulting animals. Amongst           |  |  |  |
|                    | others, pigs, cattle, horses, fish, dogs, cats and primates are claimed.   |  |  |  |
| WO 2017062756      | Male sterility in livestock as well as wild populations.                   |  |  |  |
| WO2017040695       | Selection of genetic variants in cattle such as polled, climate adaptation |  |  |  |
|                    | and fertility and other related usages.                                    |  |  |  |

## Impact on conventional breeding

These developments can have serious implications for conventional breeding: the patents not only cover technical processes, but also plants and animals and their breeding characteristics. The so-called 'absolute product protection' is applied here: these patents cover all plants and animals as described in the patent claims, no matter whether genetic engineering (such as genome editing) or conventional breeding was used to produce them. For example, if a lettuce is made resistant to aphids, such a patent can cover both the plants manipulated with CRSIPR-Cas as well as those derived from conventional breeding. This means that the prohibitions on the patenting of conventional breeding as foreseen by law can be circumvented.

| Patent number | Company       | Content                                                                                                    |
|---------------|---------------|------------------------------------------------------------------------------------------------------------|
| WO 2014110552 | Recombinetics | Hornless cattle for natural and synthetic genetic applications.                                            |
| WO2017040695  | Recombinetics | Selection of genetic variants in cattle such as polled, climate adaption and fertility and related usages. |
| WO2017044744  | Monsanto      | Mildew resistance in maize                                                                                 |
| WO2017106731  | Monsanto      | Northern leaf blight resistance                                                                            |
| WO2018031874  | Monsanto      | Resistance to 'late wilt' in maize                                                                         |
| WO2014006159  | Bayer         | Changed oil composition in soybean                                                                         |
| WO2015000914  | Bayer         | Changes in flowering times                                                                                 |
| WO2016176476  | Bayer         | Changed oil composition in oilseed rape                                                                    |

| Table 4. Examp  | nlos of nat | ant applicati | ions for gonon | a aditing and | conventional | brooding |
|-----------------|-------------|---------------|----------------|---------------|--------------|----------|
| Idule 4: Exdill | pies of pa  | ені аррисац   | ions for genon | le eulung anu | Conventional | Dreeunig |

Interestingly, in their patent applications the companies clearly distinguish between conventional mutation breeding and genome editing in the technical description. Contrary to what the public are being told, Monsanto, for instance, clearly regards CRISPR-Cas applications as a method of genetic engineering and not just plant breeding. For example, in several Monsanto patents applications it states that (see e.g. WO2017044744, page53): *"Exemplary genome engineering techniques include meganucleases, zinc-finger nucleases, TALENs and CRISPR/Cas 9 systems (…). A plant or seed disclosed herein can also be subject to additional breeding using one more known methods in the art e.g., pedigree breeding, recurrent selection, mass selection, and mutation breeding."* 

The distinction made by Monsanto is especially important in regard to the question of how these new technologies should be regulated. In this context, this overview on patent applications provides further evidence that genome editing should be regarded as genetic engineering even if no additional genes are inserted: patents such as WO2017222779 (causing double stranded breaks to promote new recombinations of parts of chromosomes) or WO2018092072 (changes in composition of amino acids through frameshift manipulation) are about processes to circumvent the natural mechanisms of gene regulation to create plants with characteristics that are not likely to result from conventional breeding. Therefore these plants – no matter whether patentable or not – should be subjected to detailed risk assessment.